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Figure S1 — Additional trend plots at TET1 peaks overlapping TEs. A) ChIP-seq data
displaying the epigenomic profiles of TET1 peaks overlapping different TE classes.
B) Trend plots from TET2 ChlP-seq data at TE-overlapping TET1 peaks.
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Figure S2 — Analysis of BS-seq and TAB-seq data at additional TE classes. TET1-
bound copies tend to have higher 5hmC levels and concomitantly lower 5SmC. ***

p<0.001, Wilcoxon test.
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Figure S3 — BS-seq and TAB-seq data at L1Tf elements. A) Data from WT, Tet7 KO
and Tet2 KO ESCs were aligned to a L1Tf element, confirming that TET enzymes
maintain the 5° UTR of L1Tf elements hypomethylated, with TET2 being the main
contributor to 5hmC levels. B) 5mC/5hmC levels within the 5° UTR were extracted
from the L1Tf profile in (A). C) A similar analysis of the 5° UTR of L1Tf was done
using BS-seq data from WT and Tet1/Tet3 double knockout blastocysts.
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Figure S4 — RNA-seq data analysis. A) The total relative amount of RNA from each
repeat class was plotted for control and TET-depleted ESCs; TET1-bound TE
classes are highlighted in blue; only the LTRs of MERVL elements (MT2), which are
not TET1 targets, were found to be differentially expressed. B) Average expression
levels for selected TE classes were extracted from RNA-seq data from five biological
replicates. C) Examples of genes found to be differentially expressed in TET1- or
TET2-depleted ESCs. RNA-seq was performed in 5 biological replicates. D) L1
expression levels extracted from RNA-seq data from WT and Tet1/Tet3 double
knockout blastocysts. * p<0.05, *** p<0.001, corrected p-values from DESeq2.
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Figure S5 — Small RNA-seq analysis. A) Reads from RNAs ranging 19-32 nt in size
were aligned using inclusive mapping and the total levels of small RNAs overlapping
L1 elements plotted (note that the peak in the middle of L1Tf is a mapping artefact);

no changes were observed upon TET depletion. B) Reads mapping to the 5° UTR of
young L1s (L1A, L1Tf, L1Gf) were analysed with respect to their size distribution; no
changes are seen in these profiles in TET-depleted cells. Small RNA-seq was

performed in 2 biological replicates.
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Figure S6 — ChIP data at L1s in TET-deficient ESCs. A) ChIP-seq profiles at TET1
peaks overlapping L1 elements in WT, Tet1 KO or Tet2 KO ESCs. B) ChIP-gPCR
data for histone modifications across multiple biological replicates (n=3-7) of TET1 or
TET2 shRNA experiments. C) OCT4 binding at the 5 UTR of L1s is impaired upon
TET1 depletion (representative replicate from n=3).
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Figure S7 — Additional data on the effects of SIN3A and O-GIcNAc modulation. A)
Northern blot data confirms that full-length L1Tf elements are upregulated upon OGT
or SIN3A depletion (n=3). B) Western blot further shows that ORF1p protein levels
are also elevated in OGT or SIN3A knockdowns. C) Western blot confirming that
inhibition of O-GIcNAc hydrolase by PUGNACc led to raised cellular levels of O-
GIcNAc. D) PUGNACc causes a mild increase in the RNA levels of L1s, but not of
other TEs that are not TET1 targets (n=4); note that OGT levels are lower in
PUGNAc-treated cells, potentially confounding the results. * p<0.05, p < 0.01,
ANOVA with post-hoc test (A) or paired t-test (D).
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Figure S8 — SIN3A profile in human ESCs. SIN3A ChlIP-seq data from human ESCs
were aligned to L1.4, revealing enrichment at the 5’ UTR, similar to what is seen in
mouse ESCs.
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Figure S9 — L1 methylation levels in vivo and in ESCs grown under different
conditions. Publically available BS-seq data were aligned to L1, and the methylation
levels for CpGs at the 5 UTR covered in all datasets were extracted. L1 methylation
levels in blastocysts and ICM are comparable to those seen in serum-grown ESCs,
whereas 2i-grown cells have substantially lower levels. In cells transitioning from
serum to 2i conditions (brown boxplots), intermediate levels of L1 methylation are
seen, with vitamin C driving rapid demethylation of L1s to lower levels than those
seen in vivo.



