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The Transformation of Linear Puartial Differential Operators by
Fatended Linear Continuous Groups. By E. B. EiuioTr.
Received and read March 10, 1898,

1. On a number of previous occasions, and more particularly in a
paper *On the Interchange of the Variables in certain Linear
Differential Operators ” [Phil. Trans.,, Vol. cuxxxr (1890), A,
pp- 19-51], I have applied a simple but artificial method to the
transformation of linear differential operators from forms in which
their arguments are the successive derivatives of a dependent with
regard to one or more independent variables to the forms which they
assume when dependent and independent variables are transposed.
Again, in a paper “On the Reversion of Partial Differential
Lixpressions with Two Independent and Two Dependent Variables”
(Proc. Lond. Math. Soc., Vol. xxir., pp. 79-104), I have somewhat
extended the method, by application to & case in which theve are
more independent variables than one. Up to the present time I have
not, nor, so far as I know, has any oue else, applied the method to
the transformation of operators consequent on continuous transform-
ations of, or substitutions for, dependent and independent variables
in terms of new dependent and independent variables; but it is one
which admits of wide applications in this direction. The following
paper deals with a class of such applications.

I

2. There is no new difficulty of principle when the formule of
transformation are linear, and the original variables are supposed
connected by one relation only, so that a single one of them is
dependent and the rest independent. Let us first consider the case
of two variables =, y, supposed counected by one relation of quite
arbitrary form and not necessarily known, and consider them, and
the successive derivatives of the latter with regard to the former, to
be expressed in terms of a’, 3, and the successive derivatives of y
with regard to 2" by the trunsformations of the general linear group

x = a,a;'-l—bly'—f-c,}

1
Y =a @ +by +o, M

and its extensions.
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Let y, and y, denote respectively %E% and :l d%:% for all
positive integral values of ». Corresponding finite increments &, 5 of
@ and y are connected by the relation

n= y:€+yg$2+y3£’+..., (2)
and corresponding increments ¢, n” of 2’ and ' by the relation
n = %E +y,5”+y LN 3)

Moreover, if the increments &, n" ave those of a:’, 4’ necessitated by
the increments ¢, 5, of z, ¥,

E=at+bn
“ r+ lr’:}’ (4A)
n= aqz +bg7)
which we may also write
(a,b—ayb,) E: = b¢{—~b, 'l}' (413)
(abg—ab)) 7' = an—ayé

‘We do not need for present purposes the expressions for either of the
863 Yy, Ui Ysr - B8UQ YL, Y Yy ... 10 terms of the other, but it is
important to notice that the expressions in question do not involve
_explicitly «, ¥ or z, y, but that

a;+ ba "
a;+ byt
— (aby—a3by) H;
hn= (e, +b30)° '
and generally that we pass from y, to y,,, by a total differentiation
with regard to &/, .e., by operation with

d 0 0
a +3yaa ,+4 ‘aja

and division by (r+1) times a,+b,3’. Herein lies the special virtue of
un extended (erweiterte) linear group that its extensions nlone,
apart from the original linear equations, form a group~ in the present
case & group of the fourth order or four-parameter group, the pava-
meters being a,, b, a,, by, while the complete extended group is of the
sixth order, having the six parameters a,, b, ¢, a;, b, ¢,

The problem before us is the following. If

F@y vy ye ) =T Yyl oy )
is any equivalence which holds, whatever be the relation counccting

h=

2y —
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z,y, in virtue of the transformation (1) and its extensions, it is
required to express _3 f Q[ _@f; Q _3 3
Or Oy Oy, Oy, Oyy
as linear functions, with constant or variable coeflicients, of
OF OF OF OF OF
The coefficients will, of course, be independent of the forms of f and I".

We have seen that «, y* only enter explicitly in F, if at all, in
virtue of the explicit occurrence of #, y in f, and conversely. In fact,

@ =a g +a g
o Oa 2ay (5)
, A
oy’ 'Oz 2ay
or, otherwise written,
: 0
(a,b,—ayb,) 2 =b, i, il T
% ar V3
) (58)
(a;0,—ayby) a“ =q ﬁ —b g
Oy oy’ oz
where, for shortness, f is omitted as the subject on which 3 é-a— act,
e Oy

and the equivalent F' as that on which 58—" g}—l act.

t” Oy
0 9 0 .
=—s 5—» = -+, let us regard the relations
ay, a?/n a'.l/s

(2), (3), (4), which connect finite increments of =z, y, «’, ¥'. Elimi-
nating 7 and »', we have

In order to transform

E=a '+ (y{$'+y-§€"+y§£"+..‘)} (6)
NE+RE+YE+ . = g +b, ¢+t + )

which do not involve =, %, 2, y' explicitly. These two equalities
cannot be independent, but are identical in meaning. For substi-
tution from (4s) for &, »' in (3) gives a relation in &, n, and ¥1, 42, ¥3, -,
which, when these last are replaced by their expressions in terms of
Y1 Y1 Yss ..., must be identical with (2), as otherwise corresponding
increments &, 5 of two variables connected by a single relation would
be connected by two relations, as is not the case. Let us consider the



442 Prof. F.. B. Elliott on the Transformation of [March 10,

equivalent relations (64) in the slightly more convenient forms

§= %£+b(¢“+y%“+y§”+u0}

bhé=b (hE+1E+3E+ ) = (wb—ab)¢)
Here, since y is a perfectly arbitrary function of », and ¢ is also
perfectly arbitrary, we may, for a given ®, regard ¥,, ¥, %y, ... and ¢
as quite independent variables. We must then consider yi, v, ¥, ...
and ¢ as dependent variables, all but the last of them as dependent
on ¥y, Yy Ys, ... in virtue of the extensions of (1), and &' as dependent
on these and also on £ in virtue of either of the equivalent relations
(68) at present before us. Now, of the independent variables
Wiy Yor Ys --+» & leb 4, alone receive an infinitesimal increment dy,, and
let 0¢' be the consequent increment of ¢. The equalities (68) yield
us the two equivalent results

0= {o,+b(yi+20ié +3yign+.0 )¢ +b, {2 a”'+£‘a-’/*+s“g;* Jew

(61)

—bnf"t‘yr = (a,b, - a3b,)) ¢¢.
Accordingly,

,av/. ,zay, a_,g
'583, + ¢ o, + ¢ ay,

=(aq a"“’abl)-lgr{al +b (g1 + 2?/£f’+3.’/:;§'2+ )} - ("
In this, on the right, substitute for ¢ its equivalent
E=0+b (i€ +né " +y.6°+...) (®)
from (4A). We then have on the right a rational integral expression
in &', which we can expand and arrange by powers of {. We are
thus given in (7) the identical equality of two expansions in powers
of ¢, the coefficients on the two sides being all in no way dependent
on ¢. Corresponding coefficients on left and right must then be
equal. In other words, the coeflicients of successive powers of ¢ on
the right are, in snccession, the expressions for

dy, Oy, Oy,

in terms of yi, 45, Y5, .... It appears at once that the lowest power

,

of ¢ which occurs on the right is £7, so that Qf& is the first of these
Y-

derivatives which does uot vanish. In other words, as is otherwise

ohvious, ¥, is the lowest of the derivatives of % with regmrd to z

whose expression in terms of vy, ¥y, U5, ... involves v,.
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3. But in the identity (7), when the right-hand member is, as
above described, expressed in terms of & and expanded, we may put
for £° on the two sides any quantity or operator we please, and so
for every other power of &. Let us then put the corresponding

é@— for each " (s =1, 2, 3, ..., @), the subject of operation being
Ys

any function F (&, ¢, i, 5 ¥s ...). We thus get on the left
Oyi 0 , Oy 0 Oy 0

Jy. 9y Oy, Oy Oy, O
9
F

the subject of operation being the function f (z, y, ¥), ¥s ¥s .-.) of
unaccented letters which is equivalent to F. Consequently, to obtain

..,

the equivalent of —a— in the form

Y,
49 0 L40 49 o
ayl a?/z a?/n
which is its proper one when the subject of operation is expressed in
terms of &, v, y!, y1, s, ... instead of in terms of =, y, y;, ¥s Vs ..., WO

have the following rule :—Expand
(mby—a,b,)  {aF +b, (Yi& +yi&* +yst®+..) )"
X {a,+b, (yi+2y:¢ +3y;€7+...) }
in ascending powers of £, writing the power of &' last in each term, and
then put in the expanded result, for every power ¢° which occuis, the
’ éorresponding -
0y

Referring to (6a), this product to be expanded is seen to be
briefly expressible as

. Of 8§ on
(ayby—ayb,) "' € < (af' aé}

or, more shortly still, as

(a,b;—ayb)) ¢! :Zl—f"

where £ is supposed to be expressed, as if an actual finite increment



444  Prof. E, B. Elliott on the Transformation of [March 10,

of z, in terms of £ and the derivatives y,, which latter are not fun c-
tions of &
Now, just as we have found it convenient to take £ as a symbolic

representative of ~— for every positive integral s, so it occurs to

Oy,

take £ as a symbolic representative of

stated as follows :—If

Our result may then be

ayr .

F@ Y Y0 Yo Yy ) = F (&, 9yl v yar o)

be any identity consequent on the general linear transformation (1)
and its extensions, then

0 ..,
a_y'f(mv Yo Yoo Y Ynr o) (v =1, 2,3,..,),

whose symbolical form is &,

has for its equivalent

(a,by—ayby)” f deF(a’ v, Jn o Y o)

where & +b (yi€ +y: 67+ €°+..)

has to be substituted for £ as it would have were §, & corresponding
increments of z, #’ instead of mere symbols, after which the result
obtained has to be expanded in powers of £, and then in the ex-
pansion every power £* to be replaced by the corresponding

differential operator
oy,

The rule for transforming any linear operntor

a+Qa+A,a ,a+A-a—+

B 3 o T

is immediately deduced. As to the first two terms they become at
once )

P +4
A Kl
(a,by—ayb,) {(Pb, Qb) " +(Qu="Pa) ay,},

by (58). As to the rest of the operator, write it symbolically
Al£+A2£* + 4,8+

multiply it by (a by—ab) ' =%,
¢



1898.] Linear Partial Differential Operators. 445

then substitute for £ its expansion in terms of § as above, expand the
result and arrange it as a series in powers of ¢, writing each such
power of § as the last factor in its term, and, finally, for every power

¢” in the expansion, write the corresponding 5
K/ s

If P,Q, 4, 4,, 4, ... are constants, the transformation is thus
completed. If they are functions of =, v, %, v, ¥s, ..., they need for
useful purposes to be expressed in terms of ', ¥, yi, 42 ¥z ... by
means of (1) and its extensions. But, as we shall see, this expression
is automatically effected in a wide and important class of cases,

dt dt'_

Since iE =
and since the determinant of the coefficients of £ 5 in the expressions
for §, " is the reciprocal of the determinant of the coefficients of
&, " in the expressions for §, n, we at once see that, as should be the
case, the rule obtained for the expression of an unaccented operator
as an accented one affords the exactly corresponding rule for the
expression of an accented operator as unaccented.

4. Let us apply these conclusions to the transformation of what
I have called in the Phil. Trans. (loc. cit. in §1) MacMahon
operators. Such operators (of four elements) are those included
in the definition

{pm, v myn},= —?}b b { (p+vs) Yf""a—:—i”} .
the summation being with regard to s, which assumes in turn all
positive integral values not less than the greater of m and —n+1,
m and = being integral or zero, and Y denoting the coefficient of
& in the expansion of
(é+y €ty +..)"

This operator is the result of replacing in the (u, »; m, n) of Major
MacMahon’s remarkable first paper on multilinear operators*

a, bs ¢ d’ by O: Y Yoo Yso - os

¢ «The Theory of a Multilinear Partial Differential Operator, with Applications
to the Theories of Invariants and Reciprocants’ (Lrec. Lond. Math. Soc., Vol.
xvir., pp. 61-88). j



446 Prof. E. B. Elliott on the Transformation of [March 10,
or, again, that of replacing in (u+wvm, v; 1, n+m—1),

a,becd, ... by uy, Yo Yo Yoo oo -

We shall confine attention to cases in which m is not negative, and
m+n not less than unity. The summation for s in { Hy Vi m, n}, is

X J

then 3, i.e., no coefficient Y™ which actually occurs in the expan-

som

sion of the multinomial is absent from the summation. The elabora-
tion of results for the excepted cases of m+n < 1 could be added,
much as in my paper to which reference has been made, but would
unduly lengthen the present communication. The case m =0 has
some speciality, and will be only partially included.

5. Symbolically expressed, as in § 3, it is clear that

dn

— I‘ N, U] W)~
fu,v; ’m;n}v—gfﬂ +ré"y ldé’

where 7 stands for y,£+y,8+y,£+ ... ; and that in particular

l 11
{105 m,n}, = — &,
d
and {0, 1; m, n}y,, = 6"*‘1;"‘"(1—2.

We can at once then apply the rule arrived at in §3; and obtain
that the results of transforming these two last operators by the
extended linear scheme (1) are respectively in symbolic form

1 “1gnm @
;(w;ba—aeb.) YEn i1

d¢’

i.6., ‘%; (a'lbl_aSbl)-l (a, &' +b,1)" (as€ + byy)™ (a1+b dy )’

‘ag
- n 0} - d d
and (a,by—ayb) ' &4y ‘—d—? Ef,,
. -1 ’ \n+l sym-1 dy’
ien  (mb—ab) ™ (@E b)Y (€ +byn)" (@ +h TE).
Each of these expressions expanded is a sum of multiples of terms of
dy’

the two types §Pyp™*n-, £Py™*o-r i.e.,, a sum of multiples of

¢’

MacMahon y-operators with m'+4+n" =m+n. In fact, if, as usnal,

(?) denote the number of combinations of n things » together, the
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results of the transformation are, when n as well as m is not negative,
m (a,by—a;b,) {1, 0; m, n}v

VRn=r s)m-8d&/res ‘min-r-s
) atthrar b gy
1 1 22

m rhU=r+l e pm—g Eres Im n-r—:d.’ll

) (T) al*' by rayly st (m+ n—r—s)
X {l, 0; m+n—7'—s,r+s}V
) (V)

+“o’"0 ;l ": arbr " lagbyt {0, 1; m+u—r—s+1, 7'+s—l},, )
and (ayb;—agd,) {0, 1; m, 2},
— r-"+1',-"‘-] n+1 "71'—1 rjnel-r s+ Males
= "0‘2‘_0 ( , ) ( s ) albPtt Tl b (m - n—r —5)

x {1, 0; m4n—r—~s, r+s},
+r-uol,é~m-l (n+ 1) (m—-l) a,l.b,;,l-'u;b;,,_,

r=0,2a0 r s
X {0, 1; m+an—r—s+1,r+s—1},.
The transformation of {u,v; m,u}, is immediately deduced by

‘adding 7’;— times the former of these results to » times the latter.

6. Such formule have necessarily some cumbrousness of ex-
pression; and clearness of realization is, I am sure, gained by think-
ing of them as before us in their symbolical forms, namely,

Euﬂm = (al b,-—a, bl)—l éu, "m d_é

! dg
) 4 \n 4 2\ mn l ’
= (ab—a,0)" (@ +57)" (@t +bm)" (@ +B5E)
and
e - d f— - " m- l
&' l(—l—g = (a,b,—a5b)) Lgnriy ‘:‘l;l'
= (@by=ab) " @+ 00" (o +)™ (w+BE),

where before interpretation expansion on the left has to be in powers
of ¢, and on the right in powers of ¢’

The interpretuation prescnts no ditficulty when m as well as m+n
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isa positive integer. Moreover, the value m = 0 has no speciality as
far as the transformation of £4™ is concerned; but this value has in

dn

connexion with the transformation of £*+'y»-? 3 As it is not pro-

posed to deal with this, the second of the two above transformations
is better written

n_m d”__ lén m (l})‘
£ le:. (a,b;—ayb,) €™y E,

= @h=0b)” @E+h ) (@€ +0n)" (a4 5, 3E),

in which, as in the first, » is a positive integer or zero, and m+n a
positive integer. We will, in fact, only attend to cases in which
neither m nor = is negative in the last article, the cases to which the
forms of egualities written at the end of that article apply.

7. Let us speak of an operator which is a linear function with

constant coefficients of operators of the two types £'9”, & ”’gg with

the same value of m +u as being of the (m+2)% ovder. The results
before us involve the fact that it transforms into another operator of
the same order m+mn.

Some facts with regard to the linearly independent operators

1
Ea nyf 171(_,’ 20)3‘ (’1)

g’ " dg’ ®ag
of the first order will now be adduced. Written at length they are
respectively
d
=5

0 G 0
=Y +tYy—Fyp—+
= 3y1 Y ay, Ys ay3

dn 0 0 ]
= +2, L +3y, 2+
fdf yl aJl Z’/s ay, Ys dJa
& . 0
df' Hy,a +uy1yaa +4 (g9t an)a +5(yxy.+yzya)a~““

d
+6 (yyet 1.0t 3;) 5t
Ys

= —yié+y ("+$df)
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where V is Sylvester’s operator
1,8 a 0 2 d \ 0
4.3 n +5%sn— +6 (Yt iy) — +7 (Yt 1sy) -~ +
Oy ay‘ 0Ys Oy,

They are recognized as being the known operators which determine
the four independent infinitesimal transformations of the group
which consists of the extensions of the general linear group (1).
(A more general fact including this will be proved in § 16 below.)
The general infinitesimal transformation of this group of extensions

is determined b
i rmined by )\£+pn+1'$%+w dn

.d_g .
i.e., by the general operator of the first order. The functions of the
derivatives 4, ¥, ¥y ... which are absolute differential invariants of

the group of extensions are exactly those functious which have the
four operators for annihilators. They are also the absolute differ-
ential invariants of the extended linear group (1) itself, as the two
annihilators of such invariants given by infinitesimal variation of ¢,

and ¢, in the first place are 5 and 3 which show tbat there is no
¥
differential invariant of the group which involves  or Y.

Now, a function f (¥, ys, ¥s, ...) annihilated by £ or éa— is free from
N

1,3 one annihilated by » is homogeneous of degree zero; one

annihilated by f%g is isobaric of weight zero, weight being measured

-

by sum of suffixes; and one annihilated by 1)%;—: in addition to the

above, or, less exactingly, in addition to £ and y +f I is annibilated
by V.

Consider now the transformations of these operators of the first
order, as given by § 6. They are

£= (mb—ad) { it +ab (v +¢ "”)+b” A,

g
= ~dy .tln]
0= (a;by—agb) ' a,a8 +a, by +a,b,¢ +b by’ = a
dr — iy .d
ié (a,b,—ayd,)! { ayayé +agbiy +a, by tlé: +0.bu 12’}
d ) ) ’
ni'j (a,by—a,b,) {a S ta, +éd") b ‘—1:{;}.
lh,

VUL, XXIX.— NO. GO, 24
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We notice here a difference of character between the middle pair
g—}, n (-Z—ZL are linearly
independent in_the one pair of cases and not so in the other pair.
Look, as we of course may do, upon the equivalences as results of
applying a general linear transformation to the accented variables
instead of to the unaccented, ¢.e., look upon f(y, ¥, 9y ...) as
having been found as the equivalent of a function F (3, yi, ¥, ...)
and not vice versa. We see that for » to annihilate f, whatever the

and the extreme pair—the coefficients of &, %', &

linear transformation may have been, or for E T 9 to annihilate it in
s
like case, it is necessary for all four of &, v, & ‘l'j,, n :Z' to annihilate

F. On the other hand, for £ or for ,,f% to annihilate f, whatever the
linear transformation may have been, it is only necessary for &,

dn' . dn
I+£ TR n = & to annihilate I

We may therefore state as follows. In order that a function of the
derivatives may become a homogeneous function of degree zero of the
new derivatives after every linear transformation of the variables, or
in order that it may become an isobaric function of weight zero, it is
necessary that it have the four properties of being free from the first
derivative y,, homogeneous of degree zero, isobaric of weight zero,

and annihilated by 1)%2 or ¥V; in other words, it must be an absolute

differential invariant of the general linear group. But, in order that
it may become, after every linear transformation of the variables, a
function free from the first derivative, or a function annihilated by
V, it is only necessary for it to have the threc properties of being free
from y,, being of zero sum of degree and weight throughout, and
being annihilated by V' in other words, it nced be only an absolute
pure reciprocant (or lincar function of such), z.e., an absolute differ-
ential invariant (or lincar function of such) of a linear group whose
gencrality is limited by the one relation a,b;—a;b, among the
cocfficients—a sub-group of the gencral linear group.*

¢ By ¢ abnolute diffcrential invariant” of a continuous group, I, in this paper,
mean, with Lie, a function of derivatives, and it might be also of the varinbles—
though these last do mot occur in the cascs of gronps here considercd—which is
abrolutcly unulicred in form by the substitutions of the group and its ¢xtensionus.
A function which persists in formn but for a factor is called a ¢ relative or non-
ubsolute differentisl invariant.” By ¢ ubsolute pure reciprocunt,” I meau, with
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8. It is an interesting subject of investigation whether there are
MacMahon operators which transform, by the general linear scheme,
into themselves, as there are for mere interchange of the variables
and some other very special schemes. Were therc such, and were
the coefficients in them free from the constants in the scheme, then
any such operator would generate absolute differential invariants
from absolute differential invariants. But the answer appears, for

Sylvester, a function of second and higher derivatives which persists in form but
for the assumption of a factor which is & power of —1 when dependent aud inde-
pendent variables are interchanged. A non-absolute pure reciprocant persists in
form after such interchange except for a factor which is not a mere power of —1.

It is a prevalent, but mistaken, impression that absolute pure reciprocunts are
identical with absolute differential invariants of the general linear group. What
Sylvester proved (Amer. Jour., Vol. vii1., pp. 248, &c.) with regard to the differ-
ential invariancy of a pure reciprocant R for the general linear substitution is that,
if homogeneous (of degree 1), and consequently isobaric (of weight t), it becomes
(@189—ay0))’ (@ + b,,) " “ ' R, with my notation as above: his w is different. If it
be an absolute reciprocant, what he has proved at an earlier stage is that w+i = 0,
but not that ¢ = 0, w = 0 separately. There is absolute invariancy for the substi-
tution only if ¢ =0 as well as w+4=0. There are, however, absolute pure
reciprocants of all degrees i, and even non-homogeneous ones. Sylvester calls those
of degree zero plenarily absolute to indicate that they are absolutely invariant for any
linear group. Absolute pure reciprocants which are not of degree zero are, if
homogeneous, differential invariants of any linear group, but are absolute differen-
tial invariants only for linear groups in which generality of constants is limited by
the one relation a,bg—agb) = 1.

Again, what 1 myself proved (Proe. Lond. Math. Soc., Vol. xix., p. 388) with
regard to the differential invariancy 6f pure cyclicants or ternary reciprocants for
the general linear substitution of /¢4 my +nz+p, &n., for x, &e., is that there is
persistence in the case of a homogeneous one but for a factor of the form

3 P T R L
L m, n i {lm’—l'm— (mn’ —=n'n) g- — (nf' ="l g—} .
£ Y
vy 'y o 4
AR A T
The second index here vanishes when the pure eyclicant is absolute; but the first i,
as o rule, does not. Thus absolute pure cyclicants include, but are not only co-
extensive with, all absolute differential invariants of the general linear group in
threo vaviables. Linear functions of them are identical wit absolute ditferential
invariants of a sub-group of the general linear group, namely, of the special sub-
group in which the generulity of coeficients is linited by the oue relation
Iy, m, n |=1
vy, o
[ARE TR T
Those who, like myself, in 1886 and following years, followed Sylvester in
rescarches on veciprocants and allied classes of ditferential invaviants, and showed, it
must be confessed, imperfect acquaintance with Sophus Lie's grand work on
Continnons Groups and Differentinl Invaviants in general, have reason to be
grateful to Herr O. A. Stockert for a rceent mewoir, Ucher die Bezichungen
dey Reciprokantenthenrie zue allyemeinen Theovie der Difleventiolinearianten (Chemuitz,
1895), in which he elucidates very instructively Lie's theory in its bearing
on Sylvester's aud our own. Tu that memoir the error ocrurs (pp. 30, 32)
of attributing to Sylvester the opinion that an absolute pure reciprocant is neces-
sarily of zero degree and weight.  The proof given fuils ou p. 32 at line 11,
9 g 9
a =

-
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practical purposes, negative. It is true that inspection of the
symbolic equivalences of the last article gives us one such persistent
operator of the first order

d _
éc'ig—”—-édé ﬂv
. 8 0 8 0 0 8
€y 23 Y = Y2 23 3‘
T yays+3y e ya * yaya+ o

50 that the persistence (19) of my memoir in the Phil. Trans. (loc. cit.
p- 25) is one which holds in general; but this has merely the effect
of multiplying a homogeneous isobaric function by the excess of its
weight over its degree. It expresses the persistence in value of the
characteristic w—7, but gives, in cases of interest, nothing new by its
operation (& conclusion drawn by means of it which, though of
interest, is not new, is the case for ¢ = 2 of one in § 17 below). The
more general operator ¢m-1ym-! {fa—g - 'l} [loc. cit., (17)], which is
persistent in the special theory, is not so in the present general one
except for m=n=1.

Nor do the operators é +7, &-tygm-l { d”-{-rl}, which are

d¢ @€

negatively persistent in the special theory [loc. cit., (20), (18)], yield
directly anything of much interest.in general. If we take the
general operator of the first order,

A£+#n+véd$ +wvd£

and try to find all values of A, p, », w for which the form persists
but for a factor, upon substitution from the last article, we obtain,

besides the persistent ng —7 as above, only the equivalences
dn
20+ (a=by) (1+¢57) +2bn §
- _ _ . erdy o dy
= ~20,6+(a,—b) (v +§FL) +2br L
and (a,—by) (a,£ b,r;dg)+2a,b1 ('q+fd£)
ES s/(al—b,)’-}-‘lugb (a,f-{- by
{u,+by v/ (a,—b,)" + 4a,b, }*

4 (ayby—agby) {(“‘_b’) (“"y by df‘)

200, (4 00) & V=B H IS, (a6 +ha @) ]

)

d¢
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which, involving as they do a,, b, a,, b, as coefficients, give us no
information as to persistence for all linear transformations, so that
they are only matters of curiosity in general. It is the latter,
however, which, for the case of a, =b,=0, @, =b, =1, 7e., for
the case of mere intercha,nge of variables =, y, gives the negative

persistence of q+£ @ i.e.,

2y aa +3y, aa +4y, a?/

[loc. ¢it., (20)]. It also gives for that case the negative persistence
d ,

f =1, ie.,of

of {49 g v o

—y,) +y1(2y.£ +3y,aa +4y,a .>+V,

and the former gives the positive persistence of ¢ ] 1 —¢ ie.,of

d¢

-1+ aa +y (21/18a +3ysa?/ +4y§,aa +...)+V,

two facts not expressly introduced in the memoir to which reference
is made.

9. The digression muy be pardonable if I consider for a moment
some properties of operators of the types &"y", &"™ SE without refer-

ence to transformations. To find their alternants will really be to do
otherwise what MacMahon has already done (Proc. Lond. Math. Soc.,
Vol. xviir, pp. 66-69), but the use of the present compact symbolic
forms so simplifies the process, and exhibits the results in such
suggestive shape, that I believe there to be justification.

Let us denote by (4é+ B&+...)(A’E+ B'E+...) the operator which
results from the performance of the operation represented by the first
written factor on the back of that represented by the second. The
part - of the resultant operator which does not involve symbols of
second partial differentiation will be obtained in symbolic form by
making the left-hand operator act only on A', I, ..., dealing with
the ¢ in the right-hand operator as if it were a constant. Thus, in
particular,

(Aé4+BEHCE+ .. )= (AL+DBELCE+ )+, E 4y 8+ L)
= I+ DBEFCE+ L+,
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an
a."/’ ’ ayx a.’la ’

(AE+BE+08+...) " = mfy" ' (A€+BE+CE+ .. )+ 15

where I involves — So

and (Af+BE+08+...) & "_ mgm 9 (4¢+ g+ 0+ ..)
O L (A6 DE+OP4 )+ T

Now, 8, ¢ being any two linear operators, we call as usual 3¢ —¢$
the alternant of $ and ¢, and write it (3.¢). The terms IR in 3¢ and
o3 are the same. Hence we at once deduce

(Ereg) = & =g
— meu"m-lfvnu_"eunp - Ifunm
= (m_P) eufvnmn‘-l’

(&0 2) = maranr P4 e & @)= 52
- Zz Fyfreetgmen,
(er2enm ) = me Per e 2 (e &)
—ptr P S e £ (607 )

dn
d¢’

Thus the alternant of two MacMahon operators of given orders
(m+n, p+v) is a MacMahon operator whose order (m+n+u+v—1)

is one less than the sum of the orders of the two.
Moreover, the alternant of two operators of the same type

—_ (V—n) Eu#v-l,fnﬂn

(5":)"‘ or f"r;”“%') is an operator of the same type. The alternant of

two of different types (f"r)" and £y g—z) is.as a rule the sum of two

operators, one of each type.

It is easy to see, by consideration of the indices and coefficients in
the three types of alternant equalities that 5 is the only operator of
positive integral order of the type £'yp™ which cannot be expressed as
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an alternant of operators of the same type, and that f 2 is the only
one of the type &'n™ ; which cannot be expressed as an alternant
of operators of its type. It is also easy to see that the alternant
(f .9 f) i8 the only one of the type (f“q“.f"q"‘d—;') which cannot be

linearly expressed in terms of alternants of the two types (&u*.£"n™),
Cr ) d” " __m dq)
(e 50 F
The alternants of operators of the first order are themselves of the
first order, t.e., are linear functions of themselves, a fact which
expresses that, as mentioned earlier, they possess the group property.

They are =t
(e657) =+
(e-n) =n+eg,
(et =0
(o) =22
() -

It 18, moreover, evident hence that, as also stated earlier, ¢, n+£ 7

1; 7 f form a sub-group, as their alternants in pairs are linear in
themselves.

What the group and sub-group are has been already indicated
§7.

10. To return to transformations by the extended linear scheme (1).
The transformation of MacMahon operators of positive integral order
is what we have so far considered in application of the method of
§3. But the method is one which, as we saw, applies to all linear
operators whatever. One simple MacMahon operator of zero order
may be mentioned in passing, namely,

é‘!]-—-y = 2y i-{—:'h 0 +4y a
7 P ) ‘ay,

h
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whose effect is that of d— the symbol of total differentiation with

regard to = in so far as v, ¥ ¥y, ... arve functions of z in virtue of
the relation connecting z and y. After substitution for y, in terms
of g1, by § 1, its transformation becomes by the general rule

1 {dv) —y }
a,+b,y (d¢ 'y

which accords with the facts of total differentiation.

We may transform linear operators whose symbolical expressions

3
involve iéz , dga, ..., in 8o far as we know the expressions for those
derivatives in terms of doy ; i , &y ..., when §, 1, 5',‘ 7' are actual
dg’ dgv’ dgs’

increments of , y, 2/, 4. The expressions in question are of the same
g 7 8 7
form as those (§ 2) for dy dy . in terms of ‘il &y 5"—1

da*' dab dr’’ da?’ da®’
Thus, for instance, since
d'y -8 g\
d$2 (a'lbl azb)dfq ("l+b dfl) = (al a’b)dfi (dé»l) ’
we have, by § 3, that the transformed equivalent of
d 0 0
%1 1,009 193y, -9 +3. ... (0>0)
df‘ Y S ay Ys ay,”x 4y‘ aytn2
is, symbolica,lly, the expansion in powers of ¢ of
W& (dENTT , ’ g "
e (%) = (me+bGie+uie+.))

x {1.2y;+2.3ys€ +3. 49+ ...} {a,+ b (y1+ 2016 + 3y €7+ ...) } %,

and, actually, the result of replacing, in the expansion,
£* by i, (r=123, .., o);
Oy,
and more generally that the transformed equivdlent of
. d_.,7 I ‘&l q
& (dg) (dg’)
is, symbolically,
(@13 —asb1)"" (0, +b,7)" (@€’ + byn)"

("’“” 5) (" +b'd$) o (%)q
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An interesting class of examples of such transformations is afforded

by our knowledge of pure reciprocants. If R (Z g, Z;‘,, ZZI, )

be & pure reciprocant in £, 7 of degree ¢ and weight (sum of indices
of differentiation in each term) w, we know (§7, footnote) that its
expression in terms of £, n” (regarded as actual and not symbolic) is

& By By
ds/j’ dés, d$41 ."')'

Hence the transformed equivalent of the operator whose symbolic
expression is the expansion of

er(G B B ) >0,

where 7 denotes y,&+1,£*+4,£+..., is, symbolically, the expansion of

dy/\'=wtp (i dy iy
‘d§’) R(dé"’ ags’ dgy’ )

where 7’ denotes y[¢'+yi¢" +y:£°+

(a,b3—asby) (“ +b 55 at ) e Y (

(a1by—asb)' ! (0, & +by )" (“1"‘ b

1L

11. We now proceed to the more general analogous theory when
there are ¢ variables supposed connected by one relation. Let ¢—1
of them, chosen as the independent variables, be called z,, @, ..., 2.,
and the single dependent one y. After the preceding exposition of
the first case of ¢ =2, a much slighter general presentation will
suffice than would have been necessary had a different order been
chosen, and the inevitable imperfections of a notation for partial
differential coefficients, and the necessury ‘Svoidance of extensively
writing out explicit forms of operators dealt with, will, it is hoped,
cause but little obscurity.

The notation y,,.. will be used as denoting

1 8r+s+t+...+rq_l
rlelt! .7, Oz 0x’Oz 1 ¥
a-1! Ox0x0x; ... 0277

There are supposed to be always g—1 suffizes, each of which may be
zero or any positive integer, while their sum is 1 at least.

Let &, &, &, ..., &, be independent simultaneous finite increments
of the ¢—1 independent variables, and # the corresponding increment
of y. It is supposed that Taylor’s theorem applies to y as a function
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of @, ,, ..., z,_, for values considered, so that

TE®E=w E=0,..,7_)=® st ,
7= b Yoo, E182y 0 €27
T4ttt =1

As well as using §, &, ...,&_, 7 in an actual sense, we shall also
use them purely as symbols with a meaning now to be explained.
The symbol » will always mean the above expansion in terms of the
symbols £, These latter symbols will have no individual meaning
except when standing alone in the first power in an ultimate ex-
pansion. A power or product of symhols £ in an ultimate expansion
will have a meaning as a whole, namely,
Ee f: f:‘{'ll will mean

’

ayral...rq_,

a symbol of partial differentiation, the supposition being that it is
acting on a function of the various partial derivatives of y, and, it
may be, of the variables y, 2, @,, ..., @,.; in addition. Thus, for"

instance, .
El! é!a fv E:a ﬁf,, e
will mean respectively

0 0 0 0 d
ayloo...’ aymo‘..’ ayool..., aymo..,’ ayuux...,

By an operator such as n
fﬁlf;"‘) . s"q-l mﬂl
0¢,
for instance, we shall mean the operator obtained by substituting in
the product for % its expansion in terms of the £s as above, per-
forming the partial differentiation with regard to ¢, expanding the
resulting product in powers and products of powers of £, &, ..., &1,
writing every such power or product of powers after its multiplier in

3

the expansion, and finally substituting for each. product 5:6;6;... as
it occurs ultimately the corresponding symbol of partial differentia-
tion as above.

12. ‘We shall have to consider largely operators of the ¢ types

gty g1 an i gty qlmar) 7y oNg qlm 817
g g, g, RN AT it

where n,, n,, ..., n,_;, m are positive, integral, or zero, and Zn+m ¢ 1.
Such operators are for the case g = 2 the MacMahon operators of
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the preceding section, and, for the next case ¢ =3 the analogous
ternary operators which I have used on a previous occasion (Phsl.
Trans., loc. cit., pp. 36, &c.). We speak of an operator which is a
linear function with constant coefficients of operators of these types
for which 37 +m is constant as being of order Zn+m.

The alternants of pairs of operators of these types are with ease
written down as in §9. There are three classes of fundamental
alternant equalities: viz.,

(£V| él’g . Eyq -1 "l“ fnlfng ' f:ff”')m)

= (m—p) 6”1+V|£na+vam e:lfl_|+v.,-lnm+p,—l,

(Grge.. e g, e Sn)

o0&/
=m€:’1“"l§;’2*“2 . f;,q1|+yq lnnwy—lgg

h l+v—-l ” v, " +
+yf’| l.“f’,a s qu“'ql 3

(AR R AT e gy)

R s S AR

+f"'$”’ . ”q Iy n a (E"‘f"’ g"cl l‘.aﬂ)

o¢,
—rENT L ”""vf‘“ a,, LEAT A SZ
e gl - 2)
=v.g;'n”x...ej'-m—l._.fnq-m,,_lnmugag
—n g gl ffffl”q'l”m”g‘;:

of which the la,st includes in particular (r = s)

v q-1 ! "q ! ’”a_
(é:"é, é” n" é”f"’-- 7 ag)

- (" —n,) E:'H-vl f:tri_-v,.—l B gn,,_l-o-vq-lnm+p.§71

Ah TR
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On inspection of these identities we at once see that the alternant

of two operators of given orders Sv+pu, Sn+m is an operator of the

same kind whose order 3v+3n+ p+m—1 is one less than the sum
of those given orders.

In particular, the alternant of two operators of the first order is
itself an operator of the first order. The linearly independent
operators of the first order are ¢* in number : viz., g—1 operators £,
(r=1,2,..,9g—1), one operator 3, g—1 operators of the type

&4 é—;] y» (g—1)(g—2) operators of the type & Oy , and ¢—1 operators
1

0t

g;’ (r=1,2, .., ¢g—1). The alternant identities for them in pairs
are of the following types, the number of each type being written
after every one, an alternant (3.¢) not being reckoned as distinct
from its negative (¢.9) ;

(6-6) =0, (= 1)(g-2); €)= b 014
(6-65F) =8 -1 (6-650) =0.-De-2);
(6680 =6 @-D@-25  (8652) =0 G-DGa-2);
(el.e,gé)zo (@=-1)(g—2)(g—-3); (fl.naa-z)—é.gflﬂ,q ~1;
(60 22) =62l @ D@D;  (r6g) =0 ¢ L
(r627) =0, e-De-2; (r-052) =122, o-1;

(62650) =-620 G-Da-);

(6765) = 622 @-Da-2);

(622.622) =0 4 @-Dia-2);

(aa& a&)—0 (@-D@-D-3);
(6292) =220 =15 (652021) =0, @-Do-2);
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) SRR J O Y

Oov
Fle &

0, (9—1)(g—2);

(o5 af, “ae) = a0

(&2 5 ae) }@-D@-2)(q-3);
(s as) gg (@-D@=D(@=3);
(sg—g.a%) 0, } (a~Da~Da-3);
(652-622) =0. 1 @=Da-2- )
(E On ngg) = gg-. (¢—1)(g-2);

(65

(¢

)
é—.na&)=o (a-1)(g-2)(g—3);

(152.95) =0 Ha=Da=2)

The whole number of these equalities is $¢* (¢’—1).

As the alternants in pairs of the ¢* linearly independent operators
of the first order are linear with constant coefficients in the
operators themselves, except such of them as vanish, they are the
operators appertaining to the infinitesimal transformations of a
continuous substitution group of ¢* parameters.” It will be seen
later (§ 16) that the group in question is that which consists of the
extensions of the general linear group of substitutions for the
q variables @, @, ..., .\, ¥.

Moreover, we notlce that the ¢—1 opela,tors ¢ the (y—1)(¢-2)

g—z‘ (r#s), and the ¢—1 operators n-g-;l

alternants of operators; but thatthe operator n'a,nd the g—1 operators

operators ¢, all occur as

Faa only occur in alternants in the connexions 7 +§, 21 and

o¢, ¢,
f,g—;—e.gg (+egz) (n+eg")
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The ¢*—1 operators

Oy Oy O
f’ efaél (T¢s)! ”ae af
are then seen to be a set whose alternants are linear with constant
coefficients in themselves. These are consequently the operators
appertaining to the infinitesimal transformations of a sub-group of
the general group of extensions. What we see in § 16 will also show
us that this sub-group is the group of extensions of the group of
linear substitutions in which the generality of the coefficients of
Ry, Tgy ...y T,.1, Y 18 limited by the one relation that the value of their
determinant is unity. It will also be proved that this system of
¢*—1 operators is the system of annihilators of absolute pure g-ary
reciprocants, 7.e., that, as in the cases of ¢ =2, ¢ =3, such recipro-
cants are, with a reservation which will appear, identical with
absolute differential invariants of the linear group in which generality
of coefficients is limited by the one relation just stated.

’ 77+£ (1‘=1, '2, 3, ciey q—l)

13. We proceed to consider the transformation of operators linear
in symbols of partial differentiation with regard to the partial deriva-
tives #,.. of y with regard to 2, 2., ..., 2,.,," consequent upon the
q general linear equations of transformation of the ¢ variables

&z, = a’"lx:'*'al'ﬁa’;'*' “ee +‘1.'.q-13’;-1+aeqy‘+05 (1: = 11 21 (X33 q—l),
Y =aq2i+ani+ ... +ag. 12 F oy o
Let &, &, ..., é-1 be actual finite increments of z;, 2y, ..., #,.), and 7
the actual consequent increment of y, given as an expansion in terms
of the & by Taylor’s theorem, as in § 11. Let &, &, ..., &1, v be
the corresponding increments of the new variables. Then
éi = aila+a526;+ aes +ai.q-l£;—l+a‘q7" (7: = 11 21 seey q—l)a
n= aqlfl'*'aqs&'{" ee +aq.q—1$q;-l+aqq7),;
which, if A denote the determinant of ¢* constituents | ay |, and if
A, be its first minor corresponding to a,..,, may also be written
Aff = A)ifl'i'-“‘!if)'*‘ oo +A-q-l.|‘éq-l+ Aqin (7: = 15 2, vy q— 1),
Aﬂ’ = Am El +A2qfﬁ + s +Aq- 1.9 Et[-l +‘}l‘mn'
Woe have also 7 =Sy ErEE L E

a summation exactly corresponding to the already written

1 =32y 66 - £
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The formule of linear transformation of the variables lead to
formulee for the expression of all derivatives .. in terms of deriva-
tives y...., and conversely. These formule express what are .called
the extensions of the linear transformation. It is unnecessary to
wait to prove here the well-known fact that, because the scheme of
transformation of the variables is linear, its extensions do not involve
the variables explicitly, but only the derivatives. Thus in the

accented equivalent of in terms of symbols of partial differ-
yruf...

entiation with regard to accented letters there will be no occurrence

of any’ i, or of i

2 ay’
If, then, we are transforming an operator

0 0
s (P,a%) +Q 5 +3 (A‘ay_,)

supposed to act on a function f of @, @y, ..., ®,_1, ¥, and the deriva-
tives ¥.., into its equivalent in form suitable for action on the

equivalent function F of the accented variables and derivatives, we
may substitute for the first part

0 0
S(P,—]+Q=
(P-3:)+e5,
from the formule
0 0 0 0 0
A—=4 —+[l,'.7'~+... AI'. -~ A; ~
O, “ o' 'au; + ! ‘a.r;-l +a ay’
=12 .., q-1),
0 0 ) 0 0
A=A, ~+dp o+ A g gy
y a o + Age Ot 9.9-1 8.«:;_. 2 ay

and transform the remaining part exactly as if it acted on a function
of the derivatives only.

14. Now, in the q equations of transformation of the last article
for &, &, ..., &,-1,  in terms of &, &, ..., & .y, %, suppose n replaced
by its expansion in terms of the s with coeflicients like y,.., and %’
replaced by its similar expansion in terms of the £'s.  We have then
q cquations connecting the g—1 quantities §, the ¢—1 quantities &,
the devivatives y,,., and the devivatives y.,.. As the one relation

supposed to oxist among y and &, ¥, ..., 2,1 is of perfectly arbitvavy
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form, and may be varied as we please, we may consider the deriva-
tives ¥,... as an infinite number of quite independent variables. Also
&, &, . &1 are quite independent of these derivatives and of one
another. The other quantities involved in the equations we are
considering are dependent variables ; viz., &, &, ..., &_, are functions
of &, &, -.., &1 and », which is a function of the others and the
derivatives given by its expansion, and the accented derivatives y/,..
are functions of the unaccented derivatives determined by the
extensions of the linear transformation. The equations which we
are regarding, with  and 7 replaced in them by their expansions,
are in appearance ¢ equations for the determination of &, &, ..., &,
in terms of ¢, &, ..., -1 and the derivatives. But g—1 equations
suffice for the purpose. Hence any one of the ¢ must be a con-
sequence of the rest, and the expressions for accented derivatives in
terms of unaccented.

Let y,,. alone among the quantities now regarded as inde-
pendent variables receive an infinitesimal increment &y, and let
&, 88, ..., €&, be the consequent increments of £, &, ..., & ..

It is most convenient to regard the g linear equations connecting
the ¢s and % with the £s and %" as before us in their second forms—
those which express accented letters in terms of unaccented. ’l‘hese
give us at once

A.cf = Aq,é;f;f; ey, (0=1,2,..,9-1)

and
an O o Yo o 2
i+ SLat 4 i 3 [y,
{a$1 l ael : aéq 1 ! ProyTyee ayra!... lf‘ ? Yot ‘5
= A‘Qqé:&;s; e aym!...’
where the summation with regard to p, o, 7, ... covers all zero and

positive integral values, such that p+o+r+... 4 1. 'l‘he fact that
the first g—1 of these equations must lead to the last gives us at
once the identity

3 ewas]

o . o o
nog Aegg T T g

Here A is the determinant | @; | of the ¢ cocflicients in tho lincar

= {4,-4 Jeae...
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expressions for ¢, &, ..., -1, 7 and each 4, is a first minor

oA

—— of that determinant.
. al"

Had we in finding this identity proceeded by consideration of the
linear expressions for unaccented in terms of accented letters instead
of wice versa, the right-hand side would in the first place have
presented itself in the form

A-l(l(fn E;n ceey q-l)g"fv‘f‘
d (f;: '.:; vy u;-l 1Rate ’
where, in the Jacobian functional determinant,

dé. Of, | O Onf
3t means oe + P a&v

Oy

o¢,

This latter form, whose identity with the former is easily veritied, is
occasionally the most convenient for the expression of results.

Now suppose the right-hand member of the identity arrived at to
be expanded in terms of &, &, ..., §,.; by means of the linear ex-
pressions for §, &, ..., §;-1 aud the expansion for ». The various
coefficients in the development obtained must be severally equal to
the corresponding coefficients in the left-hand expansion.

We thus have expressions in terms of accented devivatives of ¥’

2.8., Gt Ay

for all partial devivatives -a—l/-l—, and these must be those which
Yost...

would be obtained from the extensious of the formule of linear

transformation, were they actually exhibited.

But let us use otherwise the fact of the absolnte identity of the
two expansions before us. We may substitute for every product
&rérdy ... any quantity or symbol we please in both of them, and
the identity will still remain oue. Let us then substitute for them
according to the symbolism explained in §11; Je, for &4 ... on

both jsides the corresponding :——, the supposition being that it is

actinglon a function of the devivatives i, or some of them, and it
may be) also Jof ai, @i, ..., ap., ¥ The left-hand expansion then

becomes .
{ Oyl O )

- - )
o LDy Oy,
. a
t.e., simply PYE
Yo,
VOL. XX1X.—No0. U1, 21
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regarded as operating on the equivalent function of derivatives .,
and it may be also of &, 2y, ..., @, .y, ¥.
Accordingly, the transformation of operators of partial differentia-

tion < is before us, and is expressed by the rule : Replace such an
C.‘/'-u..‘
operator symbolically by the corresponding product ¢é&¢& ...;
maultiply it by
Oy _ 4 On oy
e T b
SN TR "o

express the result in terms of &, &, ..., &1 by the linear formule
and the expansion for #'; expand in powels and products of powers
o ¢/

of &, &, ..., &.1; and, finally, for cach power or product &°& &y ...
which occurs in the expansion, write the corresponding operator of

partial differentiation

0y,

pat..

Moreover, the tra.nsfmmatlon of any linear partial differential
operator (see §13),
s (A —a—)

rat
a?/m...

is at once effected in like manner. Write it symbolically

S (e £188 )5
multiply it throughout hy the factor just written; and complete the
process of expansion and interpretation of symbolic products as
before.

15. We will now consider in particular the transformation of the
opcrators of § 12, We may deal with such operators together by
considering the operator

f:”f.:u ff,‘i’ 1 {)‘ A, a;; A 2;) Fo A a?'l }
2 gq-~1
where A, Ay, ..., ALy, A, are ¢ arbitrary constants.  The symbolism is
that explained in § 11.

By immediate application of the rule just arrived at, the trans-

formation of this upcrutm‘ 18 symbolically

A s ~
- (oL 0 (9]
A '{_4,,,,—/1,,,;”;—/1,,_ T Ay ’77_}
oé o g,

A, /\| ()_r, /\ aq a "y ghig Ty -1, M
{ .+ 5$.+ (§‘+ + ”'agq_,}g g 8y

but this may be written in better form,
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Identification of the Pfaffian equutions

n— 21 g _ o1 91, 0,
0% . ae, By 0¢,, b =
=T gt g 00 g o,

T ok o4, T

where the {s and » are actual quantities linearly expressed in terms
of the ¢'s and %, gives

o Oy 0

—mag, 2L
R as, 3%, .
o a,,gg 2;’ aa_
= ! _ﬂ@_ﬂ' ¢=12..q=1)
o¢!
_A %”
= = 5= : 57 ((=1,2,..,9-1)
A,',-l—-An Aa‘z'_n' - —Al' q _1’-
o6 "o ' 0g,.
A
_ 0 on 0
=4 - /A - .
“ A”‘as; A ae ot
Thus
o, o 0y’ ) On
.A —Alr-' A ——‘—‘...‘Aqq 1~
{ B Y sq.}af
— o' _ 4 O _ O
— i Ail .A" .o -'—A. e-11%7
{Alq aé‘l o0& aéq 1}

Applying this fact for each value of Z, we see that the transformed
operator above may be written

£:1, ggﬂ, 5"3 1 m A )\, a"l Az 817 . an
-1 1 { .+ a$|+ a&-l- AL a'_ql}
where

AN=AiM+ At H A0 A+ 4 (8) (=1,2,..,0-1),

A(=N) = AN+ Ay Nt 4 Ay Ayt Ay (—A,),
2H2
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or, more simply,
N = a Ntaph+...+ai g Aata, (—A) (1=1,2,..,9-1),
B VN VAR G 1)

so that Ay, Ay, ..., Ayoy, —A, express in terms of Aj, Ay, ..., Aj_y, A, &8
do quantities cogredient with &, &, ..., -1 7. We shall exemplify
the use of this fact later.

Fou the present our object is to draw a conclusion from the form
of the transformed operator without paying special attention to this
connexion between the As and A's. 'We have, in particular, that the
transformations of

£O8 ™ and g,’"g.;'f...e:?;'n'"ﬁg
C

»

are of the above form, 7.e., since we can express &, &, ..., & 1"
linearly in terms of &, &, ..., & _,, %', ave linear functions of operators
of the same two forms as themselves with different values of
Ny, Mgy oy Beo1y M, and 7. The sum Zn+m is, however, the same for
each part of the transformed operators as in the operators subjected
to transformation, in virtue of the linearity of the expressions for
&, &y ooy €,y Consequently, an operator of any ovder Sn+m
transforms into a lineavr function with constant coetlicients of opera-
tors of the same order Sn+mn.

In particular, the complete system of operators of the first order
(§ 12) transforms into the complete system of operators of the first
order, a fact in accord with the next article.

16. T will now utilize the miethod of transformation before us to
prove that, as stated eavlier, the ¢* independent operators of the first
order arve the operators appertaining to the ¢* independent infinitesi-
mal substitutions of the group with ¢° parameters, which is consti-
tuted by the extensions of the geneval linear group with q(q+1)
parameters; so that the writing down of explicit forms of these
operators of infinitesimal substitution to any extent is reduced to
mere multiplication of multivomials, and, indeed, to the mere
squaring of one multinomial ».

Consider, fivst, a sabstitution which leaves wy, wy, ..., 2, nnaltered,
but veplaces y by

artagry+ a1 4a) y+y,

where «y, a,, ..., a,, y are infinitesimal constants. Here y does not
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affect the derivatives 4,,. The increment which it gives to a

0

function f of variables and derivatives is only y = f.
Jy
Again, ay, ay, ..., a,, affect each only one, a first, derivative.
Thus, for instance, a, alters only y., changing it into .. +a,
Thus the «, a,, ..., a,_; increments off are respectively

0 0 0 0
l< aJ a./xoo)f’ aﬂ(May a./ono )f’ ﬂs( é—_?; ayom...)' o

7.e., a,(mla%+$|) f az(:v,%-!-_fg)f, vy Qg 1(% 2 0 +'fq l)f

Once more, the existence of a, 'changes Yrae.. into (1 +a,,) Yyst. LES
citect is then to give f the increment

0 0
‘fq.(?/ é;_-*- 3 Yot 8_1/7: ) f,

z.e., aq(yéa;—/'+1;) I

Again, consider a substitution which leaves y and a,, a3, ..., ¥,
unaltered, but replaces z, by

a +/31) & +ﬁ1“’z+ﬁs’"’s+ +ﬂq-lmq-l+ﬁq?/+7’,

where the 8s and 7" are infinitesimal constants. The consequent
increment of f is in just the same way what, in a notation which
regards ¥, @,, 75, ..., @, as independent variables and =, as dependent,
would be written

g g +8) +0 (g +) 4

0 0
--+Bq-l(“’ +‘q l) +Bq(?/a +"7) +ﬁl(lla_+£l) }f:
bat we have here to express the symbolic operators by their equi-
valents when, as in fact, y is dependeunt and 2y, @y, ..., 2., independent.
In other words, we have to transform the operator as in the last two
articles, taking
Ty =y, X=X, ... Tg1 = “’;-ly y= ?/': & = ay,

where, on the left, », is dependent, and, on the right, ¥; and then
remove aceents.
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Now, here, A =|1, 0, 0, ..., 0, 0| =—1,

0,00, .., 0, 1
0, 0,0, ..., 1, 0

and the other factor which has to be introduced as well as A-! may,
as we saw in § 14, be calculated as the Jacobian of the old independ-
ent Greek letters (in this case &, &, ..., &1, 1) with regard to the new
independent ones (in this case &, &, ..., & .1, &). It is then

—On

T og

0 o0 O .. 1, 0
a'7 817 81, ) 81;' O'r,
ot og ot U ok, &

Thus we have to substitute for &, &, ..., &1, 9, £, their equivalents with y
, , , '

Ql,y —fsal,, ey — q-l'a:’i' a—"— —flf—jp—', where

a£] asl aél agl agl

& &y ooy &o1y 1, & are the same as &, &, ..., &5y, ’l’ &, Doing so, and

removing the accents which have been used only for temporary con-

venience, the aggregate of the second set of infinitesimal increments

of f becomes

0
{ axl+ﬁs(azaz, g§.)+ﬂa(msaix fs—g‘g;)—*-

AP =60 22) 48y =1 ) +i(m 62 s

In these two partial aggregates of infinitesimal substitutions,

dependent —¢

) . o . On
.symbolic operators of all types &, 9, & af , & af, (r+s), 7 aE, have

been introduced, every one which has occurred, occurring once only ;
and no operators, having reference to derivatives y,,., of any other
kind are present. It is clear that we complete the entire aggregate
of infinitesimal substitutions by giving next =z, its most general
infinitesimal increment, keeping a), @, ..., ©,.;, ¥ unaltered; then
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in like manner, and 80 on. No new type of operator is thus intro-
duced ; but every one of each type, as above, is just once presented.
The proof for the case of a, which has been given, applies to all the
others with alterations of suffixes.

We thus have it clearly before us that the ¢ (¢+1) operators
appertaining to the independent infinitesimal substitutions of the
general linear group and its extensions are

(i.) one of the type g,
dy

(ii.) g—1 of the type =~ 9
oz,

(iii.) g—1 of the type =, = +§,

9
e

(iv.) one of the type yé?— +7,
Yy

0 On
(v.) g—1 of the type =z, a.b, —¢, a-'
(vi o L .
vi.) (g—1)(g—2) of the type a:,a -t - . (r+#3s),
(vii.) ¢—1 of the type ya% —qgg;.

The q* operators appertaining to the group which consists of the

extensions only are given by (iii.) to (vii.) inclusive with the

)

3y 30, o,
As to the sub-group of the general linear group in which the

generality of the constants is limited by the one condition

parts omitted.

A= l uv;j l = l,
the fact of its having one infinitesimal substitution fewer is expressed
by the vanishing of the sum of the infinitesimal multipliers of the

g operators (iv.) and (v.). The conclusions which follow have been
stated in the latter part of § 12.

17. Let us now think of differential invariants, with a view to
arriving at a proof that the absolute differential invariants of this
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last-mentioned sub-group—an invariant sub-group (Lie) or self-
conjugate snb-group (Burnside) of the general linear group—are
identical with absolute pure g-ary reciprocants; or, more precisely,
that absolute pure g-ary reciprocants are coextensive with these abso-
lute differential invariants of the sub-group, which are homogeneous
or entirely of odd or entirely of even degree.

Notice that it is not a necessity, but a convention, to regard the
differential invariants of the sub-group, or the pure reciprocants, as
homogeneous,* just as it is not a necessity, but a convention, to
regard ordinary invariants,t except those of a single quantic, as
homogeneous. The convention 1is reasonable; for the separate
homogeneous parts of a non-homogeneous differential invariant or
pure reciprocant are themselves differential invariants or pure
reciprocants, just as in the case of ordinary invariants. It will
illustrate the usefulness of our present method to prove this for
absolute differential invariants of the self-conjugate sub-group.

The following is an equivalence of symbolic operators for the
general linear scheme :—

On
&

aa —_N= flgn,

o

an
+§z + +§q lafq l at/ B

+¢ L O T

3] %,

To prove it we apply §15. The operator which transforms into

* In the recond of my papers on ternary reciprocants the unjustifiable remark
was made (Lroe. Lond. Math. Soc., Vol. xvir., p.157) that a ternary reciprocant is
necessarily homogeneous, and was based on the unjustifiable statement that this is
so for ordinary invariants of a system of binary quantics.

t An ordinary ¢-ary invariant or covariant (non-absolute) is an absolute invariant
of o group holohedrically isomorphous with a linear homogeneous group of ¢ vari-
ables in which the generality of cocffivients is limited by the one relation A =1,
the special sub-group of the general linear homogeneons group. For instance,
when the vaviables in (. @y, ..., @,) (¥, y)? are substituted for, according to this
rpecial group, the group of substitutious for the coefficients involves the same
independent pavamoters, and the infinitesimal transformations, namely, in the one

case y 0 > -’1 y_D_ - D., and, in the other,
o’ 1)/ oy o

) P bl L] L) Pl
Qy-— + 20, — + ... ety -+ (p—=1)ay-"- +... T~ +{(p=—2)a + ...
"hrl, '13)'12 y P 1()‘1U (2 ) 2’)('1 y P oh (# la”l

have the same comnposition. An absolute, invariant or covariant is an absolutc
invariant of a group holohedrically isomorphiows with the gencral linear homogencous

group.
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& gz} 18, by immediate application of that article,

L( On,  Om e
t" { al' agl +02‘ afl + +aq b agq 1 aw.}

(r=12, ..q-1),

and that which transforms into —7’is

8

. 0
{awaq +am, i i +(Zq I.qég’q_ ‘-aﬂf)} ;
q-1

addition of which gives, by means of the linear expressions for
&n &y ooy 6oy min terms of £, &, ..., &1, v, the identity which has
been written.

From this eqnivalence, a persistence in form of an operator, it

follows that 3 3 o
R T ¥ FRPLA
af a afq—l
is an operator which, acting on an absolute differential invariant of
u linear group, produces another absolute differential invariant. It
annihilates one of the general linear group, but not, as a rule, one of

the sub-group.

Now absolute differential invariants of the sub-group we are con-

sidering have 5+ ¢, _3{’., q+g,.a_’7, ... for annihilators (§12). Hence
a§1 aés '
the effect on any such of f,.g—;’ (for any r) is the same as that of —».

It follows that —g%, and consequently 7, is an operator which
generates absolute differential invariants of the sub-group from
others. Now the effect of 5 is to multiply any homogeneous function
by its degree. 1f, then,

Ho+ Hy+ I+ ...

is an absolute differential invariant with parts of degrees 7,7, k, ...,
it follows in succession that
H+ g+ Ll + ...,
PH AP+ R H A+ .
&, &e.,
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are also absolute differential invariants; and, consequently, that
H, H,, H,, ... separately are. We lose, then, no generality, as to
complete systems, if we confine attention to differential invariants
which are homogeneous.

Let us now consider what a homogeneous absolute differential
invariant of our sub-group becomes when a linear substitution is
applied for which A = — 1 instead of +1. Such a substitution may
be effected by two stages: (1) a change of sign in y, and (2) a sub-
stitution of determinant +1. The first stage does not alter the
differential invariant if its degree be even, but changes its sign if its
degree be odd. The second stage makes no alteration in it, being
merely the performance of a substitution for which it is invariant.
Thus a function of derivatives which does not contain parts of both
odd and even degrees, and which is an absolute differential in-
variant for a linear group for which A = +1, is, at most, changed in
sign by a substitution for which A = — 1.

18. In my paper “On Ternary and n-ary Reciprocants” (Proc.
Lond. Math. Soc., Vol. xvi1., p. 191), the only one in which cases of »
(¢.e., ¢) >3 have been introduced, I gave only a provisional definition
of a g-ary reciprocant, expressing no confidence that the best form of
presentation was given. It now seems better to adopt the following
definition for the class of g-ary reciprocants which is of importance
in the present connexion. A function of the derivatives of y with
regard to @, @, ..., Ty ..., Z,.1 18 called an abrolute g-ary reciprocant
when it is equal, but for a constant factor, to the same function of
the derivatives of =, with regard to =, ,, ..., ¥, ..., #,.), for each of
the g—1 values of . Here y occupies the old position of z, in the
series of independent variables. The reciprocant is called pure when
tirst derivatives do not occur in it. All this is in strict accord with
Sylvester’s definition of ordinary reciprocants. The constant factor
is either 1, as the conclusions which follow will establish.

‘We notice, first, that any absolute differential invariant, which does
not contain parts of both odd and even degrees, of the linear group
with generality of coeflicients limited by the one relation A =1, is
an absolute g-ary reciprocant. For the substitution which effects a
change of independent variable as above is (as in § 16) one for which
A =—1, and the effect of this on the differential invariant is, at
most, to change its sign, by the preceding article. One which con-
tains parts both of odd and of even degrees is not a g-ary reciprocant,
but the sum of two such of opposite characters.
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We have, further, to prove conversely that any absolute pure
g-ary reciprocant is an absolute differential invariant for the special
linear group. We shall see this by showing that it has the full
system of annihilators of absolute differential invariants of the group.

The property of absolute pure g-ary reciprocants which suffices to
give the entire conclusion is that any one, and all its equivalents
arising from interchanges of the dependent with one of the inde-
pendent variables, are free from first derivatives.

That the reciprocant R, itself (y dependent) is free from first
derivatives is expressed by saying that it has the ¢—1 annihilators

fla fﬂv fm 0y fq—l-

That its equivalent with z, dependent and y occupying the place of
, is free from first devivatives is, in like manner, expressed by saying
that it has g—1 annihilators which, were 2, dependent variable,

1d be
wou 7 fﬂ) fx” weey fq-l-

Now, as in § 16, these annihilators, expressed in the notation which
has meaning when y is dependent, are, respectively,

) Oy On 0
/e _E'—a —f— L) —g- '_17'-
T e e "3,
In like manner, expressing that the equivalents of R, with
Fgy Xgy ..., Ty in BuUccession as the one dependent variable are free

from first derivatives, we get ¢—2 other sets of ¢—1 annihilators of
R,, but no new types are introduced. So far, then, the information
is that E, has

(i.) g—1 annihilators §, &, ..., &1,

(ii.) ¢—1 annihilators ng—g (r=12..q-1),

(iii.) (g—1) (g—2) annihilators f,éa?n (r#s;r,8=1,2,...,9—-1),
i.e., together ¢*—g¢ annihilators.

Bat each of the facts (ii.) really gives two facts of annihilation
independent of one another and of (i.) and (iii.), in consequence of R,
being free from first derivatives. Consider, for instance, the

annihilation by qgn. The torms in the expansion of V)QZ— which
(&3] ©1
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involve thé first derivative g, in their coefficients must by them-
selves annihilate B, as otherwise operation with them would produce

terms in 7 gﬂ I, against which no other terms could cancel. Now,
1

as 7 ouly involves g, in the term % &, these terms in 7 @1 are

1

o . 2 . .
A& =t +y). Similarly as to = in general. Thus, besides
Yoo <'8& "1) Y ¢ 3% g

the ¢*—¢ annihilators above classified, B, must also have

.

(iv.) the g—1 annihilators &, gg +7, (r=12,..,¢-1).
Consequently, our supposed absolute pure q-ary reciprocant R, has
for annihilators the full system of ¢°—1 operators which belong to
the infinitesimal substitutions of the group of extensions of the linear
group with generality of coefficients limited by the one relation
A =1. E,is then an absolute differential invariant of that special
linear group.

Accordingly, the statement that absolute pure g-ary reciprocants
are identical with those absolute differential invariants which do not
contain parts of both odd and even degrees of the special linear
group is correct.

Thursday, April 7th, 1898.
Dr. E. W. HOBSON, F.R.S., Vice-President, in the Chair.

There being only five members present, and so no quorum, no
meeting could be held.

The Chairman (provisionally) communicated the following
papers :—
An Essay towavds the Generating Functions of Ternaviants:
Professor Forsyth.
On Systems of One-Vectors in Space of # Dimensions: Mr.
W. H. Young.

Zeroes of the Bessel Functions : M. 11, M. Macdonald.
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‘ Bulletin of the American Mathematical Society,’”” 2nd Series, Vol. 1v., No. 6 ;
New York, March, 189S,

¢“ Science Abstracts,”” Vol. 1., Pts. 1, 2; London, Taylor & Francis, 1898.

Rayet, G.—*¢ Observations Pluviométriques et Thermométriques faites dans le
Département de la Gironde’ de Juin 1894 & Mai 1895; Juin 1895 & Mai 1896,
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¢ Mémoires de la Société des Sciences Physiques et Natureles de Bordeaux,”’
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¢ Atti della Reale Accademia dei Lincei—Rendiconti,”’ Sem. 1, Vol. viI.,
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‘¢ Educational Times,”” April, 1898.
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‘‘ Rendiconti del Circolo Matematico di Palermo,” Tome xiI., Fnsc 1, 2
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‘¢ Beitriige zur Geschichte der Trigonometrie,
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¢¢ Nussir Eddin Tisi und Regiomontan,” Bd. txx1., 2, von A. v. Braunmiihl ;
*Halle, 1897.

¢ Zur Geschichte der Geometric mit constanter Zirkeloffnung,’”” Bd. Lxxr., 3,
von W. M. Kotta.

(‘“ Abh. der Kaiserl. Leop.-Carol. Deutschen Akad. der Naturforschen.’’)

"’ von A. v. Braunmiihl, Bd. Lxxr.,

¢
¢ On the Definite Integral —%«j ¢-#dt, with extended Tables of Values,” by
0

AT
Jus. Burgess, Edinburgh (OHfprint from the ‘ Transactions of the Royal Society
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