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1. Except when a ~ fl ~ ~, ~--l ,  or in the cases derived immediately 
from this by the transformation of the first order, J a c o b i ' s  fundamental 
identity for the multiplication of four theta functions ~) at once expresses 
O(~%,(x--~y)Otj(y-~-z)~Z.(z-{-x ) in terms of sums of products of theta 
functions. In the excepted cases the corresponding expressions are found 
from a remarkable identi~ty first obtained by  Hermite ' - ' ) :  

, ~ o ( X _ r y + z ) . a o ( x ) ~ o ( y ) ~ o ( Z ) §  4 , . . . .  _ , Z ) a o ( X ) O o t y ) O o ( Z  ) 

= o~ ~, (x + y)~Ay + z) 0, ~z + z)~ 
which, as will be noticed, contains also the first derivatives of the thetas 
with respect to their  arguments. This identi ty,  although not included in 
J a c o b i ' s ,  nevertheless can be obtained very simply from it, as shown by 
E nneper:~). 

Either J a c o b i ' s  identity or (1) gives rise to a host of arithmetical 
equivalents; and it is clear that the consequences of the two identities 
will be distinct, at least under elementary transformations. By an arith- 
metical equivalent of (1) we mean a relation between integers which 
implies (1) and which is implied by (1). We proceed presently to the 
derivation o f  three such equivalents, and it will be eviden* from the 
manner in which they are obtained that these are but three of a great  
many that may be found in essentially the same way. From the above 
definition of  an equivalont it is obvious that  ultimately: all equivalents_ 

~) Werke, 1, pp. 506, 509. 
'J) ('~)mptes Rondu~. Pariq, ~i (1877). p. 731. 
~) Mathematische Aunalen, 17 (1580), p. 213. 
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of (1) must express the same fact concerning integers. In particular it 
must be possible to transform any given equivalent.into any  other by 
purely arithmetical processes. These transformations in the majority of 
cases present considerable difficulty, and we make no at tempt to exhibit 
them. I t  is in fact a point of interest in this kind of work that ap- 
parently unrelated arithmetical truths should appear from the standpoint 
of elementary analysis merely as different aspects of the same thing, in 
this case of the identity (1). The arithmetical resu!;gs have been verified 
numerically. 

2. Changing q into - - q  in '(1) we get 

- o:; (x  + .v + z ) o., (x / 0:, (y) o:, (z)  + o,~ (x  + y + z) o3 (x) ~:, (y) 0~, (z) 
(2) + o.~ (x § y + ~),~:, ' "  . ' 

= o~ o, (x  + y ) o ,  (y  + , )o~  (z + x); 

and hence, on equating coefficients of' like powers of q, 

(8)  
Z ( -  1) ~ ( ' ' ' ' " ~ ' ' - ' '  s i n { ( ~ ~  'gO, 1 . 

where the summations extend to all even integers l~-~0 and to all odd 
integers m i ~ 0 ( i  -~ 1 , 2 ,  3, 4) that satisfy 

(4) 4m ~- 11 --~ 1.~ -I- l s 21- l = m 1 ~- mg -Jr- m s -~- m~, 

in which m is odd and constant. 
Let now g ( u ,  v, w) denote a function which takes a single definite 

value whenever u,  v, w are integers > O, and which is subject only to 
the conditions 

(5)  a ( u , . ,  w) = - g ( -  ,.,, - ~, - w), g (o ,  o, o) = o. 

We emphasize that beyond these restrictions, g is general in the widest 
sense. Then, a s  a special consequence Of a theorem-on trigonometric 
identities established elsewhere~), we can infer from the identity in x, y, z, 

~,~pis in(a~x + bi y -j- clz ) ~ O, 

in which Pi, ai, bi, c~ are integers ~ 0 ,  the following, 

~ p l g ( a ~ ,  b~, c~) = O. 

Hence, the summations being as in (3) ,  we may assert that (3) implies 

(~) Z (~, - z, - t.~ = z,)g(1.~ + ~,, ~, + l~, l~ § ~,) 

--_ ~ ' ~ ( _  1 ) � 8 9  ' ) m , a ( m , + m , , m . , . n t _ m a ,  m:._l_m,), 

*) Transactions of the /~morlean Math. Socioty, 22 (1921). p. 5. 
10" 
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Oonversely, it is obvious that (6) implies (3), which evidently im- 
plies (2) and (1). For if with Jacob i  (loc. cit. p..501) we take as de- 
finitions of the theta functions their expansions as power series in q, it 
is clear that, as a relation between series, (3) implies (2). Hence (2), 
(6) are equivalent. 

3. The very light conditions (5) can be satisfied in many ways which 
still leave a wide margin of generality, and which severally lead to re- 
suits of arithmetical interest. Let (x, y, Z) denote any permutation of 
(u, v, w). Then g(u, v, w~ in (6) may be replaced by any one of the 
following, in which the appropriate restrictions are indicated by the equations: 

g , ( x , y , z ) = - - g l ( - - x , y , z ) - ~ g ( x , - - y ,  " z ) , g ( O , y , z ) = O ;  
g~(x, y,  z ) =  g ~ ( - x ,  y, z ) =  - g , (x ,  - y, - z ) ,  g~(x, 0, 0 ) = o ;  

g . (~ ,  y , ~ ) =  - g f ( -  x , ~ ,  z) = g ~ ( ~ ,  - y . ~ ) =  g~(~, y, " z ) g ( o , y , z ) - -  o; 

g, (~,, y ,  ~) = - g, ( -  ~,  y ,  z )  = - g, (~,  - y ,  ~) = - a,  (~,  y ,  - z ) ,  

g, ( o ,  y .  z)  = g, (~, o, ~) = g, (x, y , o )  = o; 

gs(x.  y) = - go ( -  ~, y) = a~ (x,  - y), g~ (0. y) = 0; 
a, (~) = - g~ ( - ~), g~ (0) = 0. 

From these we uee by inspection the forms of the most general poly- 
nomials satisfying the conditions ~imposed upon g (u , v ,  w). Let the 
a~, b i, c i denote integers > 0, the p~, qi, r~, s~ constants other than zero. 
Then the polynomials are 

2 a  ~ 2b  i -  1 

~/  2ai--1 '~b l p , ( q , x )  ( r , y )  (8 ,z)~ ~ 

P~(qi x) (riY) Lsi z) , 
( ~ 2 a l - - 1  fib 

Z,  "p,~q,~' (~,y) ' ,  

'The  functions g1 . . . .  , y6 are general beyond the restrictions stated. 
4. Let us examine the kind of information furnished by (6) in spe* 

cial cases. For this it will be sufficient to consider one simple example, 
g(u, v, w)~-uvw.  Taking this from ot g(u, v, w) in (6), and omitting 
the terms which destroy one another owing to differences of sign when 
the summations are performed over all solutions of (4), we find 

(7) ~ fl~ -- l~ ~l; + / ~ + / ~ ) 1 = 2 ~ ( - -  1)~("~'"*'"-'m,m.,mam,. 
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To reduce this, let ~ r ( n ,  a) denote the total number of representations 
of n as a sum of r squares precisely s of which are odd, and write ~ ( n )  
for the sum of the r th powers of all the divisors of n. Then by well 
known theorems we have 

N 4 (4m, O) = 8,~1 (m) ~- 1/7 .~1 (4m), 

since m is odd; and hence from (7), on using 4m -- l~ ----- l~ + l~ -[- l~ 
from (4), we find 

7 Z I z :  I -  1) 
in which n ~ 4 rood 8, and the summation extends t~ all even 11 -~ 0 and 
to .all odd m , ~ O  sat is fying 

2 2 

l.~, l a , / , ~ 0  being even. In (8) 'we may replace l~ by l;, l a or l, from 
symmetry, and hence by addition of the results, (8) is the same as 

(:9) 7 Z  ' ~ 

From this and 
_ _  ~ 7 ~. 4 -' " ," ~ ~ n ~ l~-- ~ - - o 3 - - l ~ = 2 ( l i l i + l i l ~ + . . . - f - l ~ l i )  

we find a similar relation involving l ~ l ; + . . .  + la 1,, and hence by 
symmetry since Z l~ l~ . . . . .  .~ lg 1;, we get from (8) the corresponding 
relation in which l~ is replaced by l~ l~. I~ is interesting to compare (8) 
with a somewhat similar theorem stated without proof by L iouv i l l eS) ,  
and proved arithmetically by Sterna). 

5. The identity (2) and its equivalent (6) are related through the 
representations of 4m in the pair of arithmetical forms~ given in (4). 
The further, less obvious, equivalents of (1) or (2) are related through 
one or more quadratic forms, corresponding to (4), which no longer are 
exclusively sums of squares as in the first case. A great variety of these 
more interesting equivalents can be obtained by using, as below, the 
arithmetical developments for the doubly periodic functions of the second 
kind, q~,p~ (u, v), defined by 

a~(.) O(v)" 

These functions, together with (in some eases) the doubly periodic func- 
tions of the third kind, are ~mported into ( 1 ) by multiplying it throughout 
by the same theta quotient and then rearranging the result. The process 

a) Jou r na l  des  Math6mat iques ,  (2)  8 (1858) ,  pp.  357--360. 
6) J o u r n a l  fii~ d. r.' u. a. Math. ,  105 (1889),  pp .  251--262. 
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will be sufficiently clear from the two equivalents which we derive next. 
We shall require the following development, 

in  which the outer summation refers to all odd m----l,  3, 5, . . . ,  and the 
inner to all divisors d, $ > 0 of m such that d dt -~ m. The sum enclosed 

in [] is the coefficient of q~~, and similarly in writing other series. 
This series is due to H e r m i t e  7) (in a slightly different form). 

6.  Dividing (2) throughout by ~:~(x)~93(y ) we get 

11) [,~s(x§ y--~-z)t$a(z)-- ,?:i(x+ y + z)'#.~(z)]-~ i)~(x-by+ z~O:~,(z) [ ~  aT(~ ] 

The development of q~as(x ,y)  is found from that of q:'~oo(x,Y) by 

changing x, y into x + ~,  y A- .~, 

(12) q~,.~a(x,y)----- - -  7~1o. (x  -~- ,~ .y -~- ~)  

-= 4 Z q ~ ' [ (  - 1 ) ~ ( ~ - " ~ s i n  (dx + ~y)] ;  

and from the classical series for the logarithmic derivative of V~o(U ) we 
find at once 

(13) ao(u)_--4 q"[, sin2 , 

where the outer summation extends to all positive integers n = 1 ,  2, 3, 4 . . . .  . 
and the inner to all divisors $~of n such that T is odd, t odd or even 
according as n is odd or even, and n =: t~. On substituting for the 
functions ~?..~(u), ~.~(u) their developments in (11) and likewise for the 
remaining functions from (12),  (13) ,  we find that the general coefficients 
of the general power o f  q in (11) are summed with respect to: all solu- 
tions of the following system in which n is an arbitrary integer > 0: 

�9 I P ' It I? 

s z '~ l~ ~-+-'4t.~% i14) 4n + �9 ---- m~. ~ - 2 d s  ~8, 

' ' : ~  " " " v '  ds' ,$" in which ll,l.3,1~,l.,.~O are even, ml,m.,.~<O are odd, :~, .~ > 0  are 
? 

odd, and t .~>0 is odd or even. For simplicity in writing I (15) put 
t ? ! # ~ .?t{~Ff n.~----t.~, m.~= tt.~ ~. Then, proceeding as in the derivation of (6),  we 

infer that  (11) is equivalent to 

7) Oeuvres, 4, p. )99. 
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. x , ~  [a (~,, t~, l, + t,) - g(t , ,  t~, t, + t$] 

Z (  ' ' '  ' '  ' '  (115) -J/i4 --1)"'~[g(Ii+ 2t3, l:,l:+l~)--g(l:,l:+ 2ta, l:+l~)J 

. ~ ' (  ' " " " -  d "  " . . . .  ---- 4 - -  1) ~'(~ =' m~ ~ ) f f ( m i ' +  s , m~ -{- 3"s, ma -{- m~ ) ,  

the summations extending to all solutions of the prescribed kinds for n 
fixed of the system (14). As before it .follows that  (2), (15) are equi- 
valent. 

7. The next equivalent is of particular interest because it i nvo lves  
also the divisors d, ~ of the fixed odd integer m which is separated into 
quadratic forms as follows: 

! P 

in which d, 6, dl, r d.~, 80, d~, 5:,, ~:, d~, 8~2>0 are odd, t l >  0 is odd 
or even. 

Divide (1) throughout by 

,% ( z ) a  o (y) Oo (z) #o (~ + y + z), 

and write the result in the form 

e,oo(~ + y + z, - z) ~ioo (y, z) ~io0 (x, z) 

l ' ' ~i #0 ( ~ ) (17) + ~ # ; '  l a ' o ( ' + y 4 z )  Oo(X) ";(y)] = - - . ' ~ "  " 

To give a simple equivalent of this we require in addition to the 
series (10), (13) the following 

:.~ _ ~)u i ";" = Zq [Zd.oos(d , (is) ~(. 

:19) 

in which the outer summations are as defined for (10). We need not 
stop here ~o give the derivations of (18), (19), Which can he checked in 
various ways, but remark that both can be obtained quite simply from 
(10). From (17) by means of (10), (13), (18), (19) we find the 
following equivalent of (1) in the same way as ~fore :  
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8Zig(d , -d~ ,  d, + d..,, d , - ,~ ,+ ~- -  ~ 
+ g (d~ + ~ ,  d, - -  d~, d, - a, - a~ + as) (20) 
- g (d~ § a~, d. § ~, d~ -- ~ § ~ -- a~) 

-- gi~,. d.~, d, -- d~, d~ -- ~, -- a~ -- ~)j 
I. t ~ r ? r I I F 4 ~,  d2[gi,2t,, ,,,t,, 2ttd-- d.~ &2) q-- g (2~., 2t,, 2t~-- d,.-~ ~) 

. , ,  ; . , ? - I ' t I 

- g~ .2 t ,  o, d ~ -  ~ )  - g(2~, ,  O, - -  d ~ +  a~) 
f ,,, r 

- g ( 0 ,  2 t , ,  d.,-a') - g ( o ,  2 t , ,  - d ; +  a~)] 

=~Y' (a  ~ -  m)g(O, 0, d -- a), 

the summation extending ~or m constant to all  so|uflons of (16) of the 
kinds prescribed. 

( Eingegangen am 11. August 1921.) 


