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ABSTRACT2

Bidirectional brain-machine interfaces (BMIs) establish a two-way direct communication link3
between the brain and the external world. A decoder translates recorded neural activity into motor4
commands and an encoder delivers sensory information collected from the environment directly5
to the brain creating a closed-loop system. These two modules are typically integrated in bulky6
external devices. However, the clinical support of patients with severe motor and sensory deficits7
requires compact, low-power, and fully implantable systems that can decode neural signals to8
control external devices. As a first step toward this goal, we developed a modular bidirectional BMI9
setup that uses a compact neuromorphic processor as a decoder. On this chip we implemented10
a network of spiking neurons built using its ultra-low-power mixed-signal analog/digital circuits.11
On-chip on-line spike-timing-dependent plasticity synapse circuits enabled the network to learn12
to decode neural signals recorded from the brain into motor outputs controlling the movements13
of an external device. The modularity of the BMI allowed us to tune the individual components14
of the setup without modifying the whole system. In this paper we present the features of15
this modular BMI, and describe how we configured the network of spiking neuron circuits to16
implement the decoder and to coordinate it with the encoder in an experimental BMI paradigm17
that connects bidirectionally the brain of an anesthetized rat with an external object. We show that18
the chip learned the decoding task correctly, allowing the interfaced brain to control the object’s19
trajectories robustly. Based on our demonstration, we propose that neuromorphic technology is20
mature enough for the development of BMI modules that are sufficiently low-power and compact,21
while being highly computationally powerful and adaptive.22

Keywords: bidirectional BMI, neuromorphic decoder, on-line learning, modular system, spiking neural network23
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1 INTRODUCTION

The possibility of controlling a prosthetic device through a direct interface with the central nervous24
system represents a promising solution for restoring sensory-motor functionalities in patients with limb25
amputations or peripheral and neurological deficits due to spinal cord injury, amyotrophic lateral sclerosis,26
or stroke. In the last two decades, a fast-growing worldwide scientific community has developed several27
brain-machine or brain-computer interfaces (respectively BMIs or BCIs) toward the clinical application of28
these devices. Such interfaces offer also a powerful tool for exploring the sensory-motor mechanisms of29
control, adaptation and learning that are employed by the central nervous system. This research has been30
assisted both by progress in our understanding of the underlying neural processes that take place in the31
brain, and by technological advances that have dramatically improved the quality of the signals recorded32
from the brain and the possibility of managing and processing large amount of data in real-time (Wolpaw33
et al., 2000; Lebedev and Nicolelis, 2006; Wander and Rao, 2014). Encouraging results have been recently34
obtained in controlling a robotic arm by using motor neural activity in tetraplegic patients (Hochberg et al.,35
2012) and by restoring cortical control of movement in humans with quadriplegia (Bouton et al., 2016) but36
these setups still have limitations that prevent their clinical use on a large scale (Baranauskas, 2014).37

The development of a BMI system aiming for large clinical application requires crucial improvements38
of the hardware and software components. The hardware components need to be (a) fully implantable39
for long term use and therefore miniaturizable; (b) able to reliably process neural signals with a limited40
power budget; (c) powerful enough to implement non-trivial computational tasks involved in a BMI system.41
Additionally, the decoding algorithms need to be (d) sufficiently flexible to be implemented with different42
types of hardware components and (e) able to dynamically adapt to changes in the neural activity due to43
the interaction with the artificial device (Orsborn et al., 2014; Dangi et al., 2011).44

Neuromorphic devices comprise compact, energy-efficient, and adaptive circuits that have been45
demonstrated to be optimal for tasks that involve learning from real-world observations in an on-line46
fashion (Chicca et al., 2014). They achieve this by employing silicon emulations of biological neurons47
and synapses that can be physically configured to implement algorithms inspired by the asynchronous48
massively parallel computations performed in biological neural networks. Additionally, input to and output49
from neuromorphic chips is provided with asynchronous digital pulses that encode information in their50
analog timing, similarly to action potentials of biological neurons. Because of these features, neuromorphic51
processing chips are very promising candidates for implementing reliable and energy-efficient decoding of52
neural activity, that could ultimately be evolved to be portable, implantable, and directly interfaced with53
neural tissue.54

For this reason we directed our efforts towards the development of a fully implantable BMI by prototyping55
a neuromorphic processor chip (Qiao et al., 2015) integrated in a bidirectional brain-machine interface,56
trained to decode neural signals recorded on-line, and to provide suitable outputs useful for controlling57
actuators and end effectors. In order to assess the performance of this system, we took the following steps:58
first we developed suitable spike-based decoding methods that could be implemented by the neuromorphic59
processor chip, then we configured the chip to implement these methods in real-time and adapted the60
bidirectional BMI designed and tested in our lab (Vato et al., 2012) to include in the processing chain61
this neuromorphic component. Finally we tested this neuromorphic bidirectional BMI in a closed-loop62
real-time experimental setup that involved the control of the motion of an external device by the decoded63
neural signals recorded from the brain of an anesthetized rat. Here we describe in detail the properties of64
the neuromorphic processor, and the network of spiking neurons that was implemented by the chip to carry65
out the decoding task. We present the main hardware and software modules that we developed to interface66
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the chip with the other components of the BMI, and describe the experimental paradigm that we used to67
test the system.68

Our approach differs from those of currently-developed BMIs, which are ad hoc ensembles of hardware69
and software elements designed to perform specific tasks, and which are difficult to replicate, generalize, or70
modify for use in other tasks or different environments (Leuthardt et al., 2006). As these are limitations that71
hinder collaborations between laboratories we chose to emphasize a modular approach in designing our BMI72
by developing a system that is compatible with a wide range of different hardware and software standards,73
and which is composed of a main control core module and multiple possible recording, stimulating,74
decoding, and encoding modules. We argue that the combination of this modular bidirectional BMI setup75
with the use of neuromorphic hardware modules can give a crucial contribution to the development of the76
next generation of brain-machine interfaces for large-scale clinical applications.77

2 MATERIALS & METHODS

We begin by describing the general scheme of this novel bidirectional BMI in section 2.1 and the78
experimental procedure used to test the performance of the neuromorphic decoder in section 2.2. In79
2.3 we describe in details the main modules comprising the system and finally we present the hardware and80
the software implementation of the neuromorphic chip respectively in section 2.4 and 2.5.81

2.1 General scheme of the modular bidirectional BMI82

We extended the Dynamic Neural Interface described in (Szymanski et al., 2011; Vato et al., 2012, 2014)83
with the inclusion of a neuromorphic decoder module. This system uses the neural signals collected from a84
rat’s brain to control the movement of an external object by means of a sensory and motor interface. In85
designing it we took inspiration from earlier studies in frogs (Bizzi et al., 1991), rats (Tresch and Bizzi,86
1999) and cats (Lemay and Grill, 2004) by emulating the functioning of the spinal cord that combines87
sensory information with brain instructions and organizes the movement of the limbs along dynamically88
stable trajectories. We set up a decoding and an encoding interface which generate a dynamic control89
policy in the form of a force field and robustly drive the movement of the controlled object. The neural90
signals are recorded from the motor cortex of the anesthetized rat by means of a recording multielectrode91
array. These signals are transformed by the decoder into a force vector to be applied to a device that can92
control the motion of the object. After receiving this external input, the device moves the object, according93
to its dynamics, for a predefined amount of time. An encoder maps each position of the object in the94
workspace to a pattern of intracortical microstimulation (ICMS) delivered to the somatosensory cortex95
of the rat. This is achieved by means of a stimulating multielectrode array which provides the brain with96
information about the position of the controlled object. A calibration procedure of the interface establishes97
a control policy based on an approximation of a radial force field with the aim of driving the controlled98
object towards a target location defined by the central equilibrium point of the field. In the implementation99
described here we use 4 different patterns of intracortical stimulation and, consequently, the workspace is100
divided into 4 different contiguous sensory regions. The 4 stimulation patterns differ from each other only101
in the combination of the electrodes chosen to deliver the stimulation. Each stimulation pattern consists102
of a train of 10 biphasic pulses (100 µA, 100 µs/phase, cathodic first) delivered at 333Hz (Butovas and103
Schwarz, 2007; Semprini et al., 2012). After each stimulation, the decoder considers the first 256ms of the104
evoked motor neural signal to produce the driving force for the external device. In Figure 1 we report the105
post-stimulus time course of the time-dependent firing rate (mean +/- sem over 50 trials ) of the evoked106
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neural activity recorded from all the electrodes of the array. The raster plots represent the time occurrences107
of at least one spike recorded from all the electrodes of the multielectrode array.108

The calibration force corresponding to each region was defined by a vector pointing from the region’s109
centroid to the target (colored thick arrows depicted in Figure 8). The task of the decoder consists in110
extracting from each evoked neural response a resulting force, calculated as a weighted sum of the four111
calibration forces defining the force field. In particular, the decoder needs to extract the four coefficients112
corresponding to the contribution of each of the four calibration forces to the decoded force.113

2.2 Experimental procedure114

Neural data were collected from male Long-Evans rats (300−400g) anesthetized for the entire duration115
of the experimental sessions by means of Xylazine (5mg/kg) and a mixture of Tiletamine and Zolazepam116
(30mg/kg). Two craniotomies were performed above the somatosensory (S1) and the motor (M1) cortex117
representing the whiskers on the same hemisphere. The stimulation microwire array (Tucker Davis118
Technologies - TDT) was lowered perpendicular to the somatosensory cortex 300− 500 µm under the119
surface (AP −3.5mm, LM +4mm with respect to the most posterior medial electrode of the array). The120
recording array was placed at depth 900−1100 µm below the pia (AP +1.5mm, LM +0.5mm with respect121
to the most posterior medial electrode of the array) using a hydraulic microdrive. These locations have122
been chosen for the presence of several cortico-cortical connections between the two regions(Mao et al.,123
2011). Both arrays are composed of 16 microelecrodes (2 rows of 8 electrodes, 50 µm diameter) each one124
separated from the neighboring ones by 250 µm and 375 µm along and across the rows respectively. All the125
experiments have been performed in accordance with DL116/92 of the Italian legal code and approved by126
the institutional review board of the University of Ferrara and by the Italian Ministry of Health (73/2008-B).127

128

2.3 Main modules of the BMI system129

The modular bidirectional BMI was designed around a core unit named Managing Unit (MU) that can be130
connected to satellite modules, each dedicated to specific tasks as decoding the neural signal, controlling131
the movement of an external device and encoding the information collected from the external environment132
to provide sensory feedback. The MU does not require any information about the specific implementation133
of each module, which can be a software running on general purpose processing units, a dedicated134
programmable hardware such as Field Programmable Gate Arrays (FPGA) or a neuromorphic chip. This135
modularity ensures a fast and flexible prototyping phase required during research and development, whereby136
different software modules can allow testing the algorithms to be implemented on custom low-power,137
miniaturized implantable hardware.138

In this implementation we connected five different satellite modules to the MU realizing the functionalities139
required by a bidirectional BMI: Acquisition Unit, Stimulation Unit, Decoder, Encoder and Dynamical140
System, as shown in Figure 2 that have been described in details in (Boi et al., 2015a). The Dynamical141
System (see Boi et al., 2015b) consists of a small mobile cart connected to a water/pellet dispenser mounted142
on a vertical wall in a custom-made behavioral box for rodents and controlled by two servomotors spanning143
an area of 38x38cm. The cart is protected by a transparent acrylic glass sheet with a slot that allows the144
rat to grab the food if the cart is positioned in the desired position. The Dynamical System was designed,145
developed and tested in this way to be used in future experimental sessions with behaving subjects.146

The main algorithm running on the MU named mbBMI algorithm is in charge of reading the spiking147
neural data coming from the Acquisition System module and communicating them to the decoder. Once148
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Figure 1. Post-stimulus time course of the time-dependent firing rate (mean +/- SEM across trials) and raster plot of the recorded neural activity evoked by 4
different stimulation patterns. Each short vertical line in the raster plots represents the occurrence of at least one spike recorded from all the electrodes on the
recording array in a 1ms time bin. In the inset we report the neural activity recorded from each electrode of the microwire array during a single trial.

the decoder generates an output signal, the algorithm transforms it into motor commands usable by the149
Dynamical System. To close the loop on the brain, the algorithm acquires the current position reached from150
the external device and communicates it to the encoder that returns the next stimulus to be communicated151
to the Stimulation System module.152

2.3.1 Managing Unit153

We implemented the Managing Unit by using the development board ZedBoardTM equipped with a Xilinx154
Zynq R©-7000 All Programmable System On Chip (SoC). The Zynq R©-7000 family integrates a feature-rich155
dual-core ARM CortexTM-A9 based processing system (PS) and 28 nm Xilinx programmable logic (PL) in156
a single device. In our implementation, the PL runs a custom module that can interface with neuromorphic157
chips and implements two software modules named NeuElab and Dynamical System Controller. The158
NeuElab module acquires the pre-processed brain signals from the mbBMI algorithm and routes them to159
the decoder and vice versa, via its hardware interface (Zynq2Neuro described in Sec. 2.3.1).160

The MU stores the temporal offset of each recorded action potential with respect to the last delivered161
stimulation, as a list of time-stamps associated with the identity (or address) of the emitting electrode. At162
the end of each recording period, spike trains are generated from the recorded spike time-stamps according163
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Figure 2. Real implementation of a modular bidirectional BMI. The Managing Unit is implemented on a ZedBoard development board that communicates
via User Datagram Protocol (UDP) with a TDT RZ2 BioAmp Processor - Tucker-Davis Technologies - (acquisition system) and a TDT RX7 Stimulator Base
(stimulation system). The ZedBoard is connected to the ROLLS neuromorphic processor (decoder) that implements a neural network that is able to learn to
decode the neural signal coming from the rat’s motor cortex. The decoder’s output is translated by the Managing Unit into a two-dimensional force which is
converted into digital signals to drive the motors installed on the 2 degrees of freedom robotic device (dynamical system). The dynamical system communicates
to the encoder its final state which is transformed into a stimulation pattern that is subsequently delivered by the TDT RX7 into the somatosensory cortex of the
subject and closes the loop.

to the decoder’s requirements (section 2.5 and Figure 5) and then forwarded to the neuromorphic chip.164
The MU communicates with the decoder using the native neuromorphic asynchronous communication165
protocol, known as Address Event Representation (AER) protocol (Mortara, 1998), where the information166
is encoded in the implicit timing between digital pulses (or spikes) and in the identity (or address) of the167
neuron that has emitted the pulse. The decoder’s output AER spikes are acquired by the MU and forwarded168
to its Dynamical System Controller part.169

When acquired on the MU clocked system, the implicit temporal information in the AER spike sequence170
is explicitly paired with the address of the spike by the TimeStamp block of the NeuElab part of the MU.171
NeuElab is composed of two different FIFOs that drive the data flow from/to the neuromorphic chip. The172
TX FIFO is filled with the address of the neuron that shall receive the spike and the time relative to the173
other spikes, by associating a delay time value by the TimeStamp block. NeuElab reads the TX FIFO174
and sends a spike to the neuromorphic chip at the time specified by the delay, the address associated to175
the spike allows the receiving chip to rout the spike to the corresponding neuron. The RX FIFO is filled176
with the spikes from the neurons of the neuromorphic chip. The received pairs of address and relative177
time-stamp are then sent to the BMI algorithm that translates the recorded neural activity into commands178
for the Dynamical System.179

Besides managing the AER communication with the neuromorphic chip, the NeuElab interface is critical180
for the chip’s configuration, through digital configuration bits and a number of tunable analog voltages181
or currents (biases) that set the operating point of the analog circuits. NeuElab can be used, in principle,182
for interfacing the BMI with any neuromorphic chip that uses the AER communication protocol. In this183
implementation, the output spiking activity of the neuromorphic chip is translated into a bidimensional184
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force applied to the Dynamical System by means of a pair of Pulse Width Modulated (PWM) analog185
signals generated by the ZedBoard that drive the external object.186

2.4 Hardware aspects of the neuromorphic decoder187

The decoder that transforms the recorded brain activity into motor commands is implemented on a188
neuromorphic chip. In the following, we describe the chip and the printed circuit board (PCB) that we189
developed to connect the chip with the rest of the system.190

2.4.1 The ROLLS Neuromorphic Processor191

The Reconfigurable On-line Learning Spiking (ROLLS) Neuromorphic Processor is a general-purpose192
spiking neural network chip (Qiao et al., 2015). Figure 3 shows the chip micrograph. It was fabricated193
using a standard 6-metal 180nm CMOS process, occupies an area of 51.4mm2 and has approximately 12.2194
million transistors. It comprises 256 adaptive exponential integrate-and-fire neurons implemented in a195
mixed signal analog/digital circuit design.196

There are 128K synapses, of which 64K that can implement a Hebbian plasticity rule (Brader et al.,197
2007; Mitra et al., 2009) (Long-Term Plasticity (LTP) synapses) (Mostafa et al., 2014). The rest 64K198
synapses can exhibit short term depression and short-term facilitation dynamics (Short-Term Plasticity199
(STP) synapses), and have two possible programmable weights resolution, in addition to the possibility to200
configure them as either excitatory or inhibitory. These two synaptic matrices (LTP and STP) allow arbitrary201
on-chip connectivity thanks to a crossbar structure. In principle all-to-all connections are possible through202
the programmable logic state of the synapses. Additional circuits next to the neurons’ array represent the203
calcium concentration at the post-synaptic side, needed to implement the spike-based LTP weight update204
algorithm (Brader et al., 2007). We refer the reader to (Qiao et al., 2015) for a detailed description of the205
circuits.206

Both the neural network architecture and the parameters of the neuromorphic core are fully programmable207
via a high-level Python framework (Stefanini et al., 2014). The combination of reconfigurable hardware208
with the Python-based configuration framework supports the exploration of a wide range of spiking neural209
network architectures, and their real-time emulation in closed-loop setups. Here, these enabled us to210
configure a hardware implementation of a spiking neural network that learns on-line to decode patterns of211
recorded spike sequences.212

2.4.2 The Zynq2Neuro (Z2N)213

With the aim to manage, program and interface neuromorphic chips with the Managing Unit, we designed214
and developed the Zynq2Neuro (Z2N) PCB that can host up to two daughterboards (DTB) that mount215
neuromorphic chips. The Z2N connects the neuromorphic chips to the FNC connector of the ZedBoard,216
supplies power to the chips and supports the AER communication and the chip configuration signals.217
Analog biases that configure the parameters of the silicon neural and synaptic models on the neuromorphic218
chip can be set either by means of external digital to analog converters (DAC), or by on-chip programmable219
bias generators (BG) (Delbruck and Lichtsteiner, 2006). NeuElab, together with the Zynq2Neuro board, can220
drive both systems, the Zynq2Neuro board hosts 64 DACs that can be programmed through an SPI interface221
and also hosts the necessary signals for programming different types of BGs, managed by NeuElab, hence222
supporting a large library of neuromorphic chips. The Z2N board is already configured to support future223
chip functionalities by means of I/O expanders and I2C protocol. The AER addressing space can be224
expanded up to 30 bits (configurable as inputs or outputs). The Z2N (Figure 4) can support logic levels,225
power supply and biases from Digital to Analog Converters of 3.3V or 1.8V , as selected from the first DTB.226
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This means that the two DTBs need to host chips that are homogeneous for the logical levels. In general,227
the Z2N can support chips fabricated on the 350nm (3.3V ) and 180nm process of the latest generation228
(1.8V and mixed 1.8V/3.3V ). To optimize the design, AER address lines, some bits of the Bias Generator229
programming, I2C and I/O expander are shared among the two DTBs. The sharing of the AER address230
lines is based on the assumption that they are in tri-state when the chip is not sending or receiving an231
event. This is guaranteed by the SCX protocol (Mortara, 1998), but can be supported also for the P2P232
protocol (Boahen, 2000), by adding buffers on the DTB driven by the handshake signals (ACK) from the233
ZedBoard. The correct addressing of the event to/from the chip is guaranteed by the reserved handshake234
signals (REQ/ACK and Bias LATCH) that target only one of the two chips. The Z2N specifically targets235
compatibility with neuromorphic chips such as the ROLLS (Qiao et al., 2015), but is a more general tool236
for most of existing neuromorphic chips based on parallel (or word-serial (Boahen, 2004)) AER protocols,237
on Bias Generators externally configurable by means of SPI-like serial interfaces, or on external voltage238
tuning. Some examples of supported chips are the Dynamic Vision Sensor (Lichtsteiner et al., 2008), the239
AER EAR (Chan et al., 2007), the Selective Attention Chip (Bartolozzi and Indiveri, 2009), the spiking240
Winner-Take-All chip (Chicca et al., 2014) and the Asynchronous Time-Based Image Sensor (Posch et al.,241
2010).242
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2.5 Algorithmic aspects of the neuromorphic decoder243

We approached the neuromorphic decoding task by combining the constraints of a multi-class244
classification task with those of spiking neural networks with limited resolution synaptic weights, and with245
the BMI-specific requirements related to the simultaneous contribution of all four classes to each decoded246
force (see Section 2.1).247

2.5.1 The silicon spiking neural network248

We configured the ROLLS chip to implement a feed-forward spiking neural network that exploits the249
spike-timing dependent plasticity of the chip’s LTP synapses to learn how to extract the pattern of four250
calibration forces that should result in the net desired force, from the recorded neural activity. Each of the251
output neurons of the network was trained to act as a binary classifier by re-weighting the features of its252
input that were distributed across its synapses, so as to ultimately yield, via its activation function, a higher253
output spike rate for one, positive class of input compared to the other three, negative classes. Neurons254
were grouped into 4 ensembles, each corresponding to one of the 4 stimuli. The spike counts output by the255
4 ensembles during the presentation of the recordings to the network were directly used as the coefficients256
that weight the contributions of the 4 component forces acting on the BMI’s end effector.257

2.5.2 Mapping the neural recordings to the ROLLS neuromorphic processor258

The spike-based learning algorithm implemented on the chip is based on the model proposed in (Brader259
et al., 2007). Using this model, feed-forward neural networks can learn to classify patterns based on260
their mean rates. However, in the neural data we recorded, the principal feature that distinguishes one261
class from the others is the precise timing of the recorded spikes, aligned to the offset of the sensory262
micro-stimulation (Figure 1). Therefore a transformation of the input spike sequence into an array of firing263
rates is required before it reaches the output layer. Furthermore, the number of non-redundant features in264
the data needs to be sufficiently high to support robust discrimination across all classes, but the recorded265
activity was very similar across all recording channels (see Figure 1, inset). Therefore it is likely impossible266
to find a single-layer feed-forward network configuration that can classify the recordings based on features267
corresponding directly to the recording channels.268

To reconcile the characteristics of the data with the network requirements we mapped uncorrelated sub-269
samples of the spike sequence to different synapses of the classifier neuron, using a mean-rate encoding.270
Specifically, we binned the recorded spike trains in time bins of 1 ms (Figure 5 B) and associated each bin271
with one input synapse of each neuron of the network (Figure 5 C). We provided a 400ms high mean-rate272
(100Hz) Poisson spike train to the learning synapses for time bins that contained recorded spikes, and no273
input to the rest of the synapses (Figure 5 C).274

Under the constraint of a finite number (256) of available synapses per neuron, there was a trade-off275
among the number of recording channels, the duration of the recording patterns, and the temporal precision276
desired. The first 200ms - 300ms of each recorded pattern included significant differences across the four277
different classes (Figure 1), that would potentially be sufficient for the classifier to discriminate between278
them. Based on this, together with the observation that the distributions of spike timings were very similar279
across different recording channels, we merged the 15 recording channels into a single spike train, and we280
used the first 256ms of the recordings, thus acquiring a temporal precision of one ms per time bin. Longer281
recording duration with a two-millisecond or lower precision was found to diminish decoding performance.282
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2.5.3 The neural network’s task283

The aim of the BMI is to best approximate the desired force field over the duration of the experimental284
session, through weighting the 4 force components. To achieve this aim, there are two criteria based285
on which the decoder has to simultaneously optimize its learning. Firstly, it needs to learn to classify286
the patterns, i.e. to correctly output the single class to which each presented recording truly belongs,287
as expressed by the “winning” (i.e. the most firing) ensemble of output neurons. Secondly, the decoder288
also needs to prevent the other three “losing” ensembles from biasing the force field towards particular289
directions on average over the trajectory of the end effector. That is, it needs to classify the recordings290
under the constraint of learning to equalize the average outputs of “losing” ensembles. Thus, despite the291
similarities to a classifier, classification of individual recordings is only partly the decoder’s task.292

2.5.4 Biased similarities and differences between classes of recordings: addressing them with293
heterosynaptic competition294

The decoder had to address certain additional characteristics of the recordings to achieve its goal of295
approximating the desired force field over the experiment’s course. Specifically, different classes of296
recordings differed in number of recorded spikes on average, and this difference in the input energy could297
be reflected as a bias in the chip’s output and consequently in the direction of the decoded force in each298
trial. Moreover, even though spike timing was the principal difference between recordings of different299
classes, some spike timings were common between classes. This increased the difficulty in distinguishing300
between different classes. That is, the different classes had a certain level of overlap between their features,301
which could increase classification errors. Additionally, this overlap was not of the same extent for all pairs302
of classes, i.e. some classes were more similar to some than to others in terms of common spike timings303
(Figure 1). This asymmetry could result in additional biases in the weighting of the force components by304
the decoder, thus misshaping the resulting force field in certain parts of the working space.305

To address these points, we used the “stop learning” feature of the ROLLS chip learning circuits306
(see (Brader et al., 2007) which prohibits potentiation of synapses when the post-synaptic firing rate307
exceeds a threshold. When a certain number of synapses that correspond to a neuron’s positive class are308
potentiated, the increased excitation from the input causes the neuron to stop learning. This introduces309
heterosynaptic competition (Royer and Paré, 2003) to the chip’s output neurons, which serves (a) to310
normalize the network’s output in response to different classes, (b) to make potentiated synapses a scarce311
resource hence biasing potentiation towards non-overlapping features, and (c) to equalize the output312
of “losing” ensembles. In addition, combined with device mismatch on the neuromorphic circuits, it313
biases different members of each ensemble to learn a slightly different decision boundary. This is similar314
to boosting techniques employed in machine learning and improves the classification performance by315
allowing for non-linear decision boundaries for the ensemble through the aggregation of the multiple linear316
boundaries defined by the ensemble’s member neurons.317

2.5.5 Training the neuromorphic decoder318

To train the neuromorphic decoder, we used an experimental session composed of 40 repetitions of each319
stimulation pattern (i.e. 160 evoked recordings). During the training procedure were randomly interleaved320
(Figure 5 A) and presented to the ROLLS processor the 160 training trials, according to the method321
described in 2.5.2 (Figure 5 B, C), along with a teacher signal representing the label of the presented322
example, i.e. the type of sensory microstimulation that produced the recorded neural response. 63 output323
neurons were assigned to each class (Figure 5 C, right). The teacher signal biased each neuron to be tuned324
to one class, by causing it to fire with a rate that maximized the probability that the neurons synapses got325
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potentiated when an example of that class was presented, and depressed when an example of the other326
classes was presented. The mean rate of the Poisson spike train that would act as a teacher signal with these327
properties, as well as the analog parameters of the silicon neurons and synapses of the ROLLS processor328
were configured to match the characteristics of the input data with the requirements of the learning and of329
the decoding task.330

331

2.6 Assessing the BMI’s performance332

Once the decoding and encoding interfaces were properly calibrated, in order to test the system we ran333
the BMI by decoding from each neural trial a bidimensional force and by encoding each position of the334
controlled object through an ICMS pattern. We used a test dataset of neural recordings acquired by 10335
repetitions of each of the four stimulation patterns (i.e. 40 evoked recordings), which were unseen by the336
BMI during its training. We selected 8 different equispaced and equidistant positions as starting points337
in which the dynamical system was initialized and we ran the BMI 100 times starting from each initial338
position by obtaining 800 trajectories. We tested the system under two conditions: under normal operation339
(encoder-ON condition), each test recording was selected according to the dynamical system’s current340
position. An alternate condition (encoder-OFF) was used to test the bidirectionality of the BMI and the341
learned coordination between the encoder and decoder modules. In the encoder-OFF condition, each test342
trial was randomly selected among all 40 test recordings.343

To assess the repeatability, the speed and the optimality of the generated trajectories we measured the344
number of steps required to converge to the target and the mean within-trajectory variance (abbreviated to345

wtv). In particular, each trajectory’s wtv is defined as
√

C2
x +C2

y , where Cx and Cy is the covariance of the346

distribution of the per-step displacement along the x and the y axis respectively. We obtained the mean wtv347
by averaging the wtv computed for each set of trajectories that started from one initial position.348

3 RESULTS

3.1 Decoding performance349

To assess the decoder we used test datasets, which were previously unseen by the decoder, as described350
in 2.6. For each decoded pattern, the output spikes produced by each neuronal ensemble (Figure 6A) were351
counted. Given a stimulus, the average spike count of the ensemble of silicon neurons corresponding to352
that stimulus was higher than the other three (Figure 6B).353

In addition, as a result of the introduction of “stop learning” to the silicon neurons average spike counts354
were relatively uniform across the other three ensembles despite the biases in pairwise similarities between355
input classes (see 2.5.4).The chip learned to suppress this bias, and, consequently, decoded resultant356
forces for each stimulus were, as originally intended, most similar to one of the four forces used during the357
calibration phase (colored thick arrows shown in Figure 8B).358

While the task of the decoder was not a pure classification task and it was not optimized to perform as a359
classifier, we also evaluated its performance in correctly classifying the recordings, as expressed by the360
maximally firing ensemble of neurons. For 20 different random splits between the training and the test361
sets, the classification performance on the test set ranged between 50% and 70% correct, with the chance362
performance level being at 25%.363
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Figure 6. Output of the trained decoder. (A) Raster plot of the output spikes of the trained ROLLS chip during presentation of four example test recordings
each resulting from a different type of stimulus. The length of the bars on top shows the 400-ms long presentation of the input. During presentation of the four
examples, the most active ensemble of output neurons corresponds to the true stimulus that caused the input recording. The spike count of the output each of the
four neuronal ensembles was directly used to weight each of the four components of the force field to result in the motor command, i.e. force, that acted on the
controlled object. The chip’s neurons maintained some activity till shortly after the input stopped, mainly due to excitatory current leaking between the firing
neuronal electronic circuits. (B) Average output spike count for each ensemble of neurons, for each type of stimulus that caused the decoded recording. For
each stimulus, its corresponding ensemble fires on average more than the other three, demonstrating the classification aspect of the decoder’s task. In addition,
the decoder learned for each stimulus to partially equalize the response amplitudes of the three non-corresponding ensembles, compared to the extent of the
differences between input classes (cf. Figure 1 and see subsection 3.1).

364

3.2 BMI performance365

In order to assess the BMI performance, we performed two different testing sessions: during the first366
session we set the maximum number of steps to 100 as stopping rule for the obtained trajectories (Figure367
7). The BMI moved the object freely according to the sequence of forces that the closed-loop set-up applied368
and we placed the target as the origin of the axes. In each trial, the controlled object was initialized at one369
of eight starting positions and the BMI generated one trajectory of 100 encoding + decoding steps. We370
marked and plotted in the figure the point that was closest to the origin of the axes considered as the target371
point (Figure 7A). For each starting position we repeated the experiment 100 times, yielding 800 points in372
each of the two conditions (blue points for ”Encoder ON” and red points for ”Encoder OFF”). In condition373
ON, when a stimulus was provided to the sensory cortex, it was according to the current position of the374
object. In condition OFF, the stimulus was selected randomly among the four possible stimuli, thus not375
encoding the current position of the object. The distributions of the two sets of points (Figure 7B) are376
statistically different (independent samples t-test, p < 0.001) showing a decrease of 99% in the distance377
from the target and demonstrating that closing the loop in the proposed BMI is crucial in order to correctly378
drive the dynamical system towards a target.379

In the second testing session we simulated a real experiment in order to generate motor commands that380
drive a mobile cart from predefined initial positions towards a target position represented by a slot in381
the glass that allows the rat to get the reward (Boi et al., 2015b). In this session to distinguish between382
convergent and non-convergent trajectories, we defined the target as a circular region with radius set to383
3.6cm placed in the center of the workspace. A trial was considered successful as soon as the generated384
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trajectory reached the borders of this area. When this happened the BMI was disconnected and the cart was385
automatically positioned in the center of the slot to allow the subject to receive the reward.386

Figure 8A shows the mean trajectories (black lines) and the covariance (light blue area) generated during387
this experimental session with the encoder turned ON. Two distinct behaviors are distinguishable: if the388
pathway from the starting position to the target region lies inside the same sensory regions, we obtained389
an almost straight trajectory. On the other hand, when the controlled device crosses the border of one390
region, the systems oscillates along the border of the two adjacent regions. This particular behavior does391
not represent a decoding error but rather reflects the limitation of having only four different stimulation392
patterns encoding the information about the region in which the device is, disregarding the precise position393
inside it (Romo et al., 1998; Tehovnik, 1996). The BMI converges to the target region with a 100% success,394
and it does so in a very stable and straight path because the decoded forces obtained in response to the395
same stimulation pattern are very similar to each other, both in terms of direction and magnitude. This is396
demonstrated in the compass plots in Figure 8B showing that the forces decoded from the neural activity397
evoked from each stimulation pattern and used during the testing phase (i.e. black arrows) are almost398
overlapping. In order to further assess the neuromorphic decoding capabilities we also report the forces399
used to calibrate the BMI motor interface (colored thick arrows in Figure 8B) that, especially in terms of400
direction, are almost equal to most of the related forces decoded during the BMI run. In the encoder-ON401
case the mean wtv and the steps needed to reach the target region significantly decrease (respectively 92%402
and 80%) with respect to the encoder-OFF case (Figure 8C and 8D).403

Finally, for each force produced by the decoding process, we measured the magnitude of two components:404
the component of the force that points towards the target point, named Directed to the target - DT, and405
the component orthogonal to it, named Orthogonal to the target - OT. The mean of the DT-component is406
strongly positive (directed to the target) in the case of encoder-ON and slightly negative (divergent from the407
target) when the encoder is turned OFF (Figure 8E shows an increase of 69%). In both conditions (ON and408
OFF), the mean OT-components are almost null compared to the mean DT obtained with the encoder-ON409
(respectively 90% and 97% less). In the OFF condition, this can be attributed to the randomness of the410
motion. In the ON condition, combined with the increased DT force, this is an indication of successful411
decoding.412

Supplemental Figures S1A and S1B show the complete set of trajectories collected without using the413
target-region stopping rule respectively with the encoder switched ON and OFF. Figure S1C and S1D414
shows the set of trajectories used to build the different panels of Figure 8.415

4 DISCUSSION

In this paper we showed the applicability of neuromorphic hardware in a brain-machine interface system,416
in the first demonstration of this kind. In particular, the decoder module of the BMI was implemented by a417
spiking neural network on a mixed-signal analog/digital neuromorphic processor, the ROLLS, that learned418
to perform on-line the decoding of the neural recordings into commands that addressed the brain-controlled419
device.420

The analog neuromorphic circuits of the ROLLS neuromorphic processor emulate functions of biological421
neurons and synapses by replacing biophysical properties with analogous properties of the sub-threshold422
physics of transistors. The resulting spiking neural networks operate on a power-efficient and compact423
system for applications of pattern recognition such as a BMI decoder’s task. On the other hand, because of424
these underlying principles of operation, analog neuromorphic circuits like the ones found on the ROLLS425
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Figure 7. Testing of BMI performance with 100-steps stopping rule. A. Trajectories closest points to target. Red dots indicate, for each trajectory, the
closest points to the workspace axis origin with the encoder switched OFF while blue dots represent the same points for the trajectories generated with the
encoder ON. Data were collected by running the BMI 100 times for each of the eight predefined initial positions (i.e. numbered circles) both with the encoder
turned ON and OFF. B. Box plots of the trajectories closest points distributions with the encoder ON and OFF.

are imprecise and variable, similar to biological neural elements, in sharp contrast to simulations of spiking426
neurons and synapses on digital neuromorphic or general-purpose processors. The neuromorphic decoding427
task was further complicated by the variability in the recorded data, and by the overlap in spike-timings428
between the to-be-discriminated classes.429

Further difficulty arose by the fact that the decoder’s task was not a standard classification task, as the BMI430
required the decoder to output a contribution of all potential classes of recorded activity simultaneously,431
while preventing the average chip output from being biased towards any pair of classes, even though the432
pair-wise similarities between classes were biased.433

Despite these particularities, the spiking network we designed successfully learned the decoding task,434
enabling the BMI to perform at similar levels of a previous non-neuromorphic version of the bidirectional435
BMI. This was achieved by exploiting two key characteristics of the ROLLS chip: variability between436
silicon synapses and neurons deployed into an ensemble learning technique that aggregated multiple weak437
classifiers into a powerful one, and the heterosynaptic competition through the “stop-learning” feature of438
synapses on the ROLLS chip, which enabled the network to focus on the discriminative features of the439
input, thus both improving classification performance and reducing the reflection of biased similarities in440
the input onto the output of the trained network. A key feature of the decoder is that the spiking output of441
the neuromorphic chip is directly used to compute the force controlling the end-effector. The components442
of the force were weighted by the spike counts of the chip’s output, an important step towards using443
neuromorphic hardware not only as a decoder, but also as prosthetic controller.444

445
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Figure 8. Testing of BMI performance with target-region stopping rule A. Mean trajectories plot. Starting from each starting point depicted with a
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is subdivided into four sensory regions, one per each stimulation, highlighted by four different colors. We defined a target region centered in the origin of the
axes and whenever the mobile cart reaches its edge the BMI considers the task accomplished. B. Black arrows represent the decoded forces computed during the
BMI test phase. Colored thick arrows represent the four calibration forces associated to the sensory regions. Forces were grouped on the basis of the stimulus
that generates them.C. Mean within-trajectory variance (wtv) ± SEM of all the 800 trajectories recorded both with the encoder turned ON (blue bar) and OFF
(red bar). D. Mean number of steps to convergence ± SEM. The red bar, obtained with the encoder turned OFF, is quite close to the maximum step allowed (100
steps) while when the encoder is active the steps number necessary to reach the target region is significantly lower. E. Mean DT component magnitude ± SEM.
Each decoded force has been split into Directed to the target - DT (magnitude of the force that points towards the target) and Orthogonal to the target - OT one
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4.1 Features of the proposed neuromorphic decoder446

The set-up we propose has been designed as an initial proof of concept prototype to evaluate the potential447
of neuromorphic hardware computing in BMIs, and to determine its limitations; within this context, this448
work shows that, even at this level, integration of neuromorphic hardware in set-ups characterized by the449
intricacy of a bidirectional BMI is technically possible. Our results show that, despite the low precision,450
low resolution, and noisy (but compact and low-power) analog electronic circuits in the neuromorphic451
chip, the system built in this way can recognize multi-dimensional input patterns. In particular, the results452
demonstrate how this neuromorphic hardware can be configured to produce the correct average forces over453
the controlled object’s trajectory (Figure 8 A), despite the fact that the forces decoded from individual454
recordings could strongly deviate from the target (Figure 8 B) due to the contributions of all four force455
components combined with unbalanced inputs (Figure 1). A unique aspect of the specific neuromorphic456
hardware used is represented by its ability to learn these computationally demanding tasks, with on-chip real-457
time spike-based plasticity circuits, as opposed to learning the network parameters off-line and configuring458
them at run-time. The flexibility provided by the digital event-based communication infrastructure, and the459
digital registers embedded in the chip, next to the subthreshold analog neuromorphic circuits, allow this460
system to be used in a variety of tasks that require real-time decoding or classification of sensory inputs, or461
real-time encoding of desired outputs. Although the analog circuits have time constants of the order of462
milliseconds (in order to provide biological realism, and importantly, to minimize power consumption),463
the real-time response properties of the chip at network level have latencies that are extremely small (e.g.,464
below tens of microseconds). This allows the chip to decode the neural activity on line in the BMI’s loop,465
within one time step of the dynamical system’s operation, whose bottleneck is determined not by the466
decoder, but by the inter-stimulus interval. The average power consumption of the chip, which has been467
measured to be approximately 4mW , is competitive with state-of-the-art DSPs and much lower of general468
purpose low-power computing units that could be used to run the pattern recognition software. It is worth469
noting however, that since in the current set-up the neuromorphic chip is interfaced to additional devices470
mainly used for prototyping and debugging, the overall system requires additional relatively high power471
and area.472

4.2 Limitations of the system and proposed future additions473

The simplicity of the single-layer feed-forward network of only 252 neurons that was employed for this474
particular application demonstrates the limitations and computational power of physical instantiations475
of spiking neural networks and suggests that further development of analog neuromorphic hardware and476
spike-based algorithms may yield a computationally powerful, yet low-power consuming alternative to477
software and conventional processors for a broad spectrum of tasks. With respect to the neuromorphic BMI478
decoder in particular, further work could enable two specific improvements and additions.479

Firstly, the present implementation addresses the complex temporal dynamics of the recordings with a480
processing step introduced between the neural recording and the output layer of the neural network, and481
performed off-chip, which transforms the temporal dynamics of the recordings to a spatial pattern input482
to the chip. While the method proposed is suitable for the presented system, we have been investigating483
alternative algorithms and spiking neural network architectures that can potentially decode and recognize484
these types of spatio-temporal patterns entirely on the chip. In this way, the chip could directly receive485
the recorded spike train, and operate on it with no need for an intermediate off-chip storage step. This486
would be possible because of the ROLLS’ real-time operation, with time constants that match those487
of real neurons. To this direction, (Corradi and Indiveri, 2015) perform a binary classification task on488
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spatio-temporal recordings from the zebra finch, using reservoir computing on the ROLLS’ silicon neurons,489
which demonstrates that future development of these types of methods can permit their application on a490
BMI.491

On a separate but related note, here the BMI operated in discrete time steps. This permitted us to insert492
the processing step that inputs the recorded spike timings as rate-coded patterns into the ROLLS chip,493
without loss the system’s continuity. Nonetheless, this will be a crucial obstacle for the decoding module’s494
integration in future continuously operating BMIs. On the other hand, the limitation does not originate495
in the ROLLS chip itself. The chip does not have an internal clock that must be synchronized with the496
chosen time points. It rather recognizes inputs in which time represents itself in the spike train’s statistics.497
This implies that removing any off-chip transformation that intermediates the input would also enable the498
on-line use of the chip in continuous-time BMI set-ups.499

As a further future improvement, the fact that the network learns on line could be used to allow the500
decoder to adapt to changes in the neural responses with time. Specifically, in the current implementation,501
the decoder updates itself incrementally after the presentation of each training pattern. Training inputs are502
combined with a teacher signal that biases different neurons to strengthen or weaken their connections to503
different features of the input, through imposing different levels of output firing during the presentation504
of different input classes. After training, we use the chip to decode new recordings of brain activity.505
The on-line learning feature is not crucial for demonstrating the performance of the BMI in its current506
instantiation, but can become useful in future chronically implanted setups, that have to adapt to continuous507
slow changes in the nature of the signals being recorded. In such a future implementation, learning could508
continue during the chip’s use as a trained decoder. As the trained silicon neurons respond with high firing509
rates to their corresponding input classes, and with lower rates to the other classes, the neurons could510
bias themselves to continue correctly adapting their synapses to the input patterns in the absence of an511
externally provided teacher signal. This would be made possible after tuning the parameters of STDP512
synaptic dynamics of the ROLLS to enable potentiation and depression in the ranges of firing rate that the513
trained neurons output when decoding the input.514

4.3 BMI modularity515

As technological and scientific progress accelerates, it brings new opportunities for improving the quality516
of life of millions of people. The interdisciplinary field of brain-machine interfaces largely relies on the517
rapid evolution in the diverse fields that are involved (Nicolas-Alonso and Gomez-Gil, 2012). Nevertheless,518
the complexity of BMI systems, the interdependence of their components cause them to be very difficult to519
manage, test, modify, and upgrade. Our work suggests a possible solution to this issue by proposing a new520
modular implementation that allows to modify or update each module without changing the entire system.521

The modularity allows to develop different parts of the BMI in different labs and assemble the complete522
system by plugging in these parts as modules. This structure makes easier and more reliable both the523
implementation of the single module and its integration in the complete system. Parallel development of524
components could also accelerate the ultimate realization of a device compact and powerful enough to525
be used as clinical tool able to transfer data between the brain and external devices wirelessly through526
an implanted interface (Angotzi et al., 2014; Fan et al., 2011; Borton et al., 2013; Azin et al., 2011).527
In this work we also demonstrated that the modular architecture does not affect BMI performances,528
showing results comparable with the ones achieved in (Vato et al., 2012); this result suggests that BMI529
systems developed in other labs could also be re-implemented in a modular manner. To help the interested530
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scientist in doing this, most of the material used in this project is freely available on Si-Code website :531
http://www.sicode.eu/results/software.532

5 CONCLUSIONS

The relevance of neuromorphic technology in the design of brain-machine interfaces is demonstrated533
by the flourishing work in this domain (see Dethier et al., 2013; Hogri et al., 2015; Barsakcioglu et al.,534
2014, as non-exhaustive examples). The main features of neuromorphic implementations are low power535
consumption, real-time operation, adaptability and compactness. Simulations show that hardware Spiking536
Neural Networks can successfully decode the activity of neurons for closed-loop cortical implants (Dethier537
et al., 2013) and an ad-hoc working prototype is able to substitute a cerebellar learning function in the538
rat (Hogri et al., 2015). Our work extends this approach in proposing a modular and reconfigurable scheme539
whereby the neuromorphic chip can be exploited for implementing different algorithms and BMI functions;540
in particular, we demonstrated this approach by using the chip as neural decoder. We also explored the541
impact of using a neuromorphic decoder in such a closed-loop system by comparing its performance with542
the one previously developed in our lab.543

As in (Vato et al., 2012) we closed the loop with the brain by decoding the neural activity evoked by544
different patterns of intracortical micro-stimulation selected by the encoder. Even if we are not decoding545
from the anesthetized subjects any volitional input, this system, establishing a bidirectional interaction546
between the brain and an external device, needs to be considered the first necessary step towards the547
design of future experiments involving behaving subjects controlling the movements of a small mobile cart548
connected to a water or food dispenser (Boi et al., 2015b). The unique characteristics of the neuromorphic549
decoder will allow our modular bidirectional BMI to integrate the volitional component of brain activity in550
the decoding scheme and to explore the integration of the volitional input with the automatic brain response551
in controlling the movement of the external device.552
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