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On some Olasses of Multiple Definite Integrals.
By E. B. Eruort, B.A.

[Read November 9th, 1876.]

1. In what follows, repeated use will be made of the fasts that, a and
&' being any positive constants,

|1t as = ['da [ (aa) da = Log % 19 (=) —4 ()]

if the limits ¢ (00 ) and ¢ (0) are definite, and that

[ @22 ["aa[" ¢ e da=10g-2 19 (O)—p(~)]

............ @)
if the limits ¢ (0) and ¢ (—o0 ) are both definite.

Consider first the double integral r r 9 (a2 +by)— x: (a2 +Vy) dz dy,
oJo

in which a, @', b, b’ are any posmve constants.
By (1), we have

f o@(az+b/) y¢(az+b_/)dxdy—flog.g.w(oo)—.p(az)}i‘x—?

provided that neither ¢ (c0) nor ¢ (az) be infinite, and
rf"(““bj) 2 (248D dady = rhg 2 {9 (0)—p (B0} Y
o Jo 0 y
under a like condltlon Thus, adding,
-r JQ'PL +b_y) xyg(ax+by) dzdy = {log— +log % ¢ (o )‘r dz
—log = v rﬂ—f) dz—log 2 r 2 (%) 4y,

Therefors, in the case when log —, + log7 =0, t.e., when ab = a'},

Jrrp(a:c-l—bJ) ¢(“m+bldxd_y—log jf(nr)—f(b, s
zy

=]og7log7{¢(oo)—¢(0)} ............... (8),

the only restriction as to the nature of the function ¢ being, that it be
not made infinite when its argument is zero or any positive quantity
finite or infinite.
In precisely the same manner, using (2), we find that, if the function
D2
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¢ be such as not to become infinite when its argument is zero or any
negative quantity, then, under the same condition ab = o'%,

J° 9 (oz+8) =9 (We5Y) gogy = log 2 log 519 (0)~4 (—)}

zy
vereerenen(4).
In the results (8) and (4), it is of course to be noticed tha.t a may be
either one of the two constants a and b.

2. Consider now the triple integral

J"’rJ‘ ¢ (az+by+ez)— ¢(aa:+b +cldxdydz
0J0 JO

Yz

the function ¢ being of the same nature as in (8), and the coefficients
a, b, ¢, a, b, ¢ all positive. We have, by three applications of (1),

j" j ¢(az+by+oz)—¢ (s +by+¢5) 3,4, 4,
0JO0 JO

zyz

=log S ¢ (0)—¢ (ax+by)
=g ¢ jo .‘o xy Al

rrr"’(u+by+cz)—¢ (az+¥y+%) g, gy,

Tyz

= log“l‘{‘r,r?(w)_q) (‘w+c'z)dmdz,
¢(ax+b'y+cz) ¢ (dz+¥y+c2) 5.0 1,
zYz 4

= log-:’? r‘r'P (0 )""P (b'y+°'z) dyda.
o Jo yz

If then log 5 + log%+log% =0, is, if abo= abc, we have,

by addition,
¢ (az+by+c2)—¢ (a'z+by+c2) dodyda
0JoJo xYyz

=—log;-,J jﬂﬁg——a—”‘:;b” dzdy+(log—:,-+log—97)rr£——(az+°'z)dadz
0Jo
—log % J'J"L(by'l-cz)d s

= log-% r ﬂw+cu)wy¢(bm+cu)dzd

_log7rr¢(aw+by) l(“'*-c}’)dmdy
Jo ey

- . a a Qg ) — ﬂg"’/?
. log v log — 7 | = dy
_log——logb'r (o)= (““’)dm, by (1);
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and so, provided that log% log% = log -:’— log ',?'"

f—“ﬁ logi,logi.r? g '—?—(—)""" de

= log—log log—— Y CDETT (1)) UPTIIOTRORIRIINR ¢ N
The two conditions in the six constants formed above for the tmuh of
this may be written
be = 2 oo -2 e a 2log L
abe = a’b’¢, log p log X log 5 _Iog v log 7 log L

In precisely the same manner, using (2), we find that, ¢ being of the
same nature as in (4), under the same two conditions in the coefficients,

¢ (az+Dby +cz)— ¢(az+by+‘{z)dmdydz
- - - wyz

=log—‘;’,—log7log y I¢ (0) ~¢(~)}...... (6).
It is to be noticed that, in these conditions and results, & denotes anj
one of the three a, b, ¢, and ¢’ any one of o/, ¥, ¢’

8. Again, the quadruple integral, in which ¢ is of the same nature as
in (8) and (5), and the constants a, b, ¢, d, &, ¥, ¢/, d all positive,

J"’rr ¢ (azx+by +cz+du)— ¢(am+b"/+°z+d'"2dxdydzdu
0JoJoJo !

eyzu

rrrr¢(av+bj+cz+du) ¢ (az+by+cz+d'u) dasdydzdu

zyzu

+J""’ r ¢(am+bu+cz+du)—-9(nm+b1/+cz+clu)dxdydzdu
0Jo Jo JO zyzu

= log— log—-rr¢(°°) ¢(m+by)d.z.dy
0 J9

2= ¢<o=+aru)d, .

+log 2 log g J
by (8), provided that ab=a't’ and cd =cd. If, in addition,
log—si, log —g’,— + log :G,- log %- = 0, this becomes

= log3log 3 r j ¢(a¢+by);;l¢(cz+d'y) dndy
o -

= log;, log 7 log%log-% {¢ (0)—9(0)} (7),

if the additional condition ad = ¢'d’ is satisfied. Thus there are alto-
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gether four conditions
=cd=ab =¢ 2 Yog ¢ Llgl =
ab=cd=db =cd, log ~ log ¥ +log . log 7 0.

In like manner, under the same four conditions, ¢ being now of the
same nature as in (4) and (6),

r j" j" ¢(aa:+by+cz+du) ¢(am+b’u+cz+du)dzdydzdu
-0 - -0 - ”yzu

= log =-log ; log < log 219 (0) =9 (— ) .......(8).

Like methods. may now be employed to calculate the values of the
analogous multiple integrals of higher orders nnder conditions which
are obtained in the course of the work.

4. Again, consider the double integral

J‘j"‘g (az) ¢ (by)—¢ («'z) ﬂb'-'l)dzdy,
0 Jo . Ey

the fanction ¢ being such as in (3), (5), and (7). We have
j"j‘¢ (az) ¢ (by)— ’P (a=) ¢ (b'y) dzdy

_ruﬂzdzru_mdy

=log—5— (¢ (@)—0 (0)} Lﬂ;—ldw.by(l).

and r [ ¢ (az) ¢ (by )a'/y¢ (‘W’L‘P (¥y) dedy

=log% I9 (0)~9 01 [ 21y

in like manner. Thus, adding, under the condition log 7‘:—; +log % =0,

t.6., ab = a’b’, we have that in that case
r ¢_(“_“)_¢_(§y):ﬁa_)'°’ ¢ (by) dady
_—log— {6 (0)— ¢(0)|[ M

_—log—log —{¢(0)—9 (O)}... USRI ) B

In precisely the same way, by (2),
[’ r ¢ (22) ¢ (by)— ¢(a=°)¢(b?/) dady
cod=m Ty

= —log % 1og-:,- {o (0)-¢ (G- D] N s (10),
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under the same condition ab=at/, ¢ in this case being of the same
nature as in (4), (6), and (8).

5. The triple integral
r J»w r ¢ (az) ¢ (by) ¢ (c2) —¢ (a'z) ¢ (b'y) ¢ (c2) dadyds

oYz

0JO

- j‘ f Q(am)q)(bu dedy I ¢(oz!—2§c’z)dz
f’f ffam!o!cz)dwdzf ¢ (by) —1 ¢(b -)d
J':] ﬂ_l?;(ﬂ)dydzrf_@jt:ﬂﬂldx

= {p(»)— ‘P(O)}{los—j rﬁ_m_z)dzdj
+1log 'rr&@m#dﬂ-log rre(byzg(c’z)dydz}'
0 0Jo -

8 °

which, if log -‘—:'7 +log —Z-

= {¢(0)—¢ (0)} {log a J" ¢(a¢)¢(bu) ‘P(“””’("lﬂdxdy

o Jo ’ xy
--log: jo o¢(aﬂ£(41);yﬂb'z)j (oy)d,dy}

= 19(=)—¢ O} {1og-F10g. % [ £Ca
—log —log b,f Mdy}

+log 5 = 0, i, if abo= b, friny bo written

which, if log—f¢7 iog log ° log 4 , may be written
= {0 (=)= O1og S 10g [ L2210 g

_.log log log 7 {¢ (©)—9 (0)}"... veeerenens (110
8o, too, under the same two conditions,
abe = a’t’¢, log = log—F = log b log > 7
which latter may be written more symmetncally

log %log -g,—-log-g = log—:, log-:7 log —:;,
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[ [ testnse-s ()9 ¥9) 8 () g,y

wyz .

=log % log & 51083 19(0)=9 (=)}t (12)
6. The coi'respondlng quadruple mtegral
I‘ j’ I r’ 9 (a2) ¢ (By) ¢ (c2) ¢ (du)—9 () 9 ()9 (£2) ¢ (d'w) dadydedu

TY2U -

0 L]

relm e zzd,dyf fucz) 0 (J)=9 (¢3) ¢ (IW) 4, 4,

Jo JO zy zu

40 90

= - ?i___) ¢ (&) dady . log— log -2 7 {4’ (°°) .4 (0)}'

. .o .o
- M?M dzdu . log ——log Z,— {o (°°) 'P(O)}'
Jo Jo

by (9), prov1ded thnt cd=cd and ab=a¥. If in addition

— —_— _c. _G S—
log — log B +log 7 log 7= 0,
this becomes

= log %log %, {p(o)-9 (O)}’rf ?(""’) ‘PQ!{) :y‘P(!"z) ¢(dy) dody

]

=-—-log—log 2 1og L1og & {qz(oo) DY)} SR (13),

prov1ded that also ab=c'd".
Slmllarly, under the same four conditions ad =cd=a'}'=d'd and

]og log — % +log " log = 0, the value of the quadruple integral

of the like expression, each integration being between lower limit
—coo and upper limit 0, is

-log——log ¥ % log > 7 log 7 {9 (0)=¢ (—o)}........ (14)

Like methods may now be used to evaluate the corresponding maltiple
integrals of bigher orders, under conditions in the constants obtained in
the course of the work.

It is to be noticed that the conditions for the truth of the theorems
(9) to (14) are in each case precisely the same as for that of the cor-
responding ones of the class (3) to (8).
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7. Consider now the quadrupleé integral

[[[[[ [ttt Cbdn—g (o) Cetdsd sgy s

zy2u

Jo Jo Jo

It may be written

o !a.’e+by dzdylw[Q¢Qz+du) ¢(cz+d’u)dzdu

Jo Jo o o
N - .! (cz-i'-d'u) dedu r r¢ (az+by)—o (a'2+by) d.udy
Jodoo U 0oJdo . 7y :
po po : )
= ¢ﬁ?_ﬂ2dzdy . log %logﬁ: {¢ (0)—9 (0)}
J0 JO y ©
#[ [ gy 1og 2 10g & {9 (0)— (O},

J0 J0

by (8), provided that cd=¢'d’ and ab=a'b’. If also

log %log—;,— +log—:7 log% =0,

this becomes

—log % log 2 { ()~ ¢<0>}ﬁ‘”(‘”+”y) (22 80) gy

= —log%, log 3, log % 1og % {$ (©) = ¢ (O} ce.vvnvevnu (19),

provided that also ab =cd.
" In just the same way, under the same four conditions in the con-
stants, viz., .

ab=cd= a'b"= Jd, and log log + ]og log—v_. O

r [o r ¢(‘m’+b’/)¢("z+d’u) ¢(a”+b'y)¢(cz+d'u)d:cdydzdu

2y

_a -

=—log log log log - d,{¢ - ¢ (—)} ... (16).

. Observe that the conditions in the constants for the truth of (15)
and (16) are the same as for that of the allied identities (7) and (8),:
and (13) and (14).

8. To take one more 'enﬁple of the same class: by three applicé.-
tions of (8),
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!’ » f [M +by) ¢ (cz+ du) ¢(ev+fuw)—¢ (2 +by) ¢ (€2 + d'u) ¢ (v +fw)
o Jo 0 a;yzuvw
X dz dy dz du dv dw

= rrrr (az+by) $(cx+du) do dy dz du

edododo TYzu

X ]ogi,log?{tp (0)—9(0)}

+rrrr9 (az+by) ¢ (€v+f'w) dz dy dv dw

oJododo zyvw

x log ';'1°g§' {p(@)—9(0)}

+ r r r r? (¢2+dw) ¢(dv+fw) dzdu dv dw

0Jododo uvw

x log Zlog 2 {# () — ¢ (O},
provided that ef = éf’, ed = ¢, and ab=a’. If then, in addition,
log e log + log—log Fi + log 5 log%: 0,

this becomes, by two more a.pphcatlons of (3),
= loglog = {¢ (*)—¢ (0)} f:!:u%;dz) dz dy
xlog 4 log % {p (=) =9 (O}
~log 2, log % {p (@) —p O} [ [+ g0 o
x log % log 2 {# (=) = $ O},
provided that also ¢d = ¢€f" and ab=cd,

= log2log 2 log Llog Z{p(@)— 9 OF
x rf ¢ (az+by) —o (€z+fY) ds dy,
oJo - ey
if the additional condition

log .s., 1‘;8 %’ log % log _s., = log% log .—‘;—‘, log —:, log j% holds,

= log—log log log % 7 log — logf, {p (0)—¢(0)}"...(17),
if also ab = €f".
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In the same way the value of the like integral, with —e and O for
the limits of each integration, is the same multiple of {¢ (0)—¢ (—x)}*
under the same conditions, which may be written as seven, thus

ab = cd = of = '’ = 'd'= 6f,

log— log +log—— log d,+log-—log7 =0,

log -;,— log —I;,- log c—,log -‘?-log 7 log = 7
b o d e ra
+1o 2 1og 210 — log— log — 1o =
S7 TR BT 8T R
9. Take, lastly, the simplest example of another class,

H $(an+ by + ca)p(du+ ev+fw) = ¢(a's + ¥y + ¢5)¢(du+ 60 +f1)

° ° TYzuvw

0

, X dz dy dz du dv dw.
By two applications of (5), this may be written

= [[[[} st aodyar. tog F1og S1og £ 1921 -2 )
rrrmte_”wdudvdw log = log 7 log = (#(=)=4 )},

0vo

subject to the four conditions

= abe 2 oz Llog Llog &
abe = a’b’¢, def = de’f', log log b log 7 = log 7 log 7 log 7
2 10g % 1og & =1og L 1og-2 log L :
log 7 log 7 log F log 7 log 7 % log 7
a a a
=—log — log 7; log = {¢(@)—¢(0)}

xrrr¢(aas+by+w)—¢(d'“+°'y+f")dwdy da,
0J40J0

zyz

if in addition
log% log - ¥ 2 log 2 +log g log d log 7 =0;
=—log%log%log%1037log%log? {8 ()=¢ (O} ... 18),
if the twé other conditions

abe = d'ef, log—=- 7 log—-— log > F= log > 7 ~log 2 log-< 7 hold.
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Similarly, under the same seven conditions, the like integral, with all
the lower limits —c0 and all the upper ones 0, is the same multiple of

{¢ (0)—¢ (=)}

* 10. The above theorems may be multiplied by easy transformations.
Thus, in (8), the sabstitation of log #, log y for #, y respectively nges
that, if ab = a¥',

*[* ¢ [log (2y*)]1—¢ [log (&*%*)] ;. =1 il a -O-
[ [ theaEr g Lol dady = tog 2 log 3 (9(=)~9(O),
which may be written
() —d @Y%) = L2 qor- & -1l
[]f ﬂ’y logwlogy dZd'y —'log ' vOg bl {‘P(w) 4‘( )})
the function Y being such as not to become mﬁmte for any valae of its -
argument equal to or greater than unity. ‘
So (4) gives that, under the same conditions ab = &'t if Y be 8

function not made infinito by any value of its argament between 0
and 1 inclusively,

" @)=Y (=" . a, a _
[ L oy loga log y da dy = log 78 I v @) ‘“0)}'
The éa.me substitntioﬁs applied to (9) and (10) give

EL\H 2\igs’lbzgw¢lggyu.l_)d'udj——log logb,{\P(w) ‘;’(1)}’

and

@) W) @) UG g 8 @y g oy
[oL zy log 2 logy dady = logm,log v {‘P(l) v L

under the same condition ab = a'b".

And s0 like transformations may be applied to all the other above
results (5) to (8) and (11) to (18), giving a new series:of theorems
true under the same counditions as before.

All these results may however be proved mdependently, using instead
of (1) and (2) the equivalent formule

r\#(w‘) ‘I‘("’a)d.v—-log {¥(@)-¢y M}

@ log

zlogx

J'\P(“’“) \P(”)dq, log—g;—{\b(l)—\b(o)}’

which may be seen at once just as (1) and (2) were.

11. Again, transform (9) by substituting e*, ¢ for o, y respectively ;
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and for convenience write also a for loga, § for logd, &. Then it
becomes that, if a+8 = o'+,

[[ e oentama
=) (=) ¢ @) =9 OO,

which may be written

f f * (Plot+a) Py+B)—F (o+a) F(y+5)} do dy
i =—(a—d)(@a—F){F(0)—F(~w)},
F being a function which no value of its argument makes infinite.
A like transformation applied to (11) gives that, under the conditions
at+f+y=a'+L+7,
(a—d) (a=F) (a—7) = (a—¥) (B—7) (v—7),

r r [ {Fle+)Fy+B) Flz+7) |
-o') o —F(2+a) F(y+8) F(z+v)}dwdydz

= (a=a)(B=B)(r—7) {F(w0)—F (=)}

In like mavner, from (13), if a+f=y+&=a'+f= '+, and
(a—a) («a—B)+(v—7) (v—&) =0, '

I [ f I {F(o+a) F(y+B) Fla+7) Fu+9) |
sedmedmed=e _F(2+d)F@y+B)F (247 F(u+d)}dedydzdu

=—(a—a) (a—B) (a—7) (a—¥) {F(@ )= F(—o0 )}

Other thongh less simply expressed theorems are obtained by similar
transformations from (8), (8), (7), (15), (17), (18) above. '

All these, bowever, may be proved easily without transformation. -
For they can be deduced, in the same way as their corresponding
theorems have been from (1), by means of :

I_ {F(m+n)=—F(z+ﬁ)} dz = (a—~p) {F( )—F(—:oo )}
a8 trdnsforma.ﬁi’dn of (1) proved readily in the same way. '

12. If it be allowable to substitute 2™, y", 2*, &c., for 2, y, ¢, &e., in
results (3) to (18), much more general resu]ts are obta.med under the,
same conditions as before. I have not, however, been able to prove
directly any of these theorems except in the special case when
m = n = p = &c., and have consideranble doubt as to the lawfulness in-
general of the tramsformation. The class, however, for which
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m = n = &o., m being any positive quantity, of which the first, the
tranformation of (3), is

f » r ¢ (a2" +by") —¢ (@8" + V") 4, gy
0 Jo Yy

= ~logLlog 5 {9 (2 )—4 (O},

under the condition ab = a'¥, are readily proved, using instead of (1)

“ ¢ (az™)—¢ (ba™ =1 _ a
[ pemt 0 g = Ty ()9 @) g 5,
and the corresponding formuls instead of (2).

Nore.*—In formula (8),ab=at/, and factor in the resultis logii, log ;—f.

Write log a, log b, log &, logb’=a, 8, a’, §'; then a+B=1a'+ @,
and log & log % = (a—a)(a—F)=a'—a(a'+B) +aB,=e'~a(a-+)
+a'ff, = o'’ —ap, viz., the factor is = —{log a log b—log a’ log b’}.

So, in formula (5), '

abe = a’l’¢’ and log-g-, log% log%- = log —:-,— log %,- log -z—, .

a
g

Write log a, &c. = a, f, v, o', 8, v'; then a+f+y=a'+F+7;
and it is clear & priori, that the factor should be expressible in any
one of the six forms

Factor in result is log % log log-:—, .

factor =a—d’.a—F.a—y = a—d’.f—a’.y—a
= f—d.B—B.B—y = a—f.B—P.y—F
=y—d. y—F.y—y = a—y.B—Y.v—7. .
It at once appears that, besides a+pB+y = o'+ '+, we must have

By+va+afi =By +ya +d'8; viz., these two relations existing, each
form of the factor reduces itself to aBy—a’8’y’, thus

a—ad.a—f. a—y=a'—a'. (a+B+7v)+a(By+vataf)—a’fy
= afy—dBY.
Thus relations between the constants are

abe=a't'¢, ie., loga+logd+loge=1loga +logb +log ¢,

¢ For this note I have to thank Professor Cayley.
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and log b log 6 +log ¢ loga+log a logd

= log ¥ log ¢’ +log ¢’log a’+log a’ log ¥,
and factor = log a log b log c—loga’ log b’ log ¢'.
It is présumed that, in the other cases considered, the forms of the

factors might be modified in like manner, but this has not been
examined. ’ :

On cortain Identical Differential Relations.
By J. W. L. Guaiseee, M.A,, F.R.S.
[Read November 9th, 1876.]

1. In the “Nouvelle Correspondance Mathématique,” Tom. ii.,

pp. 240—243 (August, 1876), I have shown that the function ev=
possesses the curious property that its (n+1)™ differential coefficient
is equal to its n*® integral, to & power of 43 prés; that is to say, that

(o= o ()
or, otherwise, that

2in+1 (%)'w“" ((%)Mle‘/‘ = 6Y% i Q).

This result is there obtained in the way in which I was led to it, viz.,
by meaus of the integral

P T e~? +(ab)
’ = V4 .
0 ¢ do = 2 /a. !

but it can be proved more easily by expanding 6Y* in ascending

powers of 4/, that is, by replacing ¢¥* by 1+ai+ i% + ]%3+&c.,

when it is readily seen that this series reproduces itself. It is rather
interesting to note how this reproduction is brought about by the
differentiations.

2. Ifin (1) we write a /2 for /w, we have

(B (@) = e




