
Delft University of Technology
Software Engineering Research Group

Technical Report Series

When Testing Meets Code Review: Why
and How Developers Review Tests

Davide Spadini, Maurı́cio Aniche, Margaret-Anne Storey,
Magiel Bruntink, Alberto Bacchelli

Report TUD-SERG-2018-004

SERG

TUD-SERG-2018-004

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
https://se.ewi.tudelft.nl/tr.html

For more information about the Software Engineering Research Group:
https://se.ewi.tudelft.nl/

This paper is a pre-print of:
Davide Spadini, Maurı́cio Aniche, Margaret-Anne Storey, Magiel Bruntink, Alberto Bacchelli – When Test-
ing Meets Code Review: Why and How Developers Review Tests
In Proceedings of the 40th International Conference on Software Engineering (ICSE’18), May 27-3 June
2018 — Gothenburg, Sweden
doi: https://doi.org/10.1145/3180155.3180192

Acknowledgments. This project has received funding from the European Unions’ Horizon 2020 research
and innovation programme under the Marie Sklodowska-Curie grant agreement No. 642954 and the Swiss
National Science Foundation through the SNF Project No. PP00P2 170529.

c© 2018 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

https://doi.org/10.1145/3180155.3180192

When Testing Meets Code Review:
Why and How Developers Review Tests

Davide Spadini
Delft University of Technology
Software Improvement Group

Delft, The Netherlands
d.spadini@sig.eu

Maurício Aniche
Delft University of Technology

Delft, The Netherlands
m.f.aniche@tudelft.nl

Margaret-Anne Storey
University of Victoria
Victoria, BC, Canada
mstorey@uvic.ca

Magiel Bruntink
Software Improvement Group
Amsterdam, The Netherlands

m.bruntink@sig.eu

Alberto Bacchelli
University of Zurich
Zurich, Switzerland
bacchelli@ifi.uzh.ch

ABSTRACT
Automated testing is considered an essential process for ensuring
software quality. However, writing and maintaining high-quality
test code is challenging and frequently considered of secondary
importance. For production code, many open source and industrial
software projects employ code review, a well-established software
quality practice, but the question remains whether and how code
review is also used for ensuring the quality of test code. The aim
of this research is to answer this question and to increase our un-
derstanding of what developers think and do when it comes to
reviewing test code. We conducted both quantitative and quali-
tative methods to analyze more than 300,000 code reviews, and
interviewed 12 developers about how they review test files. This
work resulted in an overview of current code reviewing practices, a
set of identified obstacles limiting the review of test code, and a set
of issues that developers would like to see improved in code review
tools. The study reveals that reviewing test files is very different
from reviewing production files, and that the navigation within the
review itself is one of the main issues developers currently face.
Based on our findings, we propose a series of recommendations
and suggestions for the design of tools and future research.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;

KEYWORDS
software testing, automated testing, code review, Gerrit

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180192

ACM Reference Format:
Davide Spadini, Maurício Aniche, Margaret-Anne Storey, Magiel Bruntink,
and Alberto Bacchelli. 2018. When Testing Meets Code Review: Why and
How Developers Review Tests. In Proceedings of ICSE ’18: 40th International
Conference on Software Engineering , Gothenburg, Sweden, May 27-June 3,
2018 (ICSE ’18), 11 pages.
https://doi.org/10.1145/3180155.3180192

1 INTRODUCTION
Automated testing has become an essential process for improving
the quality of software systems [15, 31]. Automated tests (hereafter
referred to as just ‘tests’) can help ensure that production code is
robust under many usage conditions and that code meets perfor-
mance and security needs [15, 16]. Nevertheless, writing effective
tests is as challenging as writing good production code. A tester has
to ensure that test results are accurate, that all important execution
paths are considered, and that the tests themselves do not introduce
bottlenecks in the development pipeline [15]. Like production code,
test code must also be maintained and evolved [49].

As testing has becomemore commonplace, some have considered
that improving the quality of test code should help improve the
quality of the associated production code [21, 47]. Unfortunately,
there is evidence that test code is not always of high quality [11, 49].
Vazhabzadeh et al. showed that about half of the projects they
studied had bugs in the test code [46]. Most of these bugs create
false alarms that can waste developer time, while other bugs cause
harmful defects in production code that can remain undetected. We
also see that test code tends to grow over time, leading to bloat and
technical debt [49].

As code review has been shown to improve the quality of source
code in general [12, 38], one practice that is now common in many
development projects is to use Modern Code Review (MCR) to
improve the quality of test code. But how is test code reviewed? Is
it reviewed as rigorously as production code, or is it reviewed at
all? Are there specific issues that reviewers look for in test files?
Does test code pose different reviewing challenges compared to the
review of production code? Do some developers use techniques for
reviewing test code that could be helpful to other developers?

To address these questions and find insights about test code
review, we conducted a two-phase study to understand how test

SERG Davide Spadini et al. – When Testing Meets Code Review: Why and How Developers Review Tests

TUD-SERG-2018-004 1

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden D. Spadini et al.

code is reviewed, to identify current practices and reveal the chal-
lenges faced during reviews, and to uncover needs for tools and
features that can support the review of test code. To motivate the
importance of our work, we first investigated whether being a test
changes the chances of a file to be affected by defects. Having found
no relationship between type of file and defects, then in the first
phase, we analyzed more than 300,000 code reviews related to three
open source projects (Eclipse, OpenStack and Qt) that employ ex-
tensive code review and automated testing. In the second phase,
we interviewed developers from these projects and from a variety
of other projects (from both open source and industry) to under-
stand how they review test files and the challenges they face. These
investigations led to the following research contributions:

(1) To motivate our study, we first explored whether the type of
code (production or test) is associated with future defects. Our
results show that there is no association, which suggests that test
files are no less likely to have defects in the future and should
benefit from code review.

(2) We investigated how test code is reviewed and found empirical
evidence that test files are not discussed as much as production
files during code reviews, especially when test code and pro-
duction code are bundled together in the same review. When
test files are discussed, the main concerns include test coverage,
mocking practices, code maintainability, and readability.

(3) We discovered that developers face a variety of challenges when
reviewing test files, including dealing with a lack of testing con-
text, poor navigation support within the review, unrealistic time
constraints imposed by management, and poor knowledge of
good reviewing and testing practices by novice developers. We
discuss recommendations for practitioners and educators, and
implications for tool designers and researchers.

(4) We created GerritMiner, an open source tool that extracts
code reviews from projects that use Gerrit. When performing
a review, GerritMiner provides information regarding files,
comments, and reviewers. We designed this tool to help us col-
lect a dataset of 654,570 code reviews from three popular open
source, industry-supported software systems. GerritMiner and
the dataset we studied are publicly available [7].

2 BACKGROUND AND MOTIVATION
Past research has shown that both test code and production code
suffer from quality issues [11, 32, 49]. We were inspired by the
study by Vahabzadeh et al. [46] who showed that around half of
all the projects they studied had bugs in the test code, and even
though the vast majority of these test bugs were false alarms, they
negatively affected the reliability of the entire test suite. They also
found that other types of test bugs (silent horrors) may cause tests
to miss important bugs in production code, creating a false sense
of security. This study also highlighted how current bug detection
tools are not tailored to detect test bugs [46], thus making the role
of effective test code review even more critical.

Some researchers have examined MCR practices and outcomes
and showed that code review can improve the quality of source code.
For example, Bacchelli et al. [12] interviewed Microsoft developers
and found that code reviews are important not only for finding
defects or improving code, but also for transferring knowledge, and

for creating a bigger and more transparent picture of the entire
system. McIntosh et al. [30] found that both code review coverage
and participation share a significant link with software quality, pro-
ducing components with up to two and five additional post-release
defects, respectively. Thongtanunam et al. [43] evaluated the im-
pact that characteristics of MCR practices have on software quality,
studying MCR practices in defective and clean source code files.
Di Biase et al. [22] analyzed the Chromium system to understand
the impact of MCR on finding security issues, showing that the
majority of missed security flaws relate to language-specific issues.
However, these studies, as well as most of the current literature on
contemporary code review, either focus on production files only or
do not explicitly differentiate production from test code.

Nevertheless, past literature has shown that test code is substan-
tially different from production code. For instance, van Deursen et
al. [21] showed that when refactoring test code, there is a unique
set of code smells—distinct from that of production code—because
improving test code involves additional test-specific refactoring.
Moreover, test files have their own libraries that lead to specific
coding practices: for example, Spadini et al. [41] studied a test prac-
tice called mocking, revealing that the usage of mocks is highly
dependent on the responsibility and the architectural concern of
the production class.

Furthermore, other literature shows that tests are constantly
evolving together with production code. Zaidman et al. [49] investi-
gated how test and production code co-evolve in both open source
and industrial projects, and how test code needs to be adapted,
cleaned and refactored together with production code.

Due to the substantial differences between test code and pro-
duction code, we hypothesize that how they should be reviewed
may also differ. However, even though code review is now widely
adopted in both open source and industrial projects, how it is con-
ducted on test files is unclear. We aim to understand how developers
review test files, what developers discuss during review sessions,
what tools or features developers need when reviewing test files,
and what challenges they face.

3 SHOULD TEST FILES BE REVIEWED?
Even though previous literature has raised awareness on the preva-
lence of bugs in test files, such as the work by Vahabzadeh et al. [46],
it may well be that these type of bugs constitute such a negligible
number compared to defects found in production code that invest-
ing resources in reviewing them would not be advisable. If test code
tends to be less affected by defects than production code, pragmatic
developers should focus their limited time on reviewing production
code, and research efforts should support this.

To motivate our research and to understand whether test code
should be reviewed at all, we conducted a preliminary investigation
to see whether test and production code files are equally associated
with defects. To study this, we used a research method proposed
by McIntosh et al. [30] where they analyzed whether code review
coverage and participation had an influence on software quality.
They built a statistical model using the post-release defect count
as a dependent variable and metrics highly correlated with defect-
proneness as explanatory variables. They then evaluated the effects
of each variable by analyzing their importance in the model [17].

Davide Spadini et al. – When Testing Meets Code Review: Why and How Developers Review Tests SERG

2 TUD-SERG-2018-004

When Testing Meets Code Review: Why and How Developers Review Tests ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

We applied the same idea in our case study; however, as our aim
was to understand whether test files are less likely to have bugs
than production files, we added the type of file (i.e., either test or
production) as an additional explanatory variable. If a difference
existed, we would expect the variable to be significant for the model.
If the variable was not relevant, a test file should neither increase
or decrease increase the likelihood of defects, indicating that test
files should be reviewed with the same care as production files
(assuming one also cares about defects with tests).

Similar to McIntosh et al. [30], we used the three most common
families of metrics that are known to have a relationship with defect
proneness as control variables, namely product metrics (size), process
metrics (prior defects, churn, cumulative churn), and human factors
(total number of authors, minor authors, major authors, author
ownership). To determine whether a change fixed a defect (our
dependent variable), we searched version-control commit messages
for co-occurrences of defect identifiers with keywords like ‘bug’,
‘fix’, ‘defect’, or ‘patch’. This approach has been used extensively to
determine defect-fixing and defect-inducing changes [27, 28].

We considered the same systems that we used for the main parts
of our study (Qt, Eclipse, and Openstack) as they perform consid-
erable software testing and their repositories are available online.
Due to the size of their code repositories, we analyzed a sample
of sub-projects from each one of them. For QT and Openstack, we
chose the five sub-projects that contained more code reviews: qt,
qt3d, qtbase, qtdeclarative, qtwebengine (Qt), and cinder, heat, neu-
tron, nova, and tempest (Openstack). Eclipse, on the other hand,
does not use identifiers in commit messages. Therefore, we used
the dataset provided by Lam et al. [29] for the Platform sub-project.
This dataset includes all the bugs reported in the Eclipse bug tracker
tool, together with the corresponding commit hash, files changed,
and other useful information.

We measured dependent and independent variables during the
six-month period prior to a release date in a release branch. We
chose the release that gave us at least 18 months of information to
analyze. In contrast to McIntosh et al. ’s [30] work, we calculated
metrics at the file level (not package level) to measure whether the
file being test code vs. production code had any effect.

We observed that the number of buggy commits was much
smaller compared to the number of non-buggy commits, i.e., classes
were imbalanced, which would bias the statistical model. There-
fore, we applied SMOTE (Synthetic Minority Over-sampling TEch-
nique) [18] to make both classes balanced. All R scripts are available
in our online appendix [7].

To rank the attributes, we usedWeka [6], a suite of machine learn-
ing software written in Java. Weka provides different algorithms for
identifying the most predictive attributes in a dataset—we chose In-
formation Gain Attribute Evaluation (InfoGainAttributeEval), which
has been extensively used in previous literature [9, 26, 40]. In-
foGainAttributeEval is a method that evaluates the worth of an
attribute by measuring the information gain with respect to the
class. It produces a value from 0 to 1, where a higher value indicates
a stronger influence.

The precision and recall of the resulting model were above 90%,
indicating that it is able to correctly classify whether most of the
files contain defects, strengthening the reliability of the results.

Table 1: Ranking of the attributes, by decreasing importance

Attribute Average merit Average Rank
Churn 0.753 ± 0.010 1 ± 0
Author ownership 0.599 ± 0.002 2.2 ± 0.4
Cumulative churn 0.588 ± 0.013 2.8 ± 0.4
Total authors 0.521 ± 0.001 4 ± 0
Major authors 0.506 ± 0.001 5 ± 0
Size 0.411 ± 0.027 6 ± 0
Prior defects 0.293 ± 0.001 7 ± 0
Minor authors 0.149 ± 0.001 8 ± 0
Is test 0.085 ± 0.001 9 ± 0

We ran the algorithm using 10-fold cross-validation. Table 1
shows the results of the importance of each variable in the model
as evaluated by InfoGainAttributeEval. The variable is test was
consistently ranked as the least important attribute in the model,
while Churn, Author ownership, and Cumulative churn were the
most important attributes (in that order) for predicting whether a
file will likely contain a bug. This is in line with previous literature.

From this preliminary analysis, we found that the decision to
review a file should not be based on whether the file contains
production or test code, as this has no association with defects. Mo-
tivated by this result, we conducted our investigation of practices,
discussions, and challenges when reviewing tests.

4 RESEARCH METHODOLOGY
The main goal of our study is to increase our understanding of how
test code is reviewed. To that end, we conducted mixed methods
research [19] to address the following research questions:
RQ1: How rigorously is test code reviewed? Previous literature
has shown that code changes reviewed by more developers are
less prone to future defects [35, 38], and that longer discussions
between reviewers help find more defects and lead to better
solutions [30, 45]. Based on our preliminary study (Section 3) that
showed how the type of file (test vs. production) does not change
its chances of being prone to future defects, and to investigate
the amount of effort developers expend reviewing test code, we
measured how often developers comment on test files, the length
of these discussions, and how many reviewers check a test file
before merging it.

RQ2: What do reviewers discuss in test code reviews? In line
with Bacchelli & Bird [12], we aimed to understand the concerns
that reviewers raise when inspecting test files. Bacchelli & Bird
noted that developers discuss possible defects or code improve-
ments, and share comments that help one understand the code
or simply acknowledge what other reviewers have shared. We
investigated if similar or new categories of outcomes emerge
when reviewing test code compared with production code to
gather evidence on the key aspects of test file reviews and on the
reviewers’ needs when working with this type of artifact.

RQ3: Which practices do reviewers follow for test files? Little
is known about developer practices when reviewing test files. To
identify them, we interviewed developers from the 3 open source
projects analyzed in the first two RQs, as well as developers from

SERG Davide Spadini et al. – When Testing Meets Code Review: Why and How Developers Review Tests

TUD-SERG-2018-004 3

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden D. Spadini et al.

other projects (including closed projects in industry). We asked
them how they review test files and if their practices are different
to those they use when reviewing production files. This helped
discover review patterns that may guide other reviewers and
triangulate reviewers’ needs.

RQ4: What problems and challenges do developers facewhen
reviewing tests? We elicited insights from our interviews to
highlight important issues that both researchers and practition-
ers can focus on to improve how test code is reviewed.
In the following subsections, we discuss the three data collection

methods used in this research. Section 4.1 describes the three open
source projects we studied and Section 4.2 explains how we ex-
tracted quantitative data related to the prevalence of code reviews
in test files. Section 4.3 discusses the manual content analysis we
conducted on a statistically significant data sample of comments
pertaining to reviews of test code. Section 4.4 describes the inter-
view procedure used to collect data about practices, challenges, and
needs of practitioners when reviewing test files.

4.1 Project Selection
To investigate what the current practices in reviewing test files are,
we aimed at choosing projects that (1) test their code, (2) intensively
review their code, and (3) use Gerrit, a modern code review tool that
facilitates a traceable code review process for git-based projects [30].

The three projects we studied in our preliminary analysis (dis-
cussed in Section 3), match these criteria: Eclipse, Openstack and
Qt and we continue to study these projects to answer our research
questions. Moreover, these projects are commonly studied in code
review research [24, 30, 43]. Table 2 lists their descriptive statistics.

Table 2: Subject systems’ details after data pre-processing

of
prod. files

of
test files

of code
reviews

of
reviewers

of
comments

Eclipse 215,318 19,977 60,023 1,530 95,973
Openstack 75,459 48,676 199,251 9,221 894,762
Qt 159,894 8,871 114,797 1,992 19,675
Total 450,671 77,524 374,071 12,743 1,010,410

4.2 Data Extraction and Analysis
To investigate how developers review test files, we extracted code
review data from the Gerrit review databases of the systems under
study. Gerrit explicitly links commits in a Version Control System
(VCS) to their respective code review. We used this link to connect
commits to their relevant code review, obtaining information re-
garding which files have been modified, the modified lines, and the
number of reviewers and comments in the review.

Each review in Gerrit is uniquely identified by a hash code called
Change-ID. After a patch is accepted by all the reviewers, it is
automatically integrated into the VCS. For traceability purposes,
the commit message of the integrated patch contains the Change-
ID; we extracted this Change-ID from commit messages to link
patches in the VCS with the associated code review in Gerrit.

To obtain code review data, we created GerritMiner, a tool
that retrieves all the code reviews from Gerrit for each project
using the Gerrit REST API [4]. The tool saves all review-related

data (e.g., Change-ID, author, files, comments, and reviewers) in
a MySQL database. Through GerritMiner, we retrieved a total
of 654,570 code reviews pertaining to the three systems. Since we
were interested in just production and test files, we only stored code
reviews that changed source code files (e.g., we did not consider ‘.txt’
file, ‘README’, JSON files, configuration files). After this process,
we were left with 374,071 reviews. Table 2 presents the statistics.

To answer RQ1, we selected only reviews that contained less than
50 files and had at least one reviewer involved who was different
than the author [8, 34, 37]. In fact, as explained by Rigby et al. [36], a
code review should ideally be performed on changes that are small,
independent, and complete: a small change lets reviewers focus on
the entire change and maintain an overall picture of how it fits into
the system. As we were interested in code reviews where reviewers
actually examined the code closely, we did not consider reviews
where the author was the only reviewer. We also did not consider
bots as reviewers (e.g., Jenkins and Sanity Bots). At the end, the
distribution of the number of reviewers per review (excluding the
author) is the following: 27% have 1 reviewer, 26% have 2, 16% have
3, 10% have 4, and 20% have more than 4.

To understand how often and extensively discussions are held
during reviews about test files, we considered the following metrics
as proxies, which have been validated in previous literature [42]:
number of comments in the file, number of files with comments,
number of different reviewers, and the length of the comments. We
only considered code reviews that contained at least one comment
because we were interested in understanding whether there was
any difference between review discussions of test and production
files, and reviews that do not contain any discussion are not useful
for this investigation.

We used the production file metrics as a baseline and separately
analyzed the three different review scenarios based on what needed
to be reviewed: (1) both production and test files, (2) only production
files, or (3) only test files.

4.3 Manual Content Analysis
To answer RQ2, we focused on the previously extracted comments
(Section 4.2) by practitioners reviewing test files. To analyze the
content of these comments, we performed a manual analysis similar
to Bacchelli & Bird [12]. Due to the size of the total number of
comments (1,010,410), we analyzed a statistically significant random
sample. Our sample of 600 comments was created with a confidence
level of 99% and error (E) of 5% [44].

The manual analysis was conducted by the first two authors of
this paper, using the following process: (1) Each researcher was
responsible for coding 300 comments. (2) All the sampled com-
ments were listed in a shared spreadsheet. (3) The researchers
worked together to categorize and explain comments, using a nego-
tiated agreement technique [39] to achieve agreement. As agreement
is negotiated on-the-fly, there is no inter-rater agreement value.
Agreement was found after 60 comments, at which point the work
continued in parallel. (4) As a starting point, researchers used the
same categories described by Bacchelli & Bird [12], including code
improvement, understanding, social communication, defect, knowl-
edge transfer, miscellaneous, testing, external impact, and review tool.

Davide Spadini et al. – When Testing Meets Code Review: Why and How Developers Review Tests SERG

4 TUD-SERG-2018-004

When Testing Meets Code Review: Why and How Developers Review Tests ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Furthermore, researchers did a second pass to retrieve more fine–
grained information for each category, obtaining more details on
what developers discuss. (5) In case of doubt, i.e., the category of
a specific comment was not clear to one of the researchers, the
category was then analyzed by both researchers together.

4.4 Interviews
To answer RQs 3 and 4, guided by the results of the previous RQs,
we designed an interview in which the goal was to understand
which practices developers apply when reviewing test files. The in-
terviews were conducted by the first author of this paper and were
semi-structured, a form of interview often used in exploratory in-
vestigations to understand phenomena and seek new insights [48].

Each interview started with general questions about code re-
views, with the aim of understanding why the interviewee performs
code reviews, whether they consider it an important practice, and
how they perform them. Our interview protocol also contained
many questions derived from the results of previous research ques-
tions. Our full interview protocol is available in the appendix [7].
We asked interviewees the following main questions:

(1) What is the importance of reviewing these files?
(2) How do you conduct reviews? Do you have specific prac-

tices?
(3) What are the differences between reviewing test files and

production files?
(4) What challenges do you face when reviewing test files?What

are your needs related to this activity?
During each interview, the researcher summarized the answers,

and before finalizing the meeting, these summaries were presented
to the interviewee to validate our interpretation of their opinions.
We conducted all interviews via Skype. With the participants’ con-
sent, the interviews were recorded and transcribed for analysis.
We analyzed the interviews by initially assigning codes [25] to
all relevant pieces of information, and then grouped these codes
into higher-level categories. These categories formed the topics we
discuss in our results (Section 5).

We conducted 12 interviews (each lasting between 20 and 50
minutes) with developers that perform code reviews as part of their
daily activities. Three of these developers worked on the projects
we studied in the previous RQs. In addition, we had one participant
from another open source project and 8 participants from industry.
Table 3 summarizes the interviewees’ demographics.

4.5 Threats to Validity and Limitations
We describe the threats to validity and limitations to the results of
our work, as posed by the research methodology that we applied.
Construct validity.When building our model we assume that each
post-release defect has the same importance, when in reality this
could not be the case. We mitigate this issue analyzing only the
release branch of the systems, which are more controlled than a
development branch, to ensure that only the appropriate changes
will appear in the upcoming release [30].

The content analysis was performedmanually, thus giving rise to
potentially subjective judgement. Tomitigate this threat, we employ
the negotiated agreement technique [39] between the first and
second authors until agreement was reached (after 60 comments).

Table 3: Interviewees’ experience (in years) andworking con-
text (OSS project, or company)

ID Years as
developer

Years as
reviewer Working context

P1 5 5 OSS
P2 10 10 Eclipse
P3 10 10 Company A
P4 20 6 Qt
P5 13 8 Company B
P6 5 5 Openstack
P7 7 5 Company C
P8 5 1 Company D
P9 11 3 Company E
P10 9 9 Company F
P11 7 2.5 Company D
P12 6 4.5 Company D

Internal validity – Credibility. Threats to internal validity concern
factors we did not consider that could affect the variables and the
relations being investigated. In our study, we interview develop-
ers from the studied software to understand how they review test
files. Every developer has a specific way of reviewing, which may
differ from the practices of other practitioners. We try to mitigate
this issue by interviewing a range of developers from different
open-source and industry projects. In addition, their interviewees’
opinions may also be influenced by other factors, such as current
literature on MCR, which could may have led them to social desir-
ability bias [23], or by practices in other projects that they partici-
pate in. To mitigate this issue, we constantly reminded interviewees
that we were discussing the code review practices specifically of
their project. At the end of the interview, we asked them to freely
talk about their ideas on code reviews in general.
Generalizability – Transferability. Our sample contains three open-
source systems, which is small compared to the overall population
of software systems that make use of code reviews. We reduce this
issue by considering diverse systems and by collecting opinions
from other open-source projects as well as from industry.

5 RESULTS
In this section, we present the results to our research questions that
aimed to understand how rigorously developers review tests, what
developers discuss with each other in their reviews of test code,
and what practices and challenges developers use and experience
while performing these code reviews.

RQ1. How rigorously is test code reviewed?
In Table 4, we show the distribution of comments in code reviews
for both production and test files when they are in the same review,
and for code reviews that only contain either type.
Discussion in code reviews of test files. The number of test file
reviews that contain at least one comment ranges from 29% (in
reviews that combine test and production files) to 48% (in reviews
that only look at test files). The number of production files that

SERG Davide Spadini et al. – When Testing Meets Code Review: Why and How Developers Review Tests

TUD-SERG-2018-004 5

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden D. Spadini et al.

Table 4: The prevalence of reviews in test files vs production files (baseline)

Code review # of
files

of files
w/ comments

of files
wo/ comments odds ratio # of comments Avg number

of comments
Avg #

of reviewers
Avg length

of comments
Production 157,507 68,338 (43%) 89,169 (57%) 1.90 472,020 3.00 5.49 19.09
Test 102,266 29,327 (29%) 72,939 (71%) 129,538 1.27 15.32
Only production 74,602 32,875 (44%) 41,725 (56%) 0.86 122,316 1.64 3.95 18.13
Only test 22,732 10,808 (48%) 11,924 (52%) 52,370 2.30 5.15 17.01

contain at least a single comment ranges from 43% (when together
with test files) to 44% (in reviews that only look at production files).

In a code review that contains both types of files, the odds of
a production file receiving a comment is 1.90 [1.87 − 1.93] higher
than with test files. On the other hand, when a review only contains
one type of file, the odds of a test file receiving a comment is higher
than that of a production file: 1.15 [1.11 − 1.18].

We also observed a large number of files that did not receive any
discussion. The number of code files that did not receive at least a
single comment ranges from 52% (in reviews that only look at test
files) to 71% (in reviews that combine test and production files).
Discussion intensity in test files. In the code reviews that con-
tain both types of files, production files received more individual
comments than test files (3.00 comments per file for production,
1.27 comments for tests). The difference is statistically significant
but small (Wilcoxon p-value< 2.2e−16, Cliff’s Delta=-0.1643); this
is due to the large number of files with no comments (median =
0 in both test and production, 3rd quantile = 1). The difference is
larger when we analyze only files with at least a single comment
(Wilcoxon p-value< 2.2e−16, Cliff’s Delta=-0.1385).

Again, numbers change when both files are not bundled in the
same review. Code reviews on only production files contain fewer
individual comments on average than reviews on only test files (1.64
comments for production, 2.30 comments for tests). The difference
is statistically significant but small (Wilcoxon p-value< 2.2e−16,
Cliff’s Delta=0.0585).

Production files receive longer comments than test files on aver-
age, both when they are in the same review (an average of 19.08
characters per comment in a production file against 15.32 in a
test) and when they are not (18.13 against 17.01). The difference is
again statistically significant but small (Wilcoxon p-value< 2.2e−16,
Cliff’s Delta=0.0888).
Reviewers of test files. The number of reviewers involved in
reviews containing both files and only tests is slightly higher com-
pared to reviews containing production files. However, from the
Wilcoxon rank sum test and the effect size, we observe that the
overall difference is statistically significant but small (Wilcoxon
p-value< 2.2e−16, Cliff’s Delta=−0.1724).

Finding 1. Test files are almost 2 times less likely to be
discussed during code review when reviewed together with
production files. Yet, the difference is small in terms of the
number and length of the comments, and the number of
reviewers involved.

0% 10% 20% 30%

0% 10% 20% 30%

Code improvement

Understanding

Social communication

Defect

Knowledge transfer

Misc

Figure 1: The outcomes of comments in code review of test
files, aftermanual analysis in 600 comments (CL=99%, CI=5).

RQ2. What do reviewers discuss when reviewing
test code?
In Figure 1, we report the results of our manual classification of 600
comments. When compared to the study by Bacchelli & Bird [12]
that classified production and test code together, we exclude the
‘Testing’ category as all our comments were related to test code.
In addition, we did not observe any comments related to ‘Exter-
nal impact’ and ‘Review tool’. Interestingly, the magnitude of the
remaining outcomes is the same as found by Bacchelli & Bird [12].
Code improvements (35%). This is the most frequently discussed
topic by reviewers when inspecting test files. This category in-
cludes suggestions to use better coding practices, fix typos, write
better Java-docs, and improve code readability. Interestingly, the
code improvements that we found are also similar to the ones
found by Bacchelli & Bird [12]. Yet the reviewers mostly discuss im-
provements focused on testing, as opposed to generic code quality
practices, such as maintainability, which are the focus of reviews
on production code [12, 14].

More specifically, 40% of the code improvement comments con-
cern improvements to testing practices, such as better mocking
usage and test cohesion. In addition, we found that in 12% of the
cases, developers were discussing better naming for test classes, test
methods, and variables. Interestingly, our interviewees mentioned
that naming is important when reviewing test files, as P9 put it:
“Most of the time I complain of code styling. Sometimes it’s difficult
to understand the name of the variables, so I often complain to
change the names.”

Of the code improvement comments, 14% are about untested and
tested paths. According to our interviewees, this is an important
concern when reviewing test files. Some examples of such review

Davide Spadini et al. – When Testing Meets Code Review: Why and How Developers Review Tests SERG

6 TUD-SERG-2018-004

When Testing Meets Code Review: Why and How Developers Review Tests ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

discussion comments are “Where is the assert for the non synchro-
nized case?”, “Add a test for context path of /.”, and “I wouldn’t do
this test. That’s an implementation detail.”

Another 6% of the comments concern wrong assertions. As we
discuss in the following RQs, developers often complain about
readability of the assertions, namely the assertion has to be as
specific as possible to let the developer better understand why
the test failed. As an example, a developer asked to change an
assertTrue(equals()) to an assertEqual() in one comment.

Finally, we observed that 12% of the comments concern unused
or unnecessary code, and 17% of them mention code styling. These
kinds of comments are in line with those found on reviews of
production code [12, 14].

Understanding (32%). This category represents all the comments
where reviewers ask questions to better understand the code, in-
cluding posing questions asking for explanations, suggestions, and
motivating examples. In this category, we included comments such
as “why do you need this for?”, “what does this variable name
mean?” and “why is this class static?”. Interestingly, as opposed to
review comments related to code improvements, the comments in
this category did not reveal any differences from what we found
in the test and production files analyzed in our previous work,
i.e., there were no comments that were specifically related to testing
practices, such as assertion and mocking. This provides additional
evidence on the importance of understanding when performing
code reviews [12], regardless of the types of files under review.

Defect finding (9%).Within this category, we see discussion con-
cerning test defects such as wrong assert handling, missing tests,
misuse of test conventions, and incorrect use of mocks. We observe
three different categories of defects: severe, not severe, and wrong
assertions. More specifically, 43% of the comments are about severe
issues, i.e., tests that completely fail because of a wrong variable
initialization, a wrong file path, or incorrect use of mocks. On the
other hand, 41% of the comments are focused on less severe issues,
such as missing test configurations. Finally, 14% of the comments
concern wrong assertion handling, such as assertions of wrong
scenarios. Interestingly, as opposed to the results reported by Bac-
chelli & Bird who found that “review comments about defects . . .
mostly address ‘micro’ level and superficial concerns” [12], a large
portion of the defects discussed in test file code reviews concern
rather high-level and severe issues. A hypothesis for this difference
may be that a good part of the severe, high-level defects that affect
test files are localized (i.e., visible just looking at the changed lines),
while production files are affected by more delocalized defects that
may be harder to detect by simply inspecting the changed lines.

Knowledge transfer (4%). This category, which also emerged in
previous work [12], represents all the comments where the review-
ers direct the committer of the code change to an external resource
(e.g., internal documentation or websites). We observe two different
types of comments in this category: comments that link to external
resources and that contain examples. More specifically, 55% of these
comments contain links to external documentation (e.g., Mockito
website, python documentation), to other classes of the project
(e.g., other tests), and to other patches. The rest of the comments
are examples where the reviewer showed how to tackle the issue

with an example, within the review comment itself, of how s/he
would do it.
Social communication (11%). Finally, this category, in line with
the work by Bacchelli & Bird [12], includes all the comments that
are social in nature and not about the code, examples such as “Great
suggestion!” and “Thank you for your help”.

Finding 2. Reviewers discuss better testing practices, tested
and untested paths, and assertions. Regarding defects, half
of the comments regard severe, high-level testing issues, as
opposed to results reported in previous work, where most of
the comments on production code regarded low level concerns.

RQ3. Which practices do reviewers follow for
test files?
We analyze the answers obtained during our interviews with de-
velopers. We refer to individual interviewees using (P#).
Test driven reviews. Regardless of having test files in the patch,
all participants agreed that before diving into the source code, they
first get an idea of what the change is about, by reading the commit
message or any documentation attached to the review request
[P1,2,6−10,12]. P2 added: “I look at what it says and I think to myself
‘how would I implement that?’, just to give a sense of what are the
files that I would be expecting to be changed, what are the areas of
the system that I’m expecting that they touch.” If the files that are
attached to the patch look much different from what they expected,
they immediately reject the code change [P2,7,9,10].

Once they understood what the change is about, developers
start to look at the code. In this case, we identified two different
approaches: some developers prefer to read test files first followed
by production files [P2,4,5], while other developers prefer to read
production files first and then review tests [P1,3,6−10].

When starting from tests, developers say they can understand
what the feature should do even before looking at its implementa-
tion [P2,4,5]. P5 says: “It is similar to read interfaces before imple-
mentations. I start from the test files because I want to understand
the API first.” In this approach, developers first see what the code is
tested for, then check whether the production code does only what
is tested for or if it does more than what is necessary [P2,4,5]: “If I
start to find something in production that is much different of what
I am inferring from the tests, those are my first questions” [P5].

More developers instead start reviewing the change in its pro-
duction files first [P1,3,6−10]. As P8 explained: “I start first from
the production code, because I can have a sense of what should be
tested.” The advantage of such an approach is that developers do
not waste time validating whether the test covers every path for
a change that is wrong in first place [P1,3,6−10]. P7 also said that
he would prefer to start reviewing the tests, but the poor quality of
the tests makes this not realistic: “I would prefer to starting with
the tests, the problem is that tests are usually very bad. And the
reason is because they usually tend to test what they implemented
and not what they should have implemented. In TDD I would also
start to review tests first but, as you know, this is not the case.”

SERG Davide Spadini et al. – When Testing Meets Code Review: Why and How Developers Review Tests

TUD-SERG-2018-004 7

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden D. Spadini et al.

Finding 3. Similarly to when writing new code, when re-
viewing some developers prefer to start from tests, others from
production. Reviewers who start inspecting tests use them to
determine what the production code should do and whether
it does only that. Reviewers who start inspecting production
code prefer to understand the logic of production code before
validating whether its tests cover every path.

Reviewers look for different problems when reviewing tests.
According to the interviewees, reviewing test files require different
practices to those used for reviewing production files; this is in line
with the differences we found in the content of the subcategories of
comments left for test files vs. production files for RQ2. Interviewees
explain that it is especially different in terms of what to look for.
P10 said that when reviewing production code they discuss more
about the design and cleanliness of the code, whereas for reviews of
tests they discuss more on tested/untested paths, testing practices
like mocking and the complexity of the testing code.

A main concern for all the developers is understanding if all the
possible paths of the production code are tested, especially corner
cases [P8−12]. “If themethod being tested receives two variables, and
with these two variables it can have on average five to ten different
returns, I’ll try to see whether they cover a sufficient number of
cases so that I can prove that that method won’t fail.”[P11]

Interviewees explained that they often complain about maintain-
ability and readability of the test (i.e., complex or duplicated code,
if the test can be simpler, or divided into two smaller tests), but
especially the name of the tests and the assertions [P7−12]. “I often
complain on the assertions, some assertions are really difficult to
understand, we should try to be as specific as possible.”[P8]

Finding 4. A main concern of reviewers is understanding
whether the test covers all the paths of the production code
and to ensure tests’ maintainability and readability.

Having the contextual information about the test. As we will
discuss in the next RQ, a main concern for developers is the small
amount of information provided in the code review [P1,6,8−10,12].
Indeed, within a code review, reviewers can only see files that
are changed and only the lines that have been modified, while
interviewees complain that they do not have the possibility to, for
example, automatically switch between production code and its
test code, or to check other related test cases that are not modified
in the patch [P1,8,9].

For this reason, two developers explained that they check out
the code under review and open it with another tool, for example a
local IDE [P9,12]. In this way, they can have the full picture of what
is changed and get full support of other tools: “I particularly like
opening the pull request to know what has come in again, which
classes have been edited. I [open] GitHub, I access the PR and open
it [in] my IDE. So I can look at the code as a whole, not just the files
changed as it is in GitHub."[P12] Another advantage of checking
out the commit with the patch is that developers can see the tests
running: “Most of the time I pull the pull request to see the feature
and tests running, so I can have a sense of what have changed

and how.”[P9] Nevertheless, this practice can only be accomplished
when the code base is limited in size and the coding environment
can be easily pulled to the local machine of the reviewers.

Finding 5. Due to the lack on test-specific information
within the code review tool, we observed that developers check
out the code under review and open it in a local IDE: This
allows them to navigate through the dependencies, have a
full picture of the code, and run the test code. However this
workaround is limited to small scale code bases.

RQ4. What problems and challenges do
developers face when reviewing tests?
Test code is substantially different than production code. Ac-
cording to our interviewees, even if sometimes writing tests is sim-
pler than writing production code [P1,3,4,6−9,11], this changes when
reviewing tests [P3,4,6−9]: “Imagine you have to test a method that
does an arithmetic sum. The production code only adds two num-
bers, while the test will have to do a positive test, a negative and
have about fifteen different alternatives, for the same function.”[P11]

According to our interviewees, reviewing test files becomes com-
plicated due to lack of context [P1,6,8−10,12]. When reviewing a test,
code review tools do not allow developers to have production and
test files side-by-side [P12]: “Having the complete context of the
test is difficult, we often use variables that are not initialized in
the reviewed method, so often I have to go around and understand
where the variable is initialized.”[P8] Another developer said that
“It’s hard to understand which test is actually testing this method,
or this path in the function.”[P1] and that when the test involves a
lot of other classes (it is highly coupled) s/he never knows whether
and how the other classes are tested [P9].

Furthermore, one of the main challenges experienced by our
interviewees is that often reviewing a test means reviewing code
additions, which is more complicated than reviewing just code
changes [P2,11,12]. “Code changes make me think, why is this line
changing from the greater than side to a less than side? While code
additions you have to think what’s going on in there, and tests are
almost all the time new additions.”[P2] According to developers,
test code is theoretically written once and if it is written correctly it
will not change [P2]. The reason is that while the implementation
of the feature may change (e.g., how it is implemented), both the
result and the tests will stay the same [P11].

Finding 6. Reviewing test files requires developers to have
context about not only the test, but also the production file
under test. In addition, test files are often long and are often
new additions, which makes the review harder to do.

The average developer believes test code is less important. “I
will get a call from my manager if there is a bug in production while
I’m not going to get a call if there’s a bug in the test right?”[P2]
According to our interviewees, developers choose saving time to the
detriment of quality. This is due to the fact that there is no immediate
value on having software well tested; as P7 explained “it is only

Davide Spadini et al. – When Testing Meets Code Review: Why and How Developers Review Tests SERG

8 TUD-SERG-2018-004

When Testing Meets Code Review: Why and How Developers Review Tests ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

good for the long term.” For a product that is customer-driven, it is
more important to release the feature on time without bugs, because
that is the code that will run on the client’s machine [P2,4−7,9]. P7
said: “If I want to get a good bonus by the end of the year I will make
sure that my features make it into production level code. If instead
we would start to get punished for bugs or bad code practices,
you will see a very very different approach, you would see way
more discussions about tests than production code.” Interviewees
affirmed that the main problem is the developers mindset [P1,2,7,8]:
“It is the same reason as why people write bad tests, testing is
considered as secondary class task, it is considered not but it is
not.”[P7] Developers see test files as less important, because a bug
in a test is a developer’s problem while a bug in production code is
a client’s problem. As explained by P7, developers are not rewarded
for writing good code, but for delivering features the clients want.

Furthermore, according to our interviewees, during a review
sometimes they do not even look at the test files, their presence is
enough [P1,3−6]. As P6 said “Sometimes you don’t look at the test
because you see there is the file, you know that the code is doing
what it has to do and you trust the developer who wrote it (maybe
we trust too much sometimes).”

Finding 7. Developers have a limited amount of time to
spend on reviewing and are driven by management policies to
review production code instead of test code which is considered
less important.

Better education on software testing and reviewing. Most in-
terviewees agreed on the need to convince developers andmanagers
that reviewing and testing are highly important for the software
system overall quality [P1,2,4,6−8,10]. Educating developers on good
and bad practices and the dangers of bad testing [P2,7,10]. “I would
love to see in university people teaching good practice on testing.
Furthermore, people coming from university they have no freak-
ing clue on how a code review is done. Educating on testing and
reviewing, how to write a good test and review it.”[P7]

Furthermore, with the help of researchers, developers could solve
part of the education problem: one interviewee said that research
should focus more on developers’ needs, so that tool designers
can take advantage of these needs and improve their tools [P6].
“I think it is important to give this feedback to the people who
write [code review] tools so they can provide the features that
the community wants. Having someone like you in the middle,
collecting this feedback and sending them to tool developers, this
could be very helpful.”[P6]

Finding 8. Novice developers and managers are not aware of
what is the impact of poor testing and reviewing on software
quality, education systems should fix this. Moreover, research
should focus more on developers’ needs and expose them to
tool makers to have an impact.

Tool improvements. Part of the interview was focused on what
can be improved in the current code review tools.

According to our interviewees, the navigation between the pro-
duction and the test files within the review is difficult [P2,9,10,12].
“We don’t have a tool to easily switch between your tests and your
production code, we have to go back and forth, then you have to look
for the same name and trying to match them.”[P2] As mentioned
before, the context of the review is limited to the files attached to
the review itself, and this makes it difficult to have a big picture
of the change. For example, test files are usually highly coupled to
several production classes: however, developers can not navigate
to the dependencies of the test, or other test in general, without
opening a new window [P2,9]. “If we could click on the definition
of a class and go to its implementation would be amazing. That’s
why I pull the PR every-time and I lose a lot of time doing it.”[P9]
P12‘ said: “It’s very unproductive to review in GitHub, because you
first visualize all the codes, and then at the end are all the tests, and
it ends up being more difficult having to keep going in the browser
several times.”

In addition, adding fine-grained information about code coverage
during the review is considered helpful [P1,7,11,12]. More specifi-
cally, which tests cover a specific line [P1,7,11,12], what paths are
already covered by the test suite [P2,12], and whether tests exercise
exceptional cases [P12]. Regarding the latter, P12 says: “I think it’s
harder to automate, but it is to ensure that not only the "happy"
paths are covered. It is to ensure that the cover is in the happy case,
in case of errors and possible variations. A lot of people end up
covering very little or too much.”

Tool features that are not related to test also emerged during
our interviewees. For example, enabling developers to identify the
importance of each file within the code review [P7,8,11,12] and
splitting the code review among different reviewers [P7].

Finding 9. Review tools should provide better navigation
between test and production files, as well as in-depth code
coverage information.

6 DISCUSSION
We discuss how our results lead to recommendations for practition-
ers and educators, as well as implications for future research.

6.1 For Practitioners and Educators
Underline the importance of reviewing test code. The results
of both our quantitative and qualitative analysis indicate that most
reviewers deem reviewing tests as less important than reviewing
production code. Especially when inspecting production and test
files that are bundled together, reviewers tend to focus more on
production code with the risk of missing bugs in the tests. However,
previous research has shown that bugs in test files can lower the
quality of the corresponding production code, because a bug in
the test can lead to serious issues such as ‘silent horrors’ or ‘false
alarms’ [46]. Moreover, our analysis provided empirical evidence
that being a test does not change the chances of a file to have
future defects (Section 3). For this reason, practitioners should be
instructed and keep in mind to put the same care when reviewing
test or production code.

SERG Davide Spadini et al. – When Testing Meets Code Review: Why and How Developers Review Tests

TUD-SERG-2018-004 9

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden D. Spadini et al.

Set aside sufficient time for reviewing test files. Our intervie-
wees agreed that reviewing test files is a non-trivial task, because
changes involving tests are more often code additions rather than
code modifications and several test options must be analyzed. This
indicates that correctly reviewing test files would hardly take less
time than reviewing production code. A good team culture must
be developed, in which the time spent on reviewing test code is
considered as important as the time spent on reviewing production
code and scheduled accordingly. In fact, as previous work already
pointed out [12], good reviewing effectiveness is found mostly
within teams that value the time spent on code review; tests should
not be treated differently.
Educate developers on how to review test code. Many books
and articles have been written by practitioners on best practices for
code review [1, 2, 5] and researchers continue to conduct studies
to increase our empirical understanding of code review [30, 42].
Nevertheless, best practices for reviewing test code have not been
discussed nor proposed yet. Our work, as a first step, collects cur-
rent best practices for reviewing of tests. These practices show us
that developers should learn how to look for possible false alarms,
to check that the tests will be easily understandable and maintain-
able, and to check whether all the possible paths of the production
code are tested. Novice reviewers may also consider the practice of
reviewing test code before production to (1) make sure to give it
enough time and (2) to better understand the goals of the production
code under test, since novices may not know them beforehand.

6.2 For Tool Designers and Researchers
Providing context to aid in reviewing of tests. The lack of con-
text when reviewing test code is a concern for many developers.
Specifically, developers argue that it is important to understand and
inspect the classes that are under test as well as which dependencies
are simulated by tests (i.e., mock objects). However, knowing which
classes are executed by a test normally requires dynamically execut-
ing the code during review, which is not always feasible, especially
when large code bases are involved [20]. This is an opportunity to
adapt and extend existing research that determines the coverage of
tests using static analysis [10]. Moreover, developers would like to
be able to easily navigate through the test and tested classes; future
research studies could investigate how to improve file navigation
for code review in general (an existing open research problem [13])
but also to better support review of tests in particular.
Providing detailed code coverage information for tests. As
our results show, one of the most important tasks during the review
of a test code is to make sure the test covers all the possible paths
of the production code. Although external tools provide code cov-
erage support for developers (e.g., Codecov [3]), this information
is usually not “per test method”, i.e., coverage reports focus on the
final coverage after the execution of the entire test suite, and not
for a single test method. Therefore, new methods should be devised
to not only provide general information on code coverage, but also
provide information that is specific to each test method. An effort
in this direction has been presented by Oosterwaal et al. [33]; our
analysis points to the need for further research in this area.
Understanding how to review test code and benefits of test
reviews. Our research highlights some of the current practices

used by developers when reviewing test files, such as test driven
review (review tests before production code). Nevertheless, the
real effect of these practices on code review effectiveness and on
the eventual test code quality is not known: some practices may
be beneficial, other may simply waste reviewers’ time. This calls
for in-depth, empirical experiments to determine which practices
should be suggested for adoption by practitioners.

7 CONCLUSIONS
Automated testing is nowadays considered to be an essential pro-
cess for improving the quality of software systems. Unfortunately,
past literature showed that test code, similarly to production code,
can often be of low quality and may be prone to contain defects [46].
To maintain a high code quality standard, many software projects
employ code review, but is test code typically reviewed and if so,
how rigorously? In this paper we investigated whether and how
developers employ code review for test files. To that end, we stud-
ied three OSS projects, analyzing more than 300,000 reviews and
interviewing three of their developers. In addition, we interviewed
another 9 developers, both from OSS projects and industry, obtain-
ing more insights on how code review is conducted on tests. Our
results provide new insights on what developers look for when re-
viewing tests, what practices they follow, and the specific challenges
they face.

In particular, after having verified that a code file that is a test
does not make it less likely to have defects—thus little justification
for lower quality reviews—we show that developers tend to discuss
test files significantly less than production files. The main reported
cause is that reviewers see testing as a secondary task and they are
not aware of the risk of poor testing or bad reviewing.We discovered
that when inspecting test files, reviewers often discuss better testing
practices, tested and untested paths, and assertions. Regarding
defects, often reviewers discuss severe, high-level testing issues, as
opposed to results reported in previous work [12], where most of
the comments on production code regarded low level concerns.

Among the various review practices on tests, we found two ap-
proaches when a review involves test and production code together:
some developers prefer to start from tests, others from production.
In the first case, developers use tests to determine what the pro-
duction code should do and whether it does only that, on the other
hand when starting from production they want to understand the
logic before validating whether its tests cover every path. As for
challenges, developers’ main problems are: understanding whether
the test covers all the paths of the production code, ensuring main-
tainability and readability of the test code, gaining context for the
test under review, and difficulty reviewing large code additions
involving test code.

We provide recommendations for practitioners and educators,
as well as viable directions for impactful tools and future research.
We hope that the insights we have discovered will lead to improved
tools and validated practices which in turn may lead to higher code
quality overall.

ACKNOWLEDGMENTS
The authors would like to thank all participants of the interviews. A.
Bacchelli gratefully acknowledges the support of the Swiss National
Science Foundation through the SNF Project No. PP00P2_170529.

Davide Spadini et al. – When Testing Meets Code Review: Why and How Developers Review Tests SERG

10 TUD-SERG-2018-004

When Testing Meets Code Review: Why and How Developers Review Tests ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES
[1] [n. d.]. Best Practices: Code Reviews. https://msdn.microsoft.com/en-us/library/

bb871031.aspx. ([n. d.]). [Online; accessed 25-August-2017].
[2] [n. d.]. Best Practices for Code Reviews. https://smartbear.com/learn/

code-review/best-practices-for-peer-code-review/. ([n. d.]). [Online; accessed
25-August-2017].

[3] [n. d.]. Codecov. https://codecov.io. ([n. d.]). [Online; accessed 25-August-2017].
[4] [n. d.]. Gerrit REST APIs. https://gerrit-review.googlesource.com/

Documentation/rest-api.html. ([n. d.]). [Online; accessed 25-August-2017].
[5] [n. d.]. Modern Code Review. https://www.slideshare.net/excellaco/

modern-code-review. ([n. d.]). [Online; accessed 25-August-2017].
[6] [n. d.]. WEKA. http://www.cs.waikato.ac.nz/ml/weka/. ([n. d.]). [Online; accessed

25-August-2017].
[7] 2018. Appendix. https://doi.org/10.5281/zenodo.1172419. (2018).
[8] R T Fielding A. Mockus and J D Herbsleb. 2002. Two case studies of open source

software development: Apache and Mozilla. ACM Trans. Softw. Eng. Meth. 11, 3
(2002), 309–346.

[9] Megha Aggarwal and Amrita. 2013. Performance Analysis Of Different Feature
Selection Methods In Intrusion Detection. International Journal Of Scientific &
Technology Research 2, 6 (2013), 225–231.

[10] Tiago L Alves and Joost Visser. 2009. Static estimation of test coverage. In Source
Code Analysis and Manipulation, 2009. SCAM’09. Ninth IEEE International Working
Conference on. IEEE, 55–64.

[11] Dimitrios Athanasiou, Ariadi Nugroho, Joost Visser, and Andy Zaidman. 2014.
Test Code Quality and Its Relation to Issue Handling Performance. IEEE Trans.
Software Eng. 40, 11 (2014), 1100–1125. https://doi.org/10.1109/TSE.2014.2342227

[12] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and chal-
lenges of modern code review. In Proceedings - International Conference on Soft-
ware Engineering. 712–721. https://doi.org/10.1109/ICSE.2013.6606617

[13] Mike Barnett, Christian Bird, João Brunet, and Shuvendu K Lahiri. 2015. Helping
developers help themselves: Automatic decomposition of code review changesets.
In Proceedings of the 37th International Conference on Software Engineering. IEEE
Press, 134–144.

[14] Moritz Beller, Alberto Bacchelli, Andy Zaidman, and Elmar Juergens. 2014. Mod-
ern code reviews in open-source projects: Which problems do they fix?. In Pro-
ceedings of the 11th working conference on mining software repositories. ACM,
202–211.

[15] Antonia Bertolino. 2007. Software testing research: Achievements, challenges,
dreams. In 2007 Future of Software Engineering. IEEE Computer Society, 85–103.

[16] George Candea, Stefan Bucur, and Cristian Zamfir. 2010. Automated software
testing as a service. In Proceedings of the 1st ACM symposium on Cloud computing.
ACM, 155–160.

[17] J.M. Chambers and T. Hastie. 1992. Statistical Models in S. Wadsworth &
Brooks/Cole Advanced Books & Software.

[18] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.
2002. SMOTE: Synthetic minority over-sampling technique. Journal of Arti-
ficial Intelligence Research 16 (2002), 321–357. https://doi.org/10.1613/jair.953
arXiv:1106.1813

[19] Vicki L Creswell JW, Clark P, JohnW. J.W. Creswell, V.L. Vicki L Plano Clark, Vicki
L.P. Plano Clark, and V.L. Vicki L Plano Clark. 2007. Designing and Conducting
Mixed Methods Research. 275 pages. https://doi.org/10.1111/j.1753-6405.2007.
00096.x

[20] Jacek Czerwonka, Rajiv Das, NachiappanNagappan, Alex Tarvo, and Alex Teterev.
2011. Crane: Failure prediction, change analysis and test prioritization in practice–
experiences from windows. In Software Testing, Verification and Validation (ICST),
2011 IEEE Fourth International Conference on. IEEE, 357–366.

[21] Arie Van Deursen, Leon Moonen, Alex Van Den Bergh, and Gerard Kok. 2001.
Refactoring Test Code. Proceedings of the 2nd International Conference on Extreme
Programming and Flexible Processes XP2001 (2001), 92–95. https://doi.org/10.1109/
ICSEA.2007.57

[22] Marco di Biase, Magiel Bruntink, and Alberto Bacchelli. 2016. A Security Per-
spective on Code Review: The Case of Chromium. 2016 IEEE 16th International
Working Conference on Source Code Analysis and Manipulation (SCAM) (2016),
21–30. https://doi.org/10.1109/SCAM.2016.30

[23] Adrian Furnham. 1986. Response bias, social desirability and dissimulation.
Personality and individual differences 7, 3 (1986), 385–400.

[24] Kazuki Hamasaki, Raula Gaikovina Kula, Norihiro Yoshida, Camargo Cruz Ana
Erika, Kenji Fujiwara, and Hajimu Iida. 2013. Who does what during a Code
Review ? An extraction of an OSS Peer Review Repository. Proceedings of the
10th Working Conference on Mining Software Repositories (MSR’ 13) (2013), 49–52.
https://doi.org/10.1109/MSR.2013.6624003

[25] Bruce Hanington and Bella Martin. 2012. Universal methods of design: 100 ways to
research complex problems, develop innovative ideas, and design effective solutions.
Rockport Publishers.

[26] Truong Ho-Quang, Michel R.V. Chaudron, Ingimar Samuelsson, Joel Hjaltason,
Bilal Karasneh, and Hafeez Osman. 2014. Automatic Classification of UML Class

Diagrams from Images. 2014 21st Asia-Pacific Software Engineering Conference
December (2014), 399–406. https://doi.org/10.1109/APSEC.2014.65

[27] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha, and N. Ubayashi.
2013. A large-scale empirical study of just-in-time quality assurance. IEEE
Transactions on Software Engineering 39, 6 (June 2013), 757–773. https://doi.org/
10.1109/TSE.2012.70

[28] Sunghun Kim, E. James Whitehead, and Yi Zhang. 2008. Classifying software
changes: Clean or buggy? IEEE Transactions on Software Engineering 34, 2 (2008),
181–196. https://doi.org/10.1109/TSE.2007.70773

[29] An Ngoc Lam, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N. Nguyen. 2015.
Combining Deep Learning with Information Retrieval to Localize Buggy Files for
Bug Reports (N). In Automated Software Engineering (ASE), 2015 30th IEEE/ACM
International Conference on. 476–481. https://doi.org/10.1109/ASE.2015.73

[30] Shane Mcintosh, Yasutaka Kamei, Bram Adams, and Ahmed E Hassan. 2014. The
Impact of Code Review Coverage and Code Review Participation on Software
Quality Categories and Subject Descriptors. Proceedings of the 11th Working
Conference on Mining Software Repositories (2014), 192–201. https://doi.org/10.
1145/2597073.2597076

[31] Glenford Myers. 2004. The Art of Software Testing, Second edition. Vol. 15. 234
pages. https://doi.org/10.1002/stvr.322 arXiv:arXiv:gr-qc/9809069v1

[32] Helmut Neukirchen and Martin Bisanz. 2007. Utilising Code Smells to De-
tect Quality Problems in TTCN-3 Test Suites. Proceedings of the 19th IFIP
TC6/WG6.1 International Conference, and 7th International Conference on Testing
of Software and Communicating Systems (2007), 228–243. https://doi.org/10.1007/
978-3-540-73066-8_16

[33] Sebastiaan Oosterwaal, Arie van Deursen, Roberta Coelho, Anand Ashok Sawant,
and Alberto Bacchelli. 2016. Visualizing code and coverage changes for code
review. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 1038–1041.

[34] D. L. Parnas and D.M.Weiss. 1987. Active design reviews: Principles and practices.
The Journal of Systems and Software 7, 4 (1987), 259–265. https://doi.org/10.1016/
0164-1212(87)90025-2

[35] Eric S. Raymond. 1999. The cathedral and the bazaar. First Monday 12, 3 (1999),
23–49. https://doi.org/10.5210/fm.v3i2.578

[36] Peter Rigby, Brendan Cleary, Frederic Painchaud, Margaret-Anne Storey, and
Daniel German. 2012. Contemporary Peer Review in Action: Lessons from Open
Source Development. IEEE Software 29, 6 (nov 2012), 56–61. https://doi.org/10.
1109/MS.2012.24

[37] Peter C Rigby. 2011. Understanding Open Source Software Peer Review: Review
Processes, Parameters and Statistical Models, and Underlying Behaviours and
Mechanisms. ProQuest Dissertations and Theses (2011), 194. http://search.proquest.
com.proxy1.ncu.edu/docview/898609390?accountid=28180

[38] Peter C. Rigby, Daniel M. German, and Margaret-Anne Storey. 2008. Open source
software peer review practices. Proceedings of the 13th International Conference
on Software Engineering (2008), 541. https://doi.org/10.1145/1368088.1368162

[39] Johnny Saldaña. 2015. The coding manual for qualitative researchers. Sage.
[40] P M Soni, Varghese Paul, and M Sudheep Elayidom. 2016. Effectiveness of

Classifiers for the Credit Data Set : an Analysis. (2016), 78–83.
[41] Davide Spadini, Maurício Aniche, Magiel Bruntink, and Alberto Bacchelli. 2017.

To Mock or Not To Mock? An Empirical Study on Mocking Practices. Proceedings
of the 14th International Conference on Mining Software Repositories (2017), 11.

[42] Patanamon Thongtanunam, Shane McIntosh, Ahmed E. Hassan, and Hajimu
Iida. 2017. Review participation in modern code review. Empirical Software
Engineering 22, 2 (Apr 2017), 768–817.

[43] Patanamon Thongtanunam, Chakkrit Tantithamthavorn, Raula Gaikovina Kula,
Norihiro Yoshida, Hajimu Iida, and Ken Ichi Matsumoto. 2015. Who should
review my code? A file location-based code-reviewer recommendation approach
for Modern Code Review. 2015 IEEE 22nd International Conference on Software
Analysis, Evolution, and Reengineering, SANER 2015 - Proceedings (2015), 141–150.
https://doi.org/10.1109/SANER.2015.7081824

[44] Mario Triola. 2006. Elementary Statistics (10th ed.). Addison-Wesley.
[45] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Let’s talk about it: evaluat-

ing contributions through discussion in GitHub. Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering (2014),
144–154. https://doi.org/10.1145/2635868.2635882

[46] Arash Vahabzadeh and Ali Mesbah. 2015. An Empirical Study of Bugs in Test
Code. (2015), 101–110.

[47] Eva Van Emden and Leon Moonen. 2002. Java quality assurance by detecting
code smells. Proceedings - Working Conference on Reverse Engineering, WCRE
2002-Janua (2002), 97–106. https://doi.org/10.1109/WCRE.2002.1173068

[48] R.S. Weiss. 1995. Learning from strangers: The art and method of qualitative
interview studies. Simon and Schuster.

[49] a. Zaidman, B. Van Rompaey, S. Demeyer, and a. Van Deursen. 2008. Mining
Software Repositories to Study Co-Evolution of Production & Test Code. 2008 1st
International Conference on Software Testing, Verification, and Validation 3 (2008),
220–229. https://doi.org/10.1109/ICST.2008.47

SERG Davide Spadini et al. – When Testing Meets Code Review: Why and How Developers Review Tests

TUD-SERG-2018-004 11

Davide Spadini et al. – When Testing Meets Code Review: Why and How Developers Review Tests SERG

12 TUD-SERG-2018-004

TUD-SERG-2018-004
ISSN 1872-5392 SERG

