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Relations between the Divisors of the First n Numbers.
By J. W. L. Graisgkgr, Sc.D., F.R.S,

[Read May 14th, 1891,]

Introduction. §1.

1. The present paper contains various generalizations of the re-
curring formula o

" ¢ (1) =80 (n—1) + 50 (1—8) — 7o (. —6) + 97 (n—10)—&c. = 0,*

in which o (1) denotes the sum of the divisors of the number n, and
o (0), when it occurs, is to have the value §n.

It will be seen that the theorems in their most general form relate
to the actual divisors themselves, and not necessarily to their sums
or other numbers obtained from them by any method of combination.
‘We may, however, deduce various theorems of the same kind as the
one quoted above by so combining them ; and numerous examples of
results obtained in this manner occur in the paper. These formulse
. relate not only to the sums of the divisors, but also to the sums of
their m*™ powers, m being any uneven number.t

4 Notation. §2.
2. Let @, {¢(d), ¥ (d), x(d), ...} denote the group of numbers
9 (d), ¢ (d), ¢ (d), ey 9 (d),
¥ (d), ¥ (dy), ¥ (ds), ..., ¥(dy),
x (4)s x (ds), x (ds)s oo x (dp),

V:l Quarterly Journal of Mathematics, Vol. x1x., p. 220, and Proc. Camb. Phil. Soe.,
. Vo, p. 109,

t Thepgeneral theorems in §§ 3, 11, 29, 46, 68 were obtained in December, 1887,
and the first of the theorems relating to the actual divisors (§ 3), with the dcrived
numerical theorem (§ 11), was brought before the Society at its meeting on January
12th, 1888 (‘‘ A Theorem connecting the Divisors of a certain Series of Numbers,’”
Vol. x1x., p. 143) ; but no paper was prepared for publication at that time. I did
not roturn to the subject till December, 1890 ; since then I have worked out the
details and made considerable additions, forming the present paper. A few short
notes containing investigations arising out of the subject, and which have been
published elsewhere, are referred to in the notes to §§ 21, 43, 63,
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where d,, d,, d,, ..., d; are all the divisors of the number n (which, it
will be observed, occurs as the suffix of the letter @&). The numbers
1and » are to be included among the divisors; and it is supposed

thet =G {8 @, ¥ @ x (@, -},
is thesame as @, {—o(d), —¢ (d), —x (4), ...}

Gencral Theorem relating to the Actual Divisors of the Numbers
n,n—1,n—3, §c. §§3-8.

3. Using the above notation, the general thcorem may be expressed
a8 follows : —Tho numbers given by the formula

G ()-G,..(d, d£1)+G,3(d, d£1, d£2)
=G, (d, d+], d+2, d£3)+&e.
all cancel each other, if % is not & triangular number, and reduce to
(—-1)7-1 (one 1, two 2's, three 3's, ... g ¢’s),

if n is the ¢g* triangular number 4g (¢+1).

4. For example, putting » =9, which is not a trinngunlar number,
the theorem asserts that the numbers given by the formula °

Gy () -Gy (d, d+1)+ G, (d, d+1, 3x2) -G, (d, d£1, d£2, d£3)
all cancel each other. '

Writing the numbers d+ 1, d+2, &c., in lines above the divisors d,
and the numbers d—1, d—2, &c., in lines below, so that the central
line consists of the divisors: of the numbers 9,8, 6, 3, 7., of the
numbers 1, 3,9; 1,2,4,8; 1, 2,3, 6; 1, 3, the formula Decomes

(4,6
3,4,58 3,5

2,359 2,3,4,7 2, 4
{1,3,9}—{1,2,4,8}+ 1,2,3,6 -] 1,3},
0,1,3,7 01,25 0,2
-1t0:1:4 -1.1

\—2,0

~
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- or, changing the signs of the numbers occurring in the groups to
which the negative sign is prefized,

—4"__61

3,4,5,8 -3, -5,

-2, =3, =5, -9, 2,8 4,7 -—2 —4,

1,39 -1,-—2, -4, -8 1,236, —1, —3,

0, -1, -8, -7, 0,1,2,5, 0, -2

-1,0,1, 4, 1, -1,

2, 0,

and it is easy to verify that these numbers exactly cancel each other,
t.e., there are five 1's and five —1’s, four 2's and four —2's, four 3's
and four —8’s, three 4's and three —4’s, two 5’s and two —5’s, one 6
and one —6, oue 7 and one —7, one 8 andone —8, one 9 and one —9.

The zeros are retained for the sake of regularity in writing the num-
bers, but no .account is to be taken of them.

As a sccond example, putting n =10, which is the fourth triangular
number, so that g =4, the theorem asserts that the numbers given
by the formula

G (@)—Gy (2, d:1)+G, (d, d+1, d+2) -G, (d, dx1, d+2, d+3)
all cancel each other, excepting only
_1) "'2) _2s _3,""3,—3, _4‘:. —4’5 "'4’1 —4.

The divisors of 10,9, 7,4 are 1,2,5,10; 1,8,9; 1,7; 1,2, 4 re-
spectively, so that the numbers given by the formula are

(4, 5,7)
3,9 3, 4,6
2, 4,10 2,8 2. 3,5
{1, 2,5, 10}-_,{1, 3, 9},4-- CLTE=1 1, 2,4
0,2, 8). 0,6 0, 1,8
-1,5) -1. 0,2
k-—-2, '—1, 14
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that is -4, =5, =1,
3,9, —3, —4, —6,

-2, —4, =10, 2,8, =2, -3, ~5,

1, 25,10, -1, =3, - 9, 1,7, -1, -2, —4,

0,—-2, -8 0,6, 0,-—1, -3,

-5 1, 0, -2,

2, 1, -1,

all of which cancel each other, excepting only one —1, two —2's,
three —3'’s, and four —4's,

5. It is evident that we may express the theorem also in the form :
—Ifa, B, ..., be the divisors of n; a,,f,,..., those of n—1; as, By eues
those of n—3; a4, B;, ... of n—6, and so on, then the numbers

ag+2, 3s+2, ...

a+l, 8,+1, ... ay+1, 5+1, ...

{a, B, }-— a,, By g+ ag, By ... p—&e.
a-1, B;—1, ... a,—1, By—1, ...
a—2, 8;—2, ...

cancel each other in all cases if we make a certain convention with
respect to the group having the central line ay, f3, ..., de., if we
suppose that this group, which can only occur when n = 1g (g +1),
and which would be written

[ ay+ 0, ﬁo+!], X
a,+1, B,+1, ...
1 ag, {7‘09 ves [y

a-1, B—1, ...

\5—9, By—g, ... )
is to be conventionally replaced by the group of numbers
1, 2,2, 3: 3,3, 4,4,4,4,.., gy 9y g oo (9 t'imes)'

6. To obtain the system of numbers given by the formula, we first
write down the divisors of n, n—1, n—3, n—6, &c. (forming the
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central line in the above scheme). Commencing with the divisors of
n—1, we next write down the numbers derived from them by
increasing and diminishing each divisor by 1 (forming the lines next
above and next below the central line). Commencing with the
divisors of »—3, we next write down the numbers derived from the

~divisors in the central line by increasing and diminishing them by 2
(forming the next lines above and below); and so on. We then
change the sigus of the divisors of n—1, n—6, n—15, &c., and also
of all the numbers derived from them. The theorem asserts that in
the system of numbers so formed (if we adopt the above convention
with respect to the group depending upon the divisors of »—n, when
it ocours) every number appears an equal number of times with the
positive and with the negative sign, so that all the numbers in the
system cancel each other.

7. Retaining the G-notation, the theorem may be conveniently
stated in the form :—The system of numbers given by the formula

(d+3)
d+2 d+2
d+1 d+1 d+1
Gu(d)—Gui{ d }+Guaa!d d —Guasy 8 4+ &e,
d—1 d—1 d—1
a—2 ad—2
\d—3)

all cancel each other, subject to the convention that, if
n=14+24+3+...+g,

then the last term

(d+g)

d+1

Gireseng!d a4

d—1

_ d—g)
is to be replaced by the group of numbers
1,22 83,8, ... 99 g, +0s (g times).
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8. The theorem seems to be a very curious one, relating as it does
to the mutual destruction of certain numbers depending upon the
divisors of numbers separated from each other by fixed intervals. It
assigns all the divisors of » when we know the divisors of the num-
bers which are inferior to # aud separated from it by the intervala
1,3, 6, &. It thus effects the complete resolution of any number »
into its factors, or in other words, lays bare the structure of the
number n as regards its real divisors, when the structure of the
numbers n—1, n—38, n—6, &c., is known. The recurring formula in
§ 1 suffices to determine whether » is prime or not, when we know
the sums of the divisors of n—1, n—3, n— 6, &o., for in that case
o (n) is equal to n+1; but the general theorem goes further, and
gives all the divisors of » by means of those of n—1, n—38, &c.

Numerical Theorems relating to the Sums of Powers of the Divisors of
n, n—1, n—38, &ec. §§9-13.

9. Since the actual numbers cancel each other in the general
theorem, we may replace them by any function of themselves, so
long as the function is the same for all and changes sign with the
argument. We may, further, combine all the functions in each group
by additiou, and thus derive from the gencral theorem a numerical
equation connecting together functions of the divisors of the num-
bers n, n—1, n—3, &e.

Let © Zafe(d), v(@), x(a),...}
denote the sum
¢ () +¢ (d)+...+9 (d)
(@) +Y () +... +¢ ()
+x (@) +x (@) +...+x (d)+..y

where d,, d,, ... d, are, as in § 2, all the divisors of n.

By replacing G- (d, d:l:ln ) by 3, {¢ (), ¢ (d%1), ...}, ¢ being
any uneven function, we find that

=Suo1-2-s {9 (@) +9 (d:!:l)+¢ (@42)+¢ (d+3)} + &o.

= 0, if n is not a triangular number, .
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and. = (=1"{p()+20 (2)+3p () +...+9¢ (9)},
if n=1+2+4+34+...+g = 39 (g+1).

10. As a particular case, putting

the equation becomes

3,8—32,.,8d) +3, .5 (58) —3,.6 (7d) + 330 (9d) — &c.
' =0 or (=17 (U+2+3+,..+4%,
according as 7 is not a triangular number or is
=1+4+24+3+...+g.
'Putting ¢ (d) =d
it becomes |
S, (&%) =3, (38 +6d) +3,_, {5d°+6 (1'+2%) d}
=2, { 70 +6(1'+2' 4+ 3)d] + 2o {94°46 (11 +2°+ 3" +4%) d} ~ &e.
=0, or (—1)9' (14424 3*+... +g%),
according as # is not a triangular number or is.
= v1+2+8+;..+g.‘
Putting ¢ (d) = d°,
3. (d%) —3,.1(84°+204°+104) +2,,_,{5d’+ 201+ 2N+ 10(1* +24):4 ¢
—3, o {7d0 420 (°+2°4 3" @*+10 (1442439 d} + &o.
=0, or (=1)% 4243 ... +47),
according as n is not a triangular number or is
=1+2+4+8+...49;

and so on.

11, Denoting by o, (n) the sum of the +** powers of the divisors
of n, we may write these equations in the following form, the addi-
tional term in square brackets coming into existence only in the case
when # is a triangular number 3¢ (g9+1).

o (n)—3¢ (n—1)+50 (1—3)—7¢ (n—6)+90 (n—10) —&o.
= [ (=1 (P +2+8+...+¢Y) ],



366  Dr. J. W. L. Glaisher on Relations between the [May 14,
oy () — 80y (n—1) + 503 (n—3) — 70, (n—6) + 90, (n—10) — &e.
= 6{c (n)—(I'+2) 0 (1=8)+(1"+2'+3) 0 (n—6)—&o.}
+ [(=1) 4243+ 494 ],
0y () — 30, (n—1) + 50, (n— 8) — 7o, (1—6) +90, (n—10) — &o.
= 20 {oy ()= (1*+2") 0, (n—3) + (1*+2°+8") o, (n— 6) ~ &e.}
+10{o (n)—(*+29 o (n—3)+(1*+2'+3) ¢ (n—6)—&o.}
C+ [(m1 (422434490 ],

o, (n) =30, (n—1) + 50, (n—3)— 7, (1—6) + 90, (n—10) — &o.
= 42 {0, (n—1)—(1"+2") o (n—3) + (1’ +2'+8*) o, (n—6) —&c.}
+ 70 {o,(n—1) — (1*+2*) 0y (n—3) + (1*+2*+3*) 0, (n—6) —&e.}
+14 {0 (n=1)— (1042 ¢ (n—3)+(1°+2°+ 3 o (n—6)—dc.}
+ [(—1 (42434 4D ]
and, in general, m being any uneven number,
o (1) =30, (n—1) +50,, (n—8) — 70, (n—6) +90,, (n—10) ~ &o.
= 22l (o (- 1)~ (4 2) 2uns(n-3) 4
’ + (142489 0,_, (n—6)—&o.}

+2 mjm—l)('lzt—2)(m—3) {a,,,_.(u _ 1) _(14+2¢) Ot (7}—3)
) + (1*+24+8Y0,,_(n—6)—&o.}

+2m {a(n— 1)—(A¥~142"~1) g (n—3)
+ QA" +2"1+8"") o (n—6) — &o.}
+ [(_1)0-1 (1«01+2m01+3m+1+ e +gm¢l)].

e

'12. This general theorem expresses the sum of the mth powers
(m being uneven) of the divisors of » in terms of the sums of the
mth and lower powers of the divisors of n—1, n—3, n—6, &c. The
form of the right hand member of the equation is curious; all the
coefficients, and even the additional term which occurs when x is
equal to 3g(g+1), being sums of even powers of the natural
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nambers. The nature of the theorem is best seen by taking a par-
ticular case. Putting therefore »=9 (which is not a triangular
number, so that the additional term does not occur), the theorem
" gives

174 374 9% 3 (1" + 2%+ 4% +8") 4 5 (1 +27+8" + 6%) —7 (1" + 3%)
gm(m=1) {;‘,“” N R
— (1 42) (1m0 4 22 4 =2 4 Gm=1)
+ (1420487 (143" }
+2mE=DE=DE=D) e ey gos g
— (1442 (17442t 4 3ty G-t
+ (12048 (1744374 )

+2m {1+2+448— (1" 42" (1 +2+3+6)
) + (1.,.-l+2m—l+3m'1)(1+3)}.

Thus the theorem connects together the sums of uneven powers of
the divisors of numbers separated from each other by the intervals
1,238, ..., and the sums of even powers of the natural numbers.

13. It will be observed that in the general theorem in § 11, we
may dispense with the additional term if we assign to o, (0) the
conventional meaning

1m¢l+2m'1+3mvl+."+gnnl
29+1

?

and put 0,,_3 (0), 0n-¢(0), ... o (0) equal to zero. The coefficient of

.0,(0) is 2g+1, and we are therefore to replace (2g9+1)s, (0) by
1™+ 4 2met 4 3m+ly  +g™*), the value of g being derivable from the
coefficient of o,, (0) without the necessity of having recourse to the
formula » = 39 (9+1)*

Another convention by which the additioral term in the general
theorem may be conveniently represented is given in §§ 20-22.

# The number g is also equal to the number of terms in the scries on the left-
hand side of the equation, the term (2¢+1) ¢, (0) not being counted.
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The particular cases of m =1, 3, and 5. §§ 14-17.

14. In examining the first few particular cases of the general
theorem in § 11, it seems worth while in the first place to take a
numerical example of each theorem, both in the case when % is not,
and when % is, a triangular number. Putting » =9, which is not a
triangular number, the theorcms give

1+3+9-3(1+2+4+8)+5(1+2+34+6)~7(1+3) =0,
PP4+3°4+9°—38 (1°+2°+4°+8) +5 (1°+2°+3°+6°)— 7 (1° 4 8°)
= 6{14+42+44+8-5(1+24+3+6)+14(1+3)},
1°+8°4+9°—3 (16425+4ﬁ+sﬁ)+5 (15424854 6%) —7 (1°+3%)
= 20 {1424+ 42 48— 5(1°+2°+8°+6%) +14 (1°+3%)}
- +10{1 +2 +4 +8 —17(1 +2 43 +6)+98-(1 + 3)};

and, putting n2=10, which = 14+2+4+3+4, so that ¢ =4, the
theoremns give
14+245410-3 A +34ND+5(1+7)—7(1+2+4)
=— (U'+2'+8°+4Y),
1424+ 5°+10° =3 (1*+8°+9)+ 5 (1P+7)— 7 (1*+23+4%)
= 6{14+43+9 — 5(1+7)+14(1 +2 +4)}
—(I* 4243 +4Y),
154204+ 5°4+10°—3 (184 3°+ 9%+ 5 (1°4+7°)— 7 (1°+2°4+4%)
= 20{1°+3°+9" — 5 (1°+7%) +14(1°+2°+4%)}
+10§1 +3 +9 —17(Q1 +7)+98 (1 +2 +4)}
—(1°42°4-3"+4).
The correctness of these equalities is easily verified.
15. In spite of the fact that some of the elegance and regulérity
of the formulm is lost by summing the powers of the natural numbers
which form the cocflicients, it is still interesting to exhibit the scries

in a form in which the coefficients of the general terms are expressed
algebraically.

Sinco P+ 2 4+8 .. 48 =36 (G+1)(2i+1),
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the theorem in the case of m=1 may be written
3 (-1 @i+ o {n—3 G+1)} = [(—1y"3g(g+1)(2g+D)],

‘the summation extending from 4= 0 to ¢ =h, where 3k (h+1) is
the triangular number next inferior to n.
When n = g (7+1), we obtain the term (—1)? (29+1) o (0) by-
- continuing the series one term further. We may thercfore dispense
with the additional term if we extend the summation from ¢= 0 to
1 =1Fk, where $k (k+1) is the triangular number nearest to, and not
exceceding, n (.., 8o that 1k (k+1) is the triangular number next
inferior to #, if # is not a triangular number, and is equal to n if »
is a trinngular number), and assign the conventional value 3n to o (0)s
when it occurs. This is the form in which the theorem was quoted
in § 1.
16. Since
184204384 .. +2 = 3 (54+1)(20+1) (84 +3:-1),
we may write the theorem, in the case of m = 3, in the form
S(—1F(@2i+1)os{n—137i(z+1)}
=3 (=19 (@+1)(2+]1) e {n—1i(:+1)}
+[(=1)7" 359 (9+1)(29+1)(35°+39—1) ],
the summation extending from ¢ = 0 to 7 = &, where 1A (h+1) is the
triangular number next inferior to .

The additional term, which only occurs when n = 1g (9+1), may
be written in the form

(1) 3 (29+1) n (6n—1);

we may therefore dispense with it if we extend the summations so
as to include the argument zero, and define o (0) and o, (0) by any
of the three following pairs of equations:—

(i) ¢ (0) =0, a3 (0) = 30’ — 0,
(ii.) ¢ (0) = jn—3%, a3 (0) =0,
(iii.) o (0) = §n, a3 (0) = — .

Adopting any one of these three pairs of simultaneous values
of o (0) and o (0), we may write the theorem

S (=1) (2i+ 1) oy {n—1i(i+1)}

: +2(—1)‘i(i+1)(2z’+1)o-{n-—%i(i+1)}=o,
VOL. XXII.—NO. 422. 23
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the summation now extending from ¢ = 0 to i = k, where ik (k+1)
is the triangular number which is nearest to, and does not exceed, .

For example, putting n = 10, and adopting the last of the three
conventions, the theorem gives

a5 (10)—304 (9) + 505 (7) =704 (4) +90, (0)
= 60 (9) — 300 (7) + 840 (4)—1800 (0),
‘where c(0)=2, o4(0) =—3.

17. Siﬁce _
104204304 ., + 8= 22 (2 +1)(20+1) {3+ 62—3i + 1},
 the theorem, in the case of m = 5, may be wfitten
2 (=1)* (2i41) o {n—13i (i+1)}
=223 (=1)' 1 (+1)(2+1) 0y {n—37 (4+1)}
+3Z (=1 (E+1)(2+1) (87 +8~1) o {n—}i ($+1)}
+[(=1)"" &g (g+1)(29+1)(39*+65°—3g+1) ],

the limits of summation being ¢ = 0 and ¢ = &, where & has the same
meaning as in the preceding section.

The additional term may be written in the form

(=13 (29+1) n (1260 —6n+1) ;
" we may therefore dispense with it if we extend the sumimations so as
- to include the argument zero, and define ¢ (0), oy (0), o4 (0) by any
of the three sets of equations :

@) () =0, 0y(0)=0, ,(0)=4n"—$n'+7rn,
(i) 0 (0 =0, ¢;(0) =Zn'—Hn+vis o5(0) =0,
i) o O =4n, 0 (0) =—Fn, 0, (0) = An.

Assigziing to @ (0), o5 (0), 05 (0) any one of these three sets of
values, we may write the theorem in the form’

3 (1) 2i+1) o, {n—i (-+1)]
F23 (—1) (1) 241 {n—}i (i+1)}
+33 (=1 1)@+ 1) (B4 3i—1) o {n—3i (i+1)} = 0.
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~ For example, putting » =6, and a,doptmg the last of the three

‘conventions, the theorem gives

5 (8) =30y (5) + 505 (8) =705 (0) = 20 {0, (5)— 50, (3) +14o, (0)}
+10 {o (5)—170(3) +980 (0)},

where c0)=4$ o6 (0)=—F, o0 =

The same Theorems expressed in terms of ¢ and t. §§18, 19,

18. The coefficients in the series may conveniently be expressed by
‘means of ¢, the coefficient, and ¢, the triangunlar number, which occur
in the general term of the simplest of the series, viz.,

o (n)—38a (n—-l)+50 (n—3)—70¢(n—6)+90 (n—lO)—&(':._

Let, therefore, ¢ denote the ¢ triangular number 37 (¢+1), and let
¢ denote the coefficient 2i+1 of the term ¢(n—t), 8o’ that the
quantities ¢ and ¢ are connected by the relation

t=13(c=1).

Using these letters ¢ and ¢, and extending the sign of summation to
every triangular number which does not exceed m, zero being in-
cluded, and also nitself, if # is not a triangular number, we may write
the above series in the form

S (—1)ie-Y¢o l(n—t) H
or, if we employ Legendre’s symbol (—_;—1-) in place of its value
(—1)t-" in the form
: E(Zl) oo (n—1).
c
Now it'is known that
17424 8% ... +47 = ctF (2),

where I (¢) is & rational and integral fuuction of ¢ of the order »—1,
so that the series

¢ (n—1)— (17 42¥) ¢ (n—3) + (17 + 2" +8%) ¢ (2 —6) — &c.
may always.be expressed in the form
-1
—2(7) ot () ¢ (n—12),

the limits of summation being the same as above.
' 2182
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19. Expressed in this notation, the formulm of §§15-17 assume the

forma ) (-'c—l) oo (n—1t) = 0,
s (:c—l) cay (n—t) +23 ("Tl) cto(n—t) =0,
3(22) oy r—0) 4203 (L) oty (n—t) +43 () et o (4—0)

—33 (:0—1) cto(n—1t) =0,

where, as in §§ 15-17, in the first formula, ¢ (0) = 4= ; in the second,
o (0) = in, oy (n) = —sn; in the third, ¢ (0) = }n, 0, (0) = — Fn,

73 (0) = 7.
It is evident that the general theorem in § 11 may be expressed as
a linear relation connecting together series of the form

-1
2 (—c-) ct’ o, ('n—t),
where » is any number, and s any uneven number.

Method of representmg the Addstional Term in the general Theorem.
§§ 20-23.

20. The most elegant of the different methods which have been
made use of in the preceding sections for representing the additional
term is the one in which the values of o (0), o4 (0), ... are simply
proportional to #. It is easy to see that this method of representing
the additional term is genei‘al, For, writing the general theorem (§11),
when # is the triangular number 1g(g+1), in the form

oy (n) =30, (n—1) 4+ 50,, (1—3)—T70,, (n—6) +90,, (n—10)— &c.

= 227 {ous (=)= (142 0y (n3)

4+ (17424 3*) s (”—6)—&0-}
+22 {ous (i=1) = (1*+2) 504 (=3)

+(1‘+2‘+3‘) a.,.-‘(n 6) &e. §

+2m{o-(n—l) am=r'42m-l g (n—3)
+ (lm-l+2m—l+3m-l) o (n_s)_&c.}
+(_1)g-l (1m+l+2mﬂ+3mu+".+gvu+l)’
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where m is any uneven number, and m(’ denotes the factorial
m(m—1)..(m—r+1),

it is evident that, if a,, ay, ..., a,, are numerical quantities depending
upon m, which are determined by the equation

1m+l+2m+l+3m+l+‘“+gv:ftl
= g (g+1) {m "1 +2 3 kg g,

m®

+ :;i- (1m-3+2m—3+3m—3+"'+gm-3) aﬂ

(2)
+ ’)72?:“_ (1’+22+3’+ .se +g,) @y 2

+T:»' (29+ 1) a,,.,
then the additional term disappcars if we assign to o (0), g, (0), ...

the system of values

c(0) =a,n, 0,(0) =agn, o(0) =an, ..., 0.(0) =a,n

21. By replacing the serics
l-uol+2m¢l+3m+l+.“+gm.l, 1m—l+2m—-l+3m-l+".+gm-l’ &e.

by their summations in terms of Bernoullian numbers, and equating
coeflicients, we ultimately arrive at tho following simple system of
equations, which determine the values of g}, as, ... , a,* :—

2

ma, = 1— —

m+2

* The details of this detormination are given in a paper ¢ On a Theorem relating
to Sums of Powers of the Natural Numbers' (Messenger of Mathematics, Vol. xx.,
p. 120-128). The detoermination was mado the subjoct of a separato paper, ns the
investigation is somowhat longthy, and it is only with the rosults that tho presont
papor 18 concorned. It is shown that, if tho series 1" + 27+ 3"+ ... + " bo denoted
by 8., thon :

Sop = Sl {.A, Sgn_g + Aq Sg,._‘ + ...‘+‘.Az,,_z Sg-}- Az,. (g + i)} ,

) )
where 34, =ma,, 3d4,= ’—";—'- g0y YAz = '—;—‘-am_z, A2, = aw,
m being = 2n—1, and a,, ay, ..., @, huving tho values assigned to them in the text.
In connexion with this investigation tho theorems in § 11, which gave riso to it,
are also given, but without proof, in a scpurate noto (Messenger, Vol. xx., pp.
129-135). A
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(3) s
7:’;_!'“3""_‘“1 =— (m+1) %,
’1‘.‘2 _ m_(” _ (m4+1)® 2!
5177 31%T T g1 2
m® m(“) _ (m+1)® B, B
T BT T T
&e., &o.,
B,, B,, B,, ... being the Bernoullian numbers.
We thus find
=_1_
Ny
m® m B
3TB= mt2 —.(m+1) =1,
(3] 3
”;! %= —(m+1) B' + (m;-'l) g,
m" m (m+1)® B, (m+1)® B
7T _ﬁ_(m“) T B
&e., &e.,
whence
e ()= - —1_n

m+2

9 ’ B
m 0= {q%—(mug-li—'}n,

",'ng"n() {

m“ m
T ©) = {m+"

Bl (m+1)® B, }
+ 37T "3 n,
B, , (mt1"B, _(m+1)®
3! 2 5!
&e., &e.

Thus finally we obtain the formuls:

o (0) = ——n,

m+2

m+1

a,,(O)___{ 3l m 3!3.}

(m+2)® m® 1

[May 14,

3’

%)
35"
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a,,(o')_{ 5'm 5! B, 5 1_91}”
m+l ((m+2)@ m® 1 " (m—2)® 2§

,,(0)_’{ 'm 7B 7w B 7w &}n
m+1" ?

m+2)® w1 (m—2)® 2 (m—4)9. 3
and, in general, » being any uneven number,

o0 _ ¢ rtm 7! ﬂ -3 B, 7% B,
m+l  ((m+2) D w1 (m—2)7 D2  (m—a)r 3

e B
e A=)
(m—r+3)® L (r—1)

" 22: These equations give

c@= —on

"0 ==

"0, (0) = 3(mfg:118n_2) n

"= e
&e., &e.

The values obtained by putting m =3 and 5 in these expressions
agree with the third system of results in §§ 16 and 17.
Putting m = 7, we find

Ca(0)=3n, 03(0) =—gsn 03 (0) =4, 0,(0) = —gn.

If, therefore, we attribute these values to 0 (0), 95(0), ... , 7,(0),
we have, for all values of =,

o, (n) =80, (n—1) + 50, (n—38) =70, (n—6) + 90, (n-10) = &e.
= 42 {0, (n—1) — (1 +2%) g, (n—3) + (U + 24 3*) o, (n—6) —&o.}
470 {o, (n—1)—(1+2*) 0, (n—8) + (1* + 2+ 3) 7, (n—6) — &o.}

+14{s (1=1)— Q"2 0 (n—8)+(1"+2+3% ¢ (n—6)—&o.}.

23. With respect to the two methods of presenting the general
theorem (§§11 and 20), d.e., with-or without the additional term, it
is evidently an advantage to avoid the irregularity produced in the
formulh. by the occasional presence of an extra term. .Since the
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quantities ¢ (0), o5 (0), ..., 0,, (0) only enter into the formula in the
exceptional case when the additional term makes its appearance, it
seems natural, following Euler,* to get rid of this term by assigning
suitable values to these quantities. It is interesting to find that this
can always be effected by means of asystem of values, all of which are
simply proportional to n. The form of the expressions for these
values in terms of Bernoullian numbers (§21) is also not without
interest. On the other hand, the simplicity and directness of the
theorem, as stated in § 11, isimpaired by these conventional meanings
assigned to ¢ (0), 0,(0),..., ¢, (0). Also, the additional term itself
has & special interest of its own, being similar in form (i.e., a sum of
even powers of the natural numbers) to the coefficients in the series.

Form of the General Theorem if the Divisor unity be omitted. § 24.

24, It may be rcmarked that, if we omit from the divisors of #,
n—1, n—3, ... the divisor unity which is common to them all, the
only change introduced into the formulm is the addition of & single
term consisting of an uneven power of I, where il (1+1) is the tri-
angular number nearest to, and not inferior to, n.

Thus, if ¢} (n) denotes the sum of the 7" powers of the divisors of
n, unity being included, we have, corresponding to the general
theorem in § 11,

a,, (n)—3a,, (n—1) + 50, (n—8)—"T0,, (n—6)+ 9o}, (r—10) —&e.

2

m® , ,
= 27 {ohs (1= 1) — (142" oy (n—3)
+(1*+2'+38") o)y (n—6) - &e.}

m® . ) ,
+2 Z{ {”m—l ('n‘-l)—(l +2‘) s (7;_3)

+(1*42438%) 0,y (n—6) ~ &o.}

+2m {o-’ (n—1)—QA"'42"1) o’ (n—38) -
+ (1m-l+2m-l+3m—l) 0" (n_G)_&c.}
+(___1)llm+ [(_1)0—1 (1mol+2m+l+3m+l+.“+g)rlol)]'

¢ In Eulor's recurring formula
o(n)—oc(n—1)—a (n—2)+0 (n~6) +o (n-7)—~&c. =0,

he dispensed with an additional term which occurs when # is & pentagonal number
by assigning to ¢ (0) the value n (Opera Minoera Collecta, Vol. 1., p. 149).
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where  has the meaning just assigned to it, so that, when = is a tri-
angular namber 3¢ (g+1), in which case the additional term appears,
l is equal to g; otherwiso 4l (I+1) is the triangular number next
greater than n. It will be observed that I is always equal to the
number of terms in the series on the left-hand side of the equation,
not counting the term o, (0), if it occurs. As examples, let
m =3, and put =25 and 6. In these two casesthe formula becomes

0} (5) =303 (4) + 505 (2) = 6 {o’ (4) — 50’ (2) } 3",
end o} (6)—30i (5)+ 505 (8) = 6 {0’ (5) —50"(3) } —3°+ 14244 3%;
that is, 125—3x 7245x 8=6{6—10} —27,
and 251 -3 1254 5x 27 =6 {5—15} —27+98.

Proof of the Theorem relating to the actual Divisors. §§ 25-27.

25. Let zgm=ef(m)_znm+cna:dna:

e, (z) - snz

where 0, (#) and znx are the same as Jacobi's H (z) and Z (z) re-

spectively. Then, denoting 2TK by p, we have

2q! cos z— 641 cos 3z 4 10¢°* cos 53— &c.
2¢! sin z—. g¥ sin 3z + 2¢¥ sin Sz —&e.

pzspr =
Now, it can be shown that

8
pz8 px =M+iégi§sin2a}+ 1_411_‘5511 43+ 1—4’9?sin6w+&c.
—q —-q . —

. sina

Let o¢ (n). denote the sum
¢ (dy)+¢ (d) +o (dg) +... +¢ (d)),

where d,, d,, dy, ..., d, are all the divisors of n. Using this notation,
the coefficient of ¢ in the above g-series is easily seen to be equal to
4o (8in 2nz), and the equation may be written

cos
gin 2

p 28 px = + 437 o (8in 2nz) g™ *

* This equation was givon in this form in the Messenger of Mathematics, Vol.
XVIIL, p. 6, a8 ono of a system of sixteon similar formuli representing the twelve
elliptio and four zeta functions. It is to be observed that tho symbol o is supposed
at;l’wa.ys to refor to the divisors of 2 (not 21n). Tho sign of summation also refe

n.
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Eénating the two expressions for pzspz, we obtain the identical
relation

cosz cos z—3¢" cos 3z + 5¢° cos Sz— &o.
2 2 o .
sing g T3 o (sin2n2)g sin @ —g’sin 3z +¢® sin Sz — &e.

26. Replacing ¢* by g, this equation becomes

cos @ © . _ tos z—3q cos 3z + 5¢° cos S5z — &o.
2 = .
sinz +437 0 (sin 2n2) ¢* = sin z—g sin 3z+¢" sin Sz~ &e. ’

whence, by multip] ying up, we find
4 (sin x—g 8in 3z+¢* sin 55— ¢° sin 7x + &c.) 37 o (sin 2nz) ¢"
= (sin 3z cot —3 cos 3z) ¢
—(8in 5z cot z—5 cos 5z) ¢*
+ (8in, 7@ cot z— 7 cos 7z) ¢°

=—sinx—‘i sin 3mq+sinw d sinbx , —sin d gin7z o

dz sinz dz sinz Sing J da: sin @

The equation may therefore be expressed in the form

4’(1_sin3m +sm5w s_8in7z o.,.&c)zla(sm%w)q

gin @ sin @ sinz
—_@d sin3z d sinbz 4, d sin7z , & -
dz sinz dz sinz dz sin:cQ+ ©
Now s‘l—e—@ = 1+2cos 2z,
sin &
mr'—'sm ="1+2cos 20 +2 cos 4z,
sin @

and, in general, m being any uneven number,

sin ma
sinz

= 1+2co8 2z+2 cos 4z +...+2 cos (m—1) 2.

. This equation may also be obtained very simply by writing the first equation
in § 26 in the form

437 o (sin 2nz) q"+ — log sinz =2 log (sin z—g 8in 3z + ¢% sin bz — &¢.)."
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The equation therefore becomes

: {1—(17;-2 cos 2a;) g+ (1+2cos 28+ 2 cos 4z) ¢*— &e. } 37 o (sin 2nz) ¢
= sin 2a>:.q—(sin 2242 sin 4x) ¢+ (sin 22 +2 sin 40 + 3 sin 62) ¢°— &o.

27. Replacing 2z by =, we have finally
{1—(1+2cosz) g+ (1 +2cos z+2cos 2z) ¢*
—(1+2 cos 3+2 cos 2z +2 cos 3z) q*+&o.}
"X {2, sindz . g+ 3 8in dz. ¢+ Zysindz. ¢*+ &e. }
=sina.g—(sinz+2sin 2:13) g’-‘-(sin x+ 2 sin 22+ 8 sin 3z) ¢*— &e.,

where, in accordance with the notation employed in §9, =,¢ (d)

denotes ¢ (d,)+¢ (dy) +...+¢ (dy) ; dy, dy, ..., d, being all the divisors
of n.

The coefficient of ¢* on the left-hand side of this equation is
. 3,8indz—3,_, {sin de+sin (d—1)z+sin (d+1) z}
+3,s {sindz+sin (d—1)z +sin (d+1) #+sin (d—2) 2+sin (d+2) 2}
— &e.

We see, therefore, by eqnaﬁing coefficients, that this expression must
be equal to zero if # is not a triangular nnmber, and that it is equal
to (—1)*-! (sinz+2 sin 25+ 8 sin 3z + ... + g sin gz)”’
when » is the triangular number 3g (g+1).

It is evident that this relation can only exist by virtue of the actnal
nambers d, d—1, d+1, &c., which occur in the arguments on the
left-hand side, cancelliiig each other (with the exception of the one 1,
two 2's, three 3's, ..., which -are to remain when n is a triangular
number) ; for no property of the sine, as distinguished from any
other uneven function, can have any influence upon the mutual
destruction of the terms. We may, therefore, either replace the
sines by ¢'s, ¢ being any uneven function, thus obtaining the
theorem in § 9, or we may pass directly from the sine-theorem to the
general theorem relating to the actual divisors (§3)."
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Second Theorem relating to the Actual Divisors of the Numbers
n, n—1, n—3, &e. §§28-30.

28. From the last formula in § 26, by multiplication by sinz, we

find
2 (sin z—gq sin 3z +¢* sin Sz—¢°sin 72+ &c.) 3y o (sin 2n2) ¢*

= (cos z—cos 3z) ¢—(cos z+cos 3z—2 cos 5z) ¢
+ (cos &+ cos 3z +cos 52— 3 cos 73) ¢°—&e.,
the general term on the right-hand side being
fcosz+cos 8z +cos 5z+ ... +cos (2g—1) —g cos (29+1) 8} g# @1,
The coefficient of ¢" on the left-hand side is
3, {cos (2d—1) s—cos (24+1) 2}

-3 {cos (2d—38) w—cos (24+3) z}

+3, {cos (2d—5) x—cos (2d+5) m}

— 3, {c08 (24— 7) z—cos'(2d +7) }

+ &e.;

this expression therefore is equal to zero, if # is not a triangular
number, and is equal to

(=1)*" {cos z+co8 3z +cos 5z + ... +cos (29—1) z—gcos (29 +1) 2},
when n is a triangular number }g (g+1).

29. Using the notation of § 5 so that a,f, ..., are the divisors of
n, a;, By, ... , those of n—1, ay, ..., of n—38, &o., it follows that the
nambers given by the formula, A

{_ 2a+1, 28+1, .. } { 2a,+3, 26,+3, }

=(2a—-1), —(26-1), ... ~[2a,-8], -[26,~-3), ...

{ 2uy+5, 285+ 5, ...}
—&o.,
—[2a,—5], —[26,—5], ...

all cancel each other, unless n is a triangular number g (¢+1), in
which case there are left remaining one 1, one 3, ..., one 2g9—1, all
having the same sign, and also the number 2¢+1 occurring g times,
and having the opposite sign. If g be even, the g different numbers
have the positive sign; if uneven, the negative sign.
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The numbers 2a,—8, 26,—3, ... are enclosed in square brackets to
indicate that their absolute values are to be taken (irrespective of
sign), .e. [a] denotes a, if a is positive, and —a if a is negative, so
that [a] is always a positive quantity. It is unnecessary to enclose
2a-1, 231, ... in square brackets, as they are necessarily positive.*

As an example, let » =6. The doubles of the divisors of 6, 5, 3

‘are 2, 4, 6, 12; 2, 10; 2, 6 respectively, and, since g =3, the theorem
asserts that'the numbers

{ 3, 5 1, 13}_{ 5, 13}+{ 7, 11}
-1, -8, -5, —-11 -1, -7) (-8, -1
cancel each other with the exception of —1, -3, —$5, 7, 7, 7.

30. The theorem may be exhibited conveniently in the following
manner.

Taking the above example, we first write down in a central line
the doubles of the divisors 6, 5, 3. We add 1 to each of the divisors
in the first set, writing the numbers so obtained above them ; we
then add 8 to the second set, writing the numbers below; then 5 to
the next set, writing the numbers above. We have thus formed the

scheme:
8, 5,718, 7, 11,

(2,4,6,12), (2,10), (2, 6),
5, 13.

To complete the scheme, we subtraot 1 from each of the divisors in
the first set, 3 from the second set, 5 from the third set, writing the
numbers below and above alternately, and attending only to the
absolute values of the numbers (for example, in the second set,
subtracting 3 from 2 and 10 we obtain —1 and 7, and we enter 1

* In the notation of § 3, the theorem asserts that the numbers given by the
formula,

N R RO s R P

all cancel each other if » is not a triangular number, and reduce to
(-1)9{1, 3,6, ..., 29— 1, and —(2g +1) occurring g times},
it n is the g*» triangular number 37 (7 +1).
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and 7). We thus obtain the system of numbers

3,5718 1, 7 711,
(2 4,6,12), (2,10)," (2, 6),
1,3,511, 513, = 3, 1

The theorem then asserts that, if we cancel the numbers which ocour
‘both in the upper and lower lines (ignoring the middle line), we
shall have left three 7’s in the upper line, and the three uneven
numbers inferior to 7 (z.e., 1, 3, 6) in the lower line.

In general, if the numbers derived from the divisors be written
down according to this method, the theorem asserts that, if we regard
the numbers occurring both in the upper and lower lines as cancelling
each other, then this cancellation is complete if # is not a triangular
number, but that when % is equal to a triangular number }g (g+1),
then there are left, after the cancelling, g (29 +1)’s in one line, and
the g uneven numbers inferior to 2g+1 in the other. If g.is even,
the (29+1)’s are left in the lower line; if uneven, in the npper line.

Taking as examples the numbers 9 and 10 (asin § 4), and forming
the systems of numbers, we obtain, for » =9,

8,7,19, 1,1, 513,  7,9,11,17, 5, 1,
(2,6,18), (2,4, 816), (2,4 6,12), (2, 6),
1,517, 5,711,199, 81,1, 7, 9,18,

in which all the numbers in the upper and lower lines cancel each
other, and, for n = 10, '

3,5,11,21, 1,8,15, 7,19, 5, 3, 1,
(2,4,10,20), (2,6,18), (2,14), (2, 4, 8),
1,3, 9,19, 59,21, 3 9, 911,15
in which, after cancelling all the numbers common to the upper and

lower lines, we have left four 9's in the lower line, and the four un-
even numbers inferior to 9, viz., 1, 3, 5, 7, in the upper line.

Numerical Theorems relating to the Sums of Powers of the Divisors of
1, n—1, n—3, §c. §§81-33.

31. By replacing each of the numbers in the theorem of § 29 by the
same arbitrary function of itself, and adding together the members of
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each group, as in §9, we find that, if Y be any even function, then
3% Qd+1)—y (24—1)} =3, {¥ (24+3)~y (20—3)}
+3.-0 {¥ (2d+5)—¢_(2d—5)} —3, (¥ (@d+T7) -y (2d-7)}
+ &o.
is equal to zero, if n is not a triangular number, and equal to
(=17 {g 29+ 1)y ) =¥ (3) =¥ (5)— ... — (29 —1)}
if n is a triangular number 4g (g+1).

This result may of course be deduced directly from' the theorem in
§ 28, by replacing the cosines by arbitrary functions.

32 As a particular case, let

Y (2d+1) = (2d+1)3,
We thus find

3,84—3,,24d 43, 404 -3, _¢ 56d + &c.
=0, or (=1)7-' {g (29 +1) -1~ 8 =5 — .. — (29-1)'},

according as # is not a triangular number, or is equal to 3¢ (g9+1).

Now  D*434+8+...4+(29-1)' =19 (29—1)(29+1),
so that ¢ (294+1)*-1"—8 -6~ ... —(Qy—1)’= %¢g (g+1)(2g+1),
and the formula becomes

o (n)—80 (n—1)+5¢ (n—3)—"7¢ (n—6) + &c.

=0, or (=1)"" 39 (g+1)(2g+1),

according as # is not a triangular number, or is equal to 2g (g+1)
This result is equivalent to the recuiring formula quoted i m the first
section of this paper.

33. Putting ¥ (2d+1) = (2d+1)*+,
m being any uneven number, we obtain the general theorem

Om (1&)—-30',,. (n—=1)+50, (n—38)=70, .(n—6)+&ec.

m”

2, 3'{0',,._,(71) 30',,._, (n=1)+5%0p3(n—~8) =0y (n— 6)+&0}

+mY

24 5 {o-,,,_.(n) B0, (8 =1)+ 5%, (n—3) - Pg,,_ (n—6) +&c }

°re ove oo “oe .o XY .o es
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@ . '
*27% {o3(n) =80y (n—1) +5" 0y (n— 8) — 7" 0, (n—6) + &e.}

+ =55 (e ()-8 a(n=1)+5" o (n-3)-7" o (n—6)+&e.}

s)m—l

o [( _1)0—1.2"‘_“@’%’?[_) {g(2g+1)m¢l_ 1unl_3m‘+l_5m+1__

.. —{2g— 1.).".'"}],

where (as in § 11) the square brackets denote that the term enclosed
by them only appears when # is equal to 3¢ (g+1). Otherwise the
right-band side of the equation is zero.

This result corresponds to the general theorem in § 11. Comparing
the two formule, we see that in § 11 all the series except the first
have one term less, and that the additional term is somewhat simpler
in form. On the other hand, the coefficients in the above series are
much simpler than in § 11, consisting each of a single power, and all
the series are of exactly the same form, whereas in § 11 the first
series, on the left-hand side of the equation, is not included in the
general form of those on the right-hand side.

The particular cases of m =8 and 5. §§ 84-37.
34, By putting m = 3 and 5, we find

03 (n)—80y (n—1) + 50y (n—3) —7 0y (n—6) + &e.

+} {o (n)—8¢ (n—1)+5% (n—8)— 7*c (n—6) + &e. }
= [(=0 g o @+ 1p—1-3—5—..— -1} ],
and o5 (n)—8 o (n—1)+5 0y (n—3) —7 05 (n—6) + &e.
+4{0 (0)—8%0, (n—1) + 5%, (n—8)— oy (n—6) + &c.}
4.;1, {o () —8e (s—1)+5 (1—3)—T'¢ (n—6)+&o.}

= [(—1)9-'2%6 {g (2g+1)“—1°—3°—5°—...—(2g—1)}°].

35. Since
IS (2 1) = Mg — 3 o,
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we find that the additional term in the first of these two equations
is equal .to
(=1)° {3g° +3¢* + 4° + 49"+ vhog

ich = (=1 Qe+ (P +9)(12¢"+129+1)
whic (-1) ot

In a similar manner, since
1°48°4 54 ... +(29 - 1)° = 8247 165°+ 289"~ 39,
we find that the additional term in the second equation
= (=1)7" {397 +39°+ 39"+ 159"+ 79+ 550° + i 39}

= (=1 Gg+1)(*+9) {144 (5" +9)*+24 (4" + 9) +13}
2016

36. Expressed in the notation of §§ 16 and 17, the formule hecome
(-1 (241 @ {n—3 (E+1)} +32 (1) (2i+1)’e {n—3iG+1)}
= [(=1)7" thog (9+1)(2g+1) (128" +129+1) ],

and
(-1 (&4 o {n~ 3+ 1)} +42 (1) @i+ 1)’oy {n—3i G+ 1)}
+5%2 (=1 @i+1 o {n—3i G+ 1)}
= [(=1)""sars 9 (g+1)(29+1) {144 (5" +9)'+24 (s +9) +18},
the summations extending from ¢ =0 to <= h, where 3k (A+1) is
the triangular number next inferior to n.
We may evidently dispense with the additional term (the right-

hand member of the equations being then zero for all values of u) if
we put, in the first formula,

a(0) =0, 0;(0) =32n"+¢5n;
and, in the second formula,
c(0) =0, 0,(0) =0, 05(0)=§n+n'+yi}en.
If these terms of zero argumént are include‘d, the summations are

to extend from ¢ = 0 to ¢ = 3k (k+1), where }k (k+1) is the tri-
angular number, nearest to, and not exceeding, n.” = -

87. We may, however, represent the additional term in a more
elegant manner (as in §§16 and 17) by means of values of o (0),
03 (0), 0 (0), ..., all of which are simply proportional to n. - These

VOL. XXI1I,—NO. 423. 2c¢
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values are found to be, for the first formula,
o(0) =3, o5(0) =—5m
and, for the second formula,

;T (0) = -}n, o, (O) = —‘1'1'6"'1 oy (O) = 0.

The same Theorems expressed tn terms of ¢ and t. §§ 38-40.

38. In the notation of § 18, in which
c=2i+1, t=3¥(:+1),

we may express the theorems, in the cases of m=1, 3, 5, in the

forms 3 (—%l) co (n—t) =0,

= (%1_) cog(n—2¢)+4= (%1-) & (n—t) =0,
2 (:c—l) oo (n—1) +§3 (:c_l) oy (n—t)-.l-—.%z (-:-;—1) Fo(n—t)=0;

where, in the first formula, o (0) = jn; in the second, ¢ (0) = n,
oy (n) = —3%n; and in the third, ¢ (0)=4n, oy(0) = —7mn,
o5 (0) = '8‘5'"-_

39. It may be observed that the formulm contained in the general

theorems of §§ 11 and 33 are not independent. Thus, writing the
formulm with the additional term, we havo, from §§ 16 and 35,

b (:(;—1-) cay(n—1t) +23 (:c_l) cta (n—t) |
= [(=1) {3 +3g*+ 30' =9} ],
2 (2) ot 3(2) 2o 0o
= [(=1)"' {3+ 3g* + 50" + 5"+ vhae} |
whence, bj subtraction, since ¢® = 8¢+ 1, we obtain
: -1
> (T) o (n—1t) = [(=1)"" {&g*+30'+ 59} |5
that is, =3 (—3—1) co ('f_t) = [(—-1)0-1 {%gﬁ +1g' + %g} ],

which is the original recurring formula of § 1.
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40. Similarly, from §§ 17 and 19, we have

E.(—Tl-)'ca,,.(jz—t) +30 ( 1) ctoy (n—1t)+43 ( ) (ct*—3ct)o (n—1t)

= [(=1)" {457 +3g"+ 30" —3s" + 49} ],
and, from §§ 35 and 38,

(=1 _1
> (T) e, (n—t) +43 (T)c (Bt+1) 0, (n—t)
43 (‘Tl) ¢ (648 +166+1) o (n—1)
= [(=1) {357+ 39"+ 35" + 50"+ 7550° + o9’ +'r'6 59} |5
giving, by subtraction,
— ~1
> (ZY) enr—0+33(Z2) (@t +0) 0 (=0

= [(-1)"' (35" +%59* +T-i'-i ‘0’ —3ts9} |
that is,

s (—0_1) cay (n—t) + 25 (:cl) (ct++455¢) o (n—1)
= [(1y7 {30° + 3"+ 450"+ 59" — 59} ]
Now %3 (:c—l') oo (n—t) = [(-1)"! {Fo0"+ 350" +359} s
whence, subtracting, wo find
2(‘71) coy (n—t)+25 (-‘—1) cto (n—t)
= [(~1) (3" +35*+19°— 559} ]
= [(=1)r {1 +2'+ 3+ ... +4'1 ],

which is equivalent to tho sccond formula of § 19.

Method of representing the Additional Term by constant values of
o (0), o5 (0), §c. §§ 41-43.

41. Tho additional term in the gencral theorem of § 33 may be
represented in the following manner : —

2c¢c2
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Let f =2g+1, so that f is the coefficient of #,, (0), when it occurs.
The additional term may then be written

— I(!'l)_________ 4l __Im+l _Qml_ Em+l el .
Now the sum of the series 17+ + 3"+ 457+ 4, 4 ™! ig (see §58)

P L a1y, - B0 T s

21( +1)( Bs m—t__ gm-1 1w ml
* i 2 )P

The additional term is thercfore equal to

— 1)U+ [ _pg fro m® B,
[( 1) {211142 (171‘.-{-2) Bl 2m+l+ 31 2 zm—l

_mO9 By fr i_B.wuv_L}]
51 8 27 T im+l) #5J°

By comparing this expression with the left-hand member of the
formula in § 33, it is evident that we may represent all the terms
after the first by putting

e =—1B, o ©0) =12, 0,0 =~%,..,

Om (0) = ( 1)“’"‘”) é T (m”':!;ll))

the general value being
B,
%1 (0)=(—1)"4=>

When these constant values are assigned to o (0), ¢, (0),..., 0., (0),
the additional term reduces to the monomial expression

NG iy |

[( 1) 242 (m4-2) 1

It is to be noticed that the above values of ¢ (0), ¢, (0), ..., 7, (0) ars
absolute numerical constants, being independent both of » and m.

42. We may cause the additional term to disappear entirely by
assigning to onc of the quantities ¢ (0), a4 (0), ... a value depending
upon f and m, all the others retaining their constant values.

For example, the additional term disappears (the right-hand
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member of the equation being then always zero) if we put

£ 1).'

0(0)=—1B 4+ —I— =
O ==+ grmy =4 (G

Since f1—1 = 4 (¢"+9) = 8n, this value of ¢ (0) may be written

7(0)= s "m‘__:;
Thus,for m=1, ° a(0)=1in;
»w m=3, o (0) =3n—vs;
w m=5, e (0) =3n—3%;
w m=1 o (0) = §n—v%;
&e., &e.

43. Taking the particular cases of m =3 and 5 (§§ 34 and 37), we
have, therefore, for all values of =,

0y (1) =30, (n—1) + 50, (n—8) = 7o, (n—6) + &e.
+1{o(n)~3% (n—1)+5% (n—3) - 7s (n—6) + &c.} =0,
i - c(0)=4n-7n 0 (0)=r1i
and o5 (1) =805 (n—1)+50; (n—3)—"Toy (n-6)+ &e.
+ & {0y (0) = 3%, (n—1) + 5%, (n - 3) — Poy (n— 6) +&e. }
+2 {0 (8)=Fo (n1-1)+5% (n-3)=Tc (n—6)+&o.} =0,

if c(0)=31—-25 0(0) =3k 0 (0) = —55z*

Formula connecting the Sums of the Divisors of the Iirst n Numbers, § 44.

44. In a papert in the fifth volume of the Proceedings of the
Cambridge Philosophical Society, I gave the following formula which

* Tho genoral thecorom in § 33 and the mecthod of ropresenting the additional
term in §§ 41 and 42 arc given without proof in the Messenger, Vol. xx., pp. 176-
191, in connoexion with the investigation referred to in the noto to § 63.

f ¢On the Sum of tho Divisors of a Number ” (1884, p. 108). The formula is
givon on p. 112. It also occurs in Proc. Lond. Math. Sac., Vol. xv., p. 118 (1884).



890  Dr.J. W. L. Glaisher on Relations between the [May 14,

connects together the sums of the divisors of all the nombers from
unity to n:
o (n) —20 (n—1)—20 (n—2) +80 (n—8) + 8¢ (n—4) +30 (n—5)
—4o(n-6)—do(n—"7)~4o (n—8)=do (n=9)+50 (n-10) +...
wetbo (n=14) — ...+ (=D 're 1) = (=1)" 3 (s*—5s).
In this formula the first term o (n) has the coeflicient unity, the next
two terms have 2 as coeflicient, the next three have 3, and so on.
The Ictter s denotes what the coefficient of o (0) would be if the series
were continued one term further. Thus s is equal to r, unless ro (1)
is the last term of the group of r terms having r as coefficient, in
which case s is equnl to »+1.
I now procced to investigate a relation conrecting together the

actual divisors of all the numbers from unity to », which includes the
above formula as a particular case.

@eneral Theorem relating to the actual Divisors of the First n Numbers.
§§ 45-50.

45. From § 28,
2 (sin ® —q sin 3w+ ¢* sin Sz—¢° sin 72+ &e.) 3¢ o (sin 2nz) ¢"
= (cos & —cos 3x) q— (cos © + cos 3x—2 cos 52) ¢°
+ (cos x + cos 3z + cos 5z —3 cos 7z) ¢°— &e.
Now, by multiplying the serics
sinz — q sin 82 +¢° sin Sz — &e.

by 1+9+¢’+9°+4* +¢°+ &e.,
we obtain the scrics

s‘in x—(sin 3z —sin2) (¢ +¢°) + (sin S5z —sin 3z+sin2) (" +¢* +¢°)

— (sin 7z—s8in 5z +sin 3z —sin z) (¢°+ ¢ +¢* +¢") + &e.,

which is equal to

1

2cosz

{sin 22— (q+q*) sin 4z +(g*+ ¢*+ ¢°) sin 6
= (¢°+...+¢") sin 8z + &o.} ;
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and, by multiplying the series
(cos z—cos 3z) g— (cos x +cos 3z~ 2 cos 5z) ¢*+ &e.
by 1+g+¢' +¢"+¢* +¢'+ &,
we obtain the series
(cos z— cos 3x)(q +9*)— (2 cos 3z—2 cos 52)(¢°+¢*+¢")
+ (cos z—cos 32+ 3 cos 53—3 cos 7z) (¢°+97+¢*+¢°)
—(2cos 8x—2 cos 5z + 4 cos 7z —4 cos 9z) (¢ + ... +¢')
+ &e.
Thus, by multiplying both sides of the above equation by

1+g+¢+¢*+&e,y
we obtain the equation .

{sin 2z ~ (g +¢°) sin 4w+ (¢*+¢*+4") sin 62— &c.} 37 o (sin 2nz) ¢
= cosa { (cosz—cos32) (g +4") — (2cos3z—2co85) (¢* + ¢* +¢°) — &e. },
the right-hand member of which

=} (1—cos 42)(q+¢°) — 2 (2 cos 2v—2cos 6z) (¢*+¢*+¢")
+3 (1+2cos 4z —3 cos 82)(¢°+¢" + ¢* +¢°) — &e.
We thus find, by putting 3z for «,
2 {sin 2— (g +4") sin 22+ (¢*+¢*+¢") sin8z— (¢*+ ... +¢°) sin 4z + &e.}
X 37 o (sinnz) g"
= (1—cos 2x)(g+4¢*) — (2 cos z—2 cos 3z) (¢*+ ¢*+¢°)
+(1+2 cos 2z —3 cos 4z)(¢*+... +9°)
—&c.,

the general term on the right-hand side being
{1+2cos 2z+2cos 42+ ...+ 2 cos (r—2) z— (r—1) cos rz}
X (qlr(r-l)+ s +qir(r+l)-l)’
or —{2cosz+2cos3z+...+2 cos (r—2) @— (r—1) con o}
X (qlr(r—l)+ ves +q|r(nl)-l)’

according a8  is even or uneven,
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46. The coefficient of ¢" on the left-hand side of this equation is
S {cos (d—1) z—cos (d+1) z}

— (Sh1+3us) {cos (@—2) 2 —cos (d+2) 2}
+ (Sn-s+ Snee Sus) {c08 (—3) z—cos (d+8) 2}
—&e.;

so that, using the notation of § 29, in which [a] denotes the absolute
magnitude of g, irrespective of sign, we find that the numbers given
by the formula,

d
6 (_g31;) ~ (@it (_[ngl)
+ (Ot Ot 6 (5750 ) e,

all eancel one another with the exception of
—0, two (—2)'s, two (—4)’s, ..., two {—(p—2)}'s, and (p-1) p's,
if p bo even, und

two 1’s, two 3's, ..., two (p—2)’s and (p—1)(—p)’s,

if p be unoven, where §p (p+1) is the triangular number next
superior to n.* Zeros are to be retained and treated in the same
manner as other numbers.

* Tt may bo convenient to distinguish betweon the meanings of the lettors A (§ 15),
k (§16), I (§24), and p, which arc uscd in this papor in connoxion with tho tri-
angular numbers which are adjacent to, or equal, to #. Thonumber 34 (%2 +1) is tho’
triangular number next inferior to, # and ip (» +1) is the triangular number next
supcrior to #, whether n is a trinngular number or not ; 14 (£ +1) isthe triangular
munbor next inferior to », if 2 i8 not a triangular number, and is equal to z if » is
a triangular nmnber; 17 (Z+ 1) is the trinngular number next superior to n, if n is
not a triangular number, and is cqual to » if # is & triangular number. Thus, it
s i8 not a trinngular nuinber,

h=Fk and l=p=h+l=k+]1,
and, if » is a triangular number, g (7+1),
h=g=1, k=l=g, p=g+l
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_In the notation of §§ 5 and 29, the above formula may be written
{ at+l, B+1, }
~(a=1), =@B-1), ...

_ { G—2  B+2, . @+ B+2 }
_[“1_‘2]’ —[31—2], e} _[“2_213 —[32—21
+ { ay+3, By+3, .5 a,+3, Bs+3, ...
—[“3—3]1 _[/35_3]’ vy —[‘14_3]) —[Bi—3], ..
“5+3) BB+31

)t

n=06, so that p=4, the theorem

-—[a,—3], - [35—3]s

47. As an example, putting
3, 7; 3, 4,

} {
_l’ __3; ——I, _O’ ..-2;

{
+{—4, 4, §5; 41}

2, -2, ~1; -2

2, 3, 4 7
-0, -1, -2, —b

6;
-0;

all cancel each other excepting only
-0, =2, -2, 4, 4, 4.
Again, putting n =7, so that p =4 as before, the theorem asserts that

f 2, Bl & 4 & & 5 7
—0, —65 . 1-1, -0, —1, —4; —1, -3
+{ 4 5 7; 4, 6; 4, ‘5}_{ 5}

—2’ -1, —-1; -2, —0; =2, -1 -3

all cancel each other excepting only

0, -2, -2, 4, 4, 4.

48. The thoorem may be most conveniently exhibited in a form
similar to that by which tho theorem of § 29 was expressed in § 30.
We first write down in the central line all the divisors of the numbers
n,n—1,..,8 2, 1. Wethenadd 1 to cach of the divisors of tho first
number », writing the numbers so obtained above them; we add 2
to the divisors of the next two numbers, writing the numbers below ;
we add 3 to the mext three sets of divisors, writing the numbers
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a.Bove; and so on. Thus, in the case of n=6, we first form the scheme

2,8,4,7 4,6, 4,5 4,
1,2,3,6){ (1,5, (1,2,4|(13), 12, 1)

3, 7’ 3, 4’ 6

To complete the system of numbers, we sabtract 1 from each of the
divisors of n, writing the numbers below ; we subtract 2 from the
next two sets, writing the numbers above; 8 from the next three sets,
writing the numbers below ; and 80 on: in all cases attending only to
the absolute values of the numbers (z.e., ignoring negative signs).
Thus, in the above example, we obtain the completed scheme

2,3,4,7 | 1,3, 1,02 | 46, 45 4,
(1,23,6)| (1,5, (1,24]|13), @2, Q),
0,1,25 138,77 846120 21, 2

The theorem asserts that, in general, if 3p (p+1) be the triangular
number next superior to u, then, after cancelling the numbers which
occur both in the upper and lower lines (ignoring the middle line
which contains the divisors themselves), there will be left remaining,
if p be even, (p—1) p's in the upper line, and one 0, two 2's, two 4's,
...y 2nd two (p—2)’s in tho lower line, and, if p be uneven, two 1’s,
two 3's, ..., two (p—2)'s in the upper line, and (p—1) p’s in the
lower line.

Thus, in the above scheme, for which p=4, there remain un-
cancelled three 4’s in the upper line, and 0, 2, 2 in the lower line.

49. As additional examples, let n =8 and 9, the value of p being
therefore 4 in each case. The schemes are

2,359 |15 1,014 | 48 457 4,6/ 3,2, 3
1,2,48 1,7, (1,236)]@1,5), 1,2,4), (1,3)|(1,2), (1)
0,1,3171389 8458]22 21,1 20156 5

and
2,4,10 | 1,0,2, 6, 1,5 [ 4,5,6,9, 4,8, 4,57
1,8, 911,24, 8), (1,7)[(1,236), (1,5), (1,2,4)
0,2, 8] 346,10, 3,9 1| 2 1, 0,3 22 211

31, 3,2 3

a,3), ,2), Q)
57 56 &
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In eachi of these schemes, after the cancelling, three 4's are left in
the upper line, and 0, 2, 2 in the lower.

For n = 10, the scheme is

2,8,611 | 1,1, 7, 1,02 6| 410, 4,569, 48
1,2,510)((1,8, 9), (1,2, 4, 8|1, 7),(1,23,6), (1,5)
0,14, 913511, 34611 |2 4 21038, 22

3,2,0, 3,1, 3,2 3

1, 2,4), (1,8), (1,2), (1)
56,8 57 56 5;

and, after the cancelling, 1,1, 3, 3 are left in the upper line, and
four §'s in the lower line, as should be the case since p = 5.

50. In forming the schemes we divide the numbers beginning with
n and procéeding downwards into sets of one, two, three, &. The
last set may be incomplete, as in the cases of n =8 and 9 (when.it
consists of 2 and 8 nambers respectively), or complete, as in the case
of =10 (when it consists of the full number 4). In the former
case (Z.e., when the set is incomplete) p is equal to the fall number
of numbers which would belong to the set; but when the set is com-
Plete, p is equal to the number of terms belonging to the set, increased
by unity. Thus, for n =8 or 9, p =4; but for =10, p=3.

The preceding theorem (§§ 46-48) seems to me to be the most
interesting of the results contained in this paper, as it connects
together in so simple & manner all the actual divisors of the numbers
from 1 to n. '

Numerical Theorems relating to the Sums of Powers gf tbe Divisors of
the First n Numbers. §§ 51-56. '

51. By proceeding as in § 31, we see that, if y be any even function,
3, {($ @+ —4 @=1)} ~ G+ 3) {¥ (@+2) =¥ (d-2)}
+ (Bncs+ St Zacs) {¥(@+3) ¥ (d-8)} — o
is equal to o
- v 0) -2 (D)-2¢ #)=...—2 (p—2) +(p-1) ¥ (p),
or 2y (1)+2¢ (3)+2¢ (B) +...+ 2 (p—2)-(p~-1) ¥ (),
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according as p is even or uneven, }p (p+1) being the triangular
number next superior to n.

We may also define p as the number of terms in the complete set
or group of terms to which 3, would belong, if the series were con-
tinued one term further (so as to include 3,). It is evident that 3,
will belong to the same set as 3, except when 3, is the last term of
its set. As the series is supposed to be continued to X, merely to
determine p, the value zero is, of course, to be assigned to this term.

52. As a particular case, putting
Y (d+1) = (d+1)},
we obtain the theorem
Zndd— (Zae1+Snes) 83+ (Bnost Zaeit Zacs) 24d— &o.
= -2 {2+4'+6+ ... +(p—2)'} +(p-1) P,
or. 2 {1'+3'+5+... +(p—=2)"} - (p—-1) P,
according as p is even or uneven.
The right-hand member of this equation may be written
-2 (2 +4+6'+...+p") +p'+p,
or 2 (I'+3'+5 +...+5") —p* —p',
according as p is even or uneven.
Now, p being even,
2+4+6'+..+p' =+ Hip,
ahd, p being uneven,
P4+8+8+.. +p' = 3p'+3p' +ip 5
80 that, whéthéar p be even or uneven, we find
Sald =2 (Snc1F Znes) 343 (Sucs+ Su o+ Zaes) d— &0, = (—1Y § (' —p),
which is the same as the formula quoted in § 44.

53. In general, putting
¥ (@+1) =(d+1)"
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m being any uneven number, the left-hand member of the equation
becomes

2 (m+1)® [0(n) ~2 {on(n—1)+0, (n—2)}
+3 {0 (1—8) +0u (1—4) +0p (1—5)}
—4 {next four}+5 {...} —d&e. |

+2 (ﬂgﬁ [omes (1) —2* {Gmus (n—1) + s (n—2)} |
+8°{next three}—4" {...} + &c. ]
+2£m—“5“!ﬁ‘-“l [On-o (1) =2 {Opos (8—1) +0pi(2—2)} +8° (..} —de.]
+2 (m+1)® [cr(.n)—2"‘{u(n~—1)+u(n—2)}+3"‘{-...}—&c.], .
where, ﬁs before, m'") denotes the factorial m (m—1)...(m—r+1).
The right-hand member of the equation is

—2{2P g4 I 67 L T
or 2 {114 3 5 L =" ™
according as p is even or uneven.

Now it can be shown* that the expression

.1 L“_F_;_Pmﬂ_*_(m_*_l)(l) Blpm_ 2! (m+1)(8) -Eipm-ﬁ

( )® B B X
2. m+1 s m-l_". m—1 (O] - 4 (m+1)

represents the value of the series
gm+1 +4’mol+6mc l+ ves +pﬂ+l’
if p be even, and the value of the series

lmol+3m+l+5mol+.“+pmol’
if p be uneven,

* The proof of this theorem forms the subject-of a paper, ¢ Note on the Sums of
Even Powers of Even and Uneven Numbers’’ (Messenger, Vol. xx., pp. 172-176),
which contains the investigations to which I was led in obtaining the values of
the series which form the right-hand member of the above equation.
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We find, therefore, that, both for even and uneven values of p,: the
right-hand member of the equation is equal to

1)@ —
(_I)P{m:;pmﬂ_z (m+1)" B, m+2s (m-;') 22pn 3

—g5 K——”‘;} —'—;11)'""-{-&0.} .

54. By dividing throughout by 2 (m+1), we thus obtain the
theorem

On (1) =2 {0n (n~1)+0, (n—2)}
+3 {0, (n—=3)+0o, (n—4)+ 0, (n—5)}—&o.
B [00es (D=2 (s (1= 1)+ s (r= D)} (.. }—80.]

""‘ ’ A [ =2 o (n= D+ 0t (=D} 81 .. }—do.]

+ 1n3(_|2) [0'3 (n)—2""? {0’3 (n~1)+0, ("‘_2)} +8"* { '"} _&c']

+o (n)—2"{oc(n—1)+o (n—2)} ' ‘
+3"{o (n—8)+a (n—4)+0o (n—5)} —&o.

E "‘*2 " ”"( 'B m m 13-
=(_1),,{2(m+2) E A T 2‘51 3p e

B,
gn-1 _Bimey }
k Fm+D)?

55. Asin § 41, we may represent all the terms on the right-hand
side of the equation, with the exception of the first, by assigning to
@ (0), 04 (0), ..., 0, (0) numerical values which are independent of °
both % and m. These values are

¢(0)=—B, 0,(0)=2 ﬁ*, 0 (0) = —2‘9.9,
— — ~r 2!—2-B — d(m+l) Om—-1 m+1
03,1(0) = (—1)"2 a0 = (-1 2 _—U—-L(m+1)
Assigning these values to o (0), o, (0),..., o (0), We may write
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the theorem in the form :
o (n)—2{0, (n—1) 40, (n—2)} +3 { J-..
“ et (=1)'p {40, (0)}
”‘ [a,,,-, (n)—2° {a,,,_z (n=1) 40,5 (n—2)}

+3°{ }— (= 1)”“?’{ +<’m-=(°)}]

[o', (n)—22 {o' (n— 1)+o-('n—2)}
$8 o}k (S 1P 0y (O]
+o (n)—2"{c (n—1)+o (n—2)}+38" {...}—...
+H(=1*'p" {40 (0)}

= (= l’é'cﬂTz)*

56. As examples of this general theorem, puttmg m=3 and 5, we
have

oy (n)—2 {‘;s (n—1)+0, (""“2)} +3 {.-.} - .
et (=1 {0y (0))
+o (2)—2° {0 (n—1)+0 (n—2)} +3*{...}—...
vt (1P p {40 (0)]
‘ = (—1)* Yop"%
where 0(0)=—3% o,(0)=

and
o5 (n)—2 {os(n—~1)+0o5 (n—2)} +3 {...}—...

| et (=) p {40, (0)}
+3 ["u (n)—2° {"o (”_1)+°'a(”—2)} +3{..}—..
et (DT P 4o (0] ]
+0 (n)—2° {o' (n—1)+o (n—2)} +3 {.. -
et (1)1 {4 0°(0)}
- = (-’ &y,
where 0(0)=—3%, 0(0) =+, o(0) =~

¢ We may evxdent]y dwpense with this term by putting

e ()= 2(m+2) —

a3(0), a5 (0), ..., retaining their constant valucs as above. We may regard p as
defined by the ‘fact that 2" is tho coefliciont of & (0).
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Second Theorem connecting the actual Divisors of the First n Numbers.

) §§ 57-60.
57. The series

sin ¢—(sin 3z —sinz)(g+4¢°)
+ (sin 52 —sin 3z +sin 2)(¢*+¢*+¢°) — &e.,
which was obtained (§45) by multiplying sinz—gsin3z+ ¢*sin 5z — &o.
by 14+g+¢*+¢*+ &oc., may be expressed in the form
sing {1—2cos 2z (¢+¢") + (1 +2cos 42) (®+¢*+¢°)

—(2 cos 2u+2 cos 6z)(¢*+ ... +9°) + &e.},
and the series

(cos @—cos 3z) (g +¢*)— (& cos 3z—2 cos 52) (¢*+¢* + ¢°) + &e.,
which was obtained (§ 45) by multiplying
(cos z—cos 3z) g— (cos z+ cos 3z—2 cos 5z) ¢+ &eo.
by 1+q9+q'+4¢*+&c,
may be expressed in the form
28in z {sin 2z (g +¢°) —2 sin 4z (¢*+¢*+¢°)
+(sin 2243 sin 62) (¢"+... +¢°) —&e.}.

Putting §z for z, we thus obtain the equation
{1—2 cos 2 (q+¢)+ (1 +2 cos 22) (g +4*+ ¢°)

—(2cosz+2c0s33)(g®+ ... +¢°) + (1 +2co82x+ 2conda)(g® + ... +¢*)

—(2cosn+2 co§‘3m+ 2 cos 5z) (g + ... +4*)

+ (14 2cos 2z+ 2cosdw+ 2cos62) (9" + ... +97) —&e.} 3 o (sinnz) ¢°
= sinz (¢+4*) —2 sin 22 (¢*+¢*+¢°) + (sin 2+ 3 sin 3z)(¢"+... +¢°)

— (25in 2z+4 sin 42)(¢°+... +¢'")

+(sin z+3 sin 3z +5 sin 5z) (¢ + ... + ¢*°) — &e.

58. The coefficient of ¢" on the left-hand side is
- 3,sindz— (Gt Sn.z) {sin (d £ 1)z}
+ (Shost Znos+2usy) {sin dz+sin (d £2) 2}
—(Su-et .. +2,) {sin (d £ 1) z+sin (d £ 3)z}
+ (Satot oo+ Zqy) {sin de+sin (d £ 2) z+sin (d L 4) 2}
—&e.,
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and we see, therefore, that the numbers given by the formula
G ()= (Cuer+ G a)(d £ 1)+ (Grs+ G+ Gu o) (d, d £ 2)
~(Guogt .. +Gp) (d£1,d 1 3)
+(GuoroF ... +Gur)(d, £ 2, dE4)—&e.
all cancel each other, with the exception of
one 1, three 3’s, five &’s, ..., (p—1)(p—1)’s, if p be even,
and

two (—2)’s, four (—4)’s, six (—6)'s,..., (p—1){—(p—1)}’s,
‘ if p be uneven,
where $p (p+1) is the triangular number next superior to #. Zeros

are not to be takén account of.

59. As an example, putting n =9, the theorem asserts that the
numbers ‘

2,359 28 3,4,5,8, 3,7, 38,4,6
{1,89}—1(1,2,4,8), (1,7 +{ 1,2,3,6, 1,5 1,24
0,1,87 0,6 -1,0,1,4, —1,3, —1,0, 2

(4,6, 4, 5 - 4)
2,4 2 -3 2
- (4,3), Q- 2, )
0,2, 0 1, 0
~2,0, —2, —1, —2 |

all cancel each other, excepting only1,3,3, 3. The divisors in round
brackets are shown for convenience, but are not to be included among
the numbers. Thus the numbers given by the formula are -
—4, —6, —4, —5, —4
3,458, 3,7 3,4,6,

-2, —3, —5, —9, —2, —8, . =9, —4, -2, -8, —2
1,3,9, 1,2,3,6 1,5 1,24 :
0, —1, =3, =7, 0, —6, .0, —2;, 0,—=1, 0

-1,0,1,4,-1,3, -1,0, 2,
2, 0, 2 1, 2
YOL. XXIil.—NO. 424. 2o
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and it is easily seen that, after cancelling, 1, 3, 8, 3 are alone left.
Putting #n = 10, we form the scheme

2,4,10, 2,8, 5,9 3,9, 84,58 387
{1,2,510}—1(1,8,9), (1,248 +{ 1,7, 1,286 1,5
0,2,8 01,37 —1,5 -1,0,1,4,—1,8

{ ‘' \

4, 57, 4,6, 4 5 4
2 3,5 24 2 '8 2
-1 @, 24), 1,38,d 2, @)
o0 1,3 02 0 1, O
(-2 -1, 1, =2, 0, =2 -1, —2

)
the numbers given by the formula are therefore
—4,—5,—-7,—4,—6,—4,—5,—4
8,9, 3,458, 3,7,

-2,—4,—10,—2,~-3,—-5,-9, -2,-3,—-5,—~2,—4,-2,-8,—-2
1,2,5,10, 1,7, 1,2,3,6, 1,5,
0,-—-2, —8, 0,—1,—3,"—71 0’_11_31 00_2) Oy—lr 0

—1,5,—1,0,1,4,—1,3,

2 1,-1, 2, 0, 2 1, 2
which rednce to
_21 _21 _4i _4, —4: _4')

as should be the case, since p = 5.

Numerical Theorems relaling to the sums of Powers of the First
n Numbers. §§ 60-62.

. 60. From the theorem relating to the actual divisors it follows
immediately that, if ¢ be any uneven function,

S (@)= (B + 5 {p (@41 +9 (-1}
+(Zuos+ Zn+2020) {9 () +9 (@+2) +9 (d—2)}
— (St + 2.0 {p (d+1)+9 (d—1)+9 (2 +8) +¢ (d—3)}
+ &c.
“is cqual to

¢ (1) 43 (3) +5¢ (5) +... + (p—1) ¢ (p—1), if p be even,
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and to
—2¢ (2)—4¢ (4)—6¢ (6)—...—(p—1) ¢ (p—1), if p be uneven,
where, as before, 3p (p+1) is the triangular number next superior

to n.

61. By putting ¢ (d) = d we obtain the original formula quoted in
§ 44, which was also obtained in § 52 by putting ¢ (d+1) = (d+1)%
If we put ¢ (d) =d", m being uneven, we obtain the general

theorem
o, (1) —2 {o,,. -1+, (n—2) }

+3 {on (n—38)+0n (n—4)+0, (n—5)} —4 {next four} +&c..
22 [0n-s (3= 1)+ 0.0 (n—2)—2 {noxt three} -
+(1'4+39) {next fom‘} —(2'+4) {next ﬁve} +&c.]
[m-i (n—1) 4 0p.s (1—2)—2* { next three}
. +(144+3Y {next four} —&e. ]

m

+271.T

+2m [«r (n—1)+ 0o (n—2)—2! {next three} .
+(1"*'+3") {next four} —&e. ]
+ { Amelggnelpsmaly 4 (p—1)"*, if p be oven,
or —=2mtl_gmi_gmel_ | —(p—1)"*\ if p be uneven,

P being defined as in the preceding section.

62. The coeflicients in the series on the right-hand side are of the
forms 17437457 4... and 2"+474+6"+...

alternately, according as the number of terms in the group is even or
uneven. This apparent alternation of form disappears if we express
each coefficient as a function of the number of terms in the group.
For (by § 53) the function

m!r-tl
2r+1

1
3

+%x2r+ (27,)(1) Bn 219! ('2:;‘)lm 1_32_, x‘.’r-3+24 g%?ﬁ) _];:_aww--o_

e 229‘-'3 (2,.)(1) -P:x
r
is equal to

22r+42r+627+".+w2r or 12r+331'+52r+'“+w2r,
2p2
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according as r is even or uneven, so that the coefficient of the sth group
of terms in the 7" right-hand series, .c., the coefficient of

Gy (=)t 0, g (n—t—=1)+ ... + 0y (n—t—5),

whero ¢ denotes ls (s+1), is equal to

A (_1).—1{ 2 +1 "+(27‘)(”B gr-1._91 @‘) ?15""+&c }

and the last term is equal to

(-0 {325 s a0 - D gy g0 ]

The letter s may be regarded as denoting either the number of the
group, or the number of terms in the group diminished by unity; and
1 =p—1, so that 31 (1+1) is the triangnlar number next inferior to
or equal to n, according as n is not, or i, a triangular number.

Other Formuls relating to the actual Divisors. §§ 63-67.

63. The algebraical formulm from which the four theorems relating
to the actual divisors (§§ 3, 29, 46, 58) have been deduced are

@)
{1—(1+2cosa) g+ (1+2cos 2 +2 cos 2z) g*—&e.} 37 o (sinna) ¢*
=sinz.q— (sinz +2sin22) g* 4 (sina +2 sin 2z + 3 sin3x) ¢*—&e. (§ 27.)
(ii.)
2 {sinr—qsin 3+ ¢*sin Hz—q"sin 7:1:-}-&0.} 3! o (sin 2nz) ¢"
= (cos a—cos 3x) g— (cos z+ cos 3x—2 cos 5z) ¢*
+ (o8 #+cos 3x+ cos Sm—3 cos Tr) o' —&e.  (§28.)
(ifi.)
2 {sin a—(q+q%) sin 2z+ (g*+¢* +4") sin 3.'c—&c.} 3} o (sin az) ¢"
= (1—cos 2r)(q+9) — (2 cosz—2 cos 32) (7 +¢* +17")
+ (142 cos2r—8cosda)(¢"+ ... +q")
—(2cosr+2c08 3r—4coshm)(¢0+... +9") + &e.  (§ 45.)
(iv.)
f1—2cosa (74+4") +(1+2cos 22) (7" +¢*+ ")
—(2cosr+2cos32)(g"+... +¢")
+(14+2cos2r+2c0840) (" + ...+ ") —&e.} 37 o (sinne) 9"
=sina (q+4°)—2sin 20 (9" +9*+ ") + (sinz+ 38in 32) (¢*+... + 4%
—(2sin 2r+4sinda) (g 4+ ... +g") + & (§57.)
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The second of theseformulm is derivable from the firstby multiplying
by sin 3z and replacing @ by 2z, aud the third from the fourth by

multiplying by sinz.

64. We may obtain other formul® relating to the actual divisors by
multiplying these equations by sinz or cos z, or other trigonometrical
expressions, and equating coefficients. ‘

Thus, for example, multiplying (ii.) by sin z and replacing z by i,
we find that :

2 {1—cosa— (cos z—cos 2t) g+ (cos 2w —cos 3x) ¢°
— (cos 3z—cos &) g*+ &e.} 37 o (sinnz) g
= (2sinz—sin2z) ¢— (3sin2z—25in3z) o*+ (4sin 3z—3sindz) ¢*— &e.,
the general term on the right-hand side being

(—1)! {(g +1) singz—gsin (g+1) a} oo,

65. Equating the coefficients of ¢", we sce that the numbers given
by the formula

G, {d, d, —(d£1)} — Gy, {d], —(d£2)} +0C,. [d2, —(d:3)}
—G, {d£3, —(d4)} +&e.

all cancel each other, unless #» is a triangular number 3¢ (9+1), in
which case

(g+1)(=9)’s and g (g+1)'s,
or (9+1) g's and g {—(g+1)}'s,

remain uncancelled, nccording as g is even or uneven.  Zeros are not
to be taken account of.
As an example, putting 2 = 6, so that g = 3, the formula gives the

numbers
-1, 1
1 1,2 -3 6 2, 6 3, &
-2, -3, —4, —7[" -8, —7[1| =4, -6’
-0, =1, =2, -5 1, =38 2, 0
which cancel each other, excepting only
0 3,3,3, 3, —4, —4, —4,
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Again, putting n = 10, o that g = 4, the formula gives

1, 2 5 10 0 2 8, (-1 5
1, 2 5 10 2, 4 10 3, 9
~2,-3,—6,—11( "] =3, —5 —11 [ t] -4, -10f

0, =1, ~4 — 9 1, -1, — 7 2 — 4

~2,-1, 1

4 5, 7

1 -5 ~6 ~8(°
3, 2 0

which cancel each other, excepting only
-4, —4, —4, —~4, —4, 5,5, 5, 5.

This theorem is noticenble ‘on account of the curious form of the
group of numbers which is left ancancelled, (g+ 1) occurring g times,
and g occurring (g-+1) times, with opposite signs.

66. By multiplying (ii.) by cosz, and replacing « by §z, we find
that
2 {sin x—(sin 2 +sin 2z) g+ (sin 22 +8in 3z) ¢*
— (sin 3z +sin 4x) ¢°+ &e.} 37 o (sin nz) ¢
= (1—cos 2x) g— (1+2 cos 2—cos 2z —2 cos 3x) ¢°
+ (1 +2cos z+2 cos 2z—2 cos Sz—3 cos 4x) ¢*+ &eo.,

the coefficient of (—1)°~!¢¥¥*" in the series on the right-hand side
being

1+2cosz+2co82z+...+2cos(g—1)z—(g—1)cos gn—gcos (g+1)=.

It follows, therefore, that the numbers given by the formula

o OH)—an(_ Otk _a+d

~a-1/ 7 g, a2y
i+2, d+3\_
#0_gaT), —gatey)

all cancel each other, unless = is a trinngular number 39 (9+1), in
which case the numbers left uncancelled are

0, two U’s, two 2's, ..., two (g—1)'s, (§—1)(~g)’s, g{—(g-‘i-l)}'s
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if g is even, and these numbers with their signs reversed if g is
uneven. Zeros are to be treated in the same manner as other
numbers.

Thus, putting n = 6, 8o that g = 3, the formula gives

8, 7 4, 6

3, 4 7)\_ 2,6]+ 3,51
—o -1, =2, =5 —0, —4 -1, -1{
-1, -3 -2, —0)

in which the uncancelled numbers are

-0, =1, =1, —2, —2, 3, 3, 4, 4, 4.

Again, putting n= 10, so that g = 4, the formula gives

3, 5 11 4, 10
{ = 6, 11\ _| 2 4 10 3, 9
-0, —1 —4,— 9 —0,—2,—8(t)-1,—5
—1, -1, — 7 —2 — 4)
5 6 8
b
[ [, —1J’
—3, —2, —0

in which the nncancelled numbers are

0,1,1,2,2 3,3, —4 —4, —4, —5, —5, —5, —5.

67. As another example, multiplying (iii.) by cos », we find that
é {sin 2z — (sin 2 4-8in 32) (¢ +¢*) + (sin 2z +sind2) (¢*+¢* +¢*)
—(sin 3z +-8in 5z)(¢*+ ... +¢°) .
+ (sin 42 +sin 62)(¢°+... +¢")—&c.} 37 o (sin ne)
(cos z—cos 8z) (g +9%) — (2—2 cos 42) (¢*+¢* +4¢*)
+ (4 cos s —cos 3z —3 cos 5z) (¢*+... +¢°)
—(2+4 cos 2z—2 cos dx—4 cos 62) (¢ + ... +¢") + &e.,

the coefficient of the group of terms, ou the right-hand side,
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beginning with ¢¥" *Y, being
—{2+4cos2z+4cosdx+...+4cos (r—2) =
— (r—2) cos rz—r cos (r+2) @},
or 4cosz+4cos3z+...+4cos (r—2) z—(r—2) cosrz—r cos (r-};‘z)z,
according a8 r i8 even or uneven.

It follows, therefore, that the numbers given by the formula

G,,( a+2 )—(G,.-|+G’,.-z) ( a+1, d+3 )

o2 ~[d~1], ~[¢3]
d+2, d+4
+(Fu3+ G+ G,s) (—[d——2], —[d—4«])

d+3 d+5
- Gn- ('u— G"_ Gu- ! + & P
(Gros+ Gy +Gog+ Gusy) (-—[ll—3], —[d—5]) c

all cancel each other, excepting

two 0's, four 2's, ..., four (k—2)’s, (k—2)(~k)'s, b { —(k+2)}'s
when £ is even, and
four (—1)'s, four (—3)’s, ..., four { — (k—2)}'s, (k—2)k's, k(k+2)’s

when & is uneven, 1k (k+1) being the triangular number which is
next inferior to n, or equal to u, according as = is not, or is, & tri-
angular number. Zeros are to be treated in the same manner as
other numbers,

Thus, putting n = 6, so that k = 3, the theorem asserts that the
numbers
4, 8 4, 5 7
3, 4, 5 8 2, 6, 2, 8, 51
{—1, -0, —1, —4} | —0, —4, —0, —1, —3J
-2, —2,-2, —1, —1

( 5 7, 5 6, b
3, 5 3 4 3

+ l——l, ~1, —1, =0, —1
—3, —1, —3, —2, —3

all cancel each other, with the exception of

-1, -1, -1, -1, 3, 5, 5, .
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If » =10, so that & = 4, the numbers are
4, 6, 12, 4, 5, 7, 11y
4, 7, 12} 2, 4,10, 2, 3, 5 9
l -0, -3, -8 -0, -2, -8, -0, —1, —3, —7

-1, =5, —1, =0, =1, —4, —1, —3
-3, -3, —8, —2, —1, —2, —3, —1

-2, -1, -1, -2, —0, —2, -1, =2 {’
—4, =3, -1, —4, —2, —4, -3, —4
which cancel each other, with the exception of

O’ 0, 2: 2,22, _4‘1 —-4,‘——6, —6, _6’ —6.

Theorems derived from the other Zeta Functions. § G8.

68. In this paper I have limited myself to results which may be
regarded as generalizations of the formula
o (1)—30 (n—1)+50 (n—3)+ 70 (n—6) — 90 (n—10) + &e. = 0,.

and of the corresponding formula (§ 44) which connects together the
o’s of the first » numbers.

In a second paper, I propose to give the similar theorems which
stand in a corresponding relation to the recurring formule

L (n) +¢ (n—1) +¢ (n—3) +{ (n—6) +{ (n—10) + &o. = O,*
A" () —24° (n—1) + 24’ (n—4) —24" (n—9) + 24" (n—16) — &e. = 0+

* Droc. Lond. Math, Soc., Vol. xv., p. 110, or Proe. Camb. Phil. Soc., Vol. v.,
p. 116, The value of ¢ (0) is supposed to be —n.

On pp. 118 and 119 of tho former paper, and pp. 117 and 119 of tho latter, the
¢-theorem corresponding to the ¢-theorom in § 44 is givon. .

+ The valne of A’ (0) is supposed to be in. The corresponding theorem
involving all the numbers from 1 to » as arguments is
A(n)-a" (n=1)—a'(#—2) =4’ (n=3) + A" (n—4)+ A" (n—=6)+ A" (n—6) + A" (n—=T)
+a' (n—8)— A (n=9) —...— A" (n—15) + A’ (n—16) +...: 4" (0) = 0,

whero A’ (0) is to havo the valuo s (r +1), 2r+ 1 being the number of torms in the
completud group in which A’ (0) falls.
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in which { (#) denotes the excess of the sum of the uneven divisors
of # above the sum of the even divisors; and A’ (n) denotes the sum
of those divisors of n whose conjugates are uneven.

The general theorems relating to the actual divisors are derived

from the other Zeta functions by a method similar to that employed
in §§25-27.

On a certain Riemann’s Surface. By W. BURNSIDE.
[Read May 14th, 1891.]

The present note was suggested by the paper of Mr, R. A. Roberts,
pp. 28-34 of the current volume of the Society's Proceedings, dealing
with o particular case of Abel's theorem. The special interest of the
case that Mr. Roberts treats lies in the degradation of the apparently
Abelian integrals to ordinary elliptic integrals; and though, as Mr.
Greenhill has pointed out to me, this property, for the form of
integral in question, is sufficiently well known, being originally dune
to Legendre, still its consideration from quite another point of

view, namely, that of Riemann's theory, is perhaps not altogether
superfluous. ‘

. s (z=—a)(2=B)
The equation &= m

defines a three-sheeted Riemann’s surface. The only branch points
are a, 3, v, §, and at ench of these the three sheets are connected
together. The points at infinity on each sheet are ordinary points.
The “ Verzweigungs-schnitte,” or lines of passage, will consist of a
line from « to v, connecting sheets I. and II., a second from a to 7,
connecting IL. and IIL, and two similar oues from § to 8. The lines
may be taken straight, so that on crossing ay or /38 from the left to
the right a point will pass from 1. to IL., or from IL to IIIL, or from
IIL to I.; the separate sheets being denoted by 1., II.,, and III. The
number of sheets being three, while there are four lines of passage,
Riemann's number “p” for the surface will be 2, and there are,
therefore, according to Riemann’s theory, two independent integrals
of the first kind upon it.



