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invariants (p. 67 of his paper). Here (d) = O certainly appears to
involve (f) = 0; but this is only the case either if &} = w, or if
k=0. Neither of these conditions enables us to satisfy the funda-

"mental property stated above; the true condition is not easily
expressed in terms of the coefficiénts which are there employed ; for,
if the true condition be satisfied, k = w0, while kw,, kw, are finite.

The Theorem of Residuation, Noether’s Theorem, and the Riemann-
Roch Theorem. By F. S. Macavtay. Received March 28th,
1899. Read April 13th, 1899.

The following paper is more in the nature of an essay than of a
rigorous investigation. Its object is to advance and explain general -
notions rather than to give incontrovertible proofs of all the state-
ments made. Sections I. and II. contain a discussion of the most
general aspect of the Theorem of Residuation, and lead, in Section III.,
to an analytical and generalized interpretation of results previously
deduced geometrically.  (Proc. Lond. Math. Soc., Vol. xxix.,
pp- 673-695.)

The fundamental idea of the paper is & very simple one, viz., that
the whole intersection of two given curves (), C, at a common point
A may be resolved into an equivalent aggregate, a, of simple points,
no matter how complex the forms of the two curves at 4 may be.
These a points are brought into evidence analytically by the fact that
"they supply a independent linear equations for the cocflicients of a
general algebraic curve of sufficiently high order. It is highly
probable that the a equations could always be written in such a form,
and arranged in such order, that each new equation, interpreted in
connexion with those which precede it and apart from those which
succeed it, expresses the condition, that the curve passes through a
new point, or, more strictly, possesses a property equivalent to that
of passing through a new point. Such an arrangement is not, how-
ever, attempted per se in the paper. e

The fundamental notion of a complex peint being equivalent to
an aggregate of simple points is in no sense a novel one; but its
very simplicity has been considered as liable to lead to erroneous
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deductions. That there is, however, much inherent possibility of useful-
ness in the idea cannot reasonably be disputed. In particular, the re-
solution of a complex point into its equivalent simple points affords
a means of viewing the theorem of residuation in its most general
and extended aspect.

Several lengthy paragraphs of proof or explanation in Section I.
have been relegated to footnotes, in order to obscure as little as
possible the sequence of ideas.

I. The Qeneral Theorem of Residuation.

We assume as our starting point the fundamental theorem that if
the whole intersection of two given algebraic plane curves C,, C,
consists of lm separate points, then the equation of any other curve
0, which passes through these lm points is capable of being written

in the form*
Ou = Ol Sn-l+ Om Sn-m = O'

Conversely, any cuarve whose equation is of this form passes through
the Im points, as is evident.

If, however, C,, 0, have & common multiple point at 4 (with or
without contact), then, although they have at 4, strictly speaking,
but one common point, their whole intersection at A is equivalent to
a certain -definite number of simple points, which have become
absorbed in the single point 4. If we imagine an infinitesimal
chango imposed on the two curves C, 0,, by an infinitesimal varia-
tion of their coefficientst (including, if desirable, the adding of terms |,
with infinitesimal coefficients beyond those of highest ovder in C,, C,,),
then the whole intersection of the two curves becomes in general
changed to simple and scpavate points, the infinitesimally displaced
curves having nowhere any absolute contact.

If now any curve obtuined by a like infinitesimal change of O,
passes through all the separate points, we have at once

Cu = Ol Su-l+ CmSn~nu

since this identity will hold for the infinitesimally displaced curves,
by our original theorem.

¢ Noother, Mathematische Annalen, Vol. 11., p. 314. In order to exclude apparent
exceptions to the theorem it should be nssumcg that all the points of intersection of
¢y, C,, are in tho finite region. (Sco footnoto, p- 18.)

-1 The method of infinitcsimal variation in the coefficients is employed by Halphen
(Le., footnote, p.21). The method has been chullenged, on insufficient ground,
in my estimation, as lacking clearness and rigour.
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Hence the two following statements, properly interpreted, ave
absolutely equivalent, und will be hereafter treated as such:—

(1.) C, passes through the whole intersection of Cy, O,,.

(ii.) O, is of the form C,8,.1+ C, S, .

We may also express the equivalence as follows :—

It cannot, in any valid sense, be said that O, passes through the whole
tntersection of i, C,, unless U, is of the form C,S, .1+ C.. S, ...

The meaning of statement (i.) is that there exists one pair of curves
which are infinitesimal displacements of Ci, O, and intersect wholly
in separate points, to which corresponds e curve which is an infini-
tesimal displacement of C, and passes through all the separate points.
This being true of one such displacement of C, C,, is true of any,
since it at once gives

Cn = Ol Sn-l+ OmSn-m'

' The general theorem of residuation is contained, in an undeveloped
or embryonic form, in the absolute equivalence of statements (i.) and
(ii.) above. Hence an investigation of all the properties involved in
the theorem of residuation may be made to rest on an investigation
of the properties of the curves which are of the form C, 8.+ C.. S,_,.*

¢ More definitely, it depends on an investigation of the conditions which must be
satisfied by-three unknown curves 8, §, 8” in order that €8+ C¢'S8' + C’8” may bo
{dentically zero, €', C” being any two given curves, and C any curve of a given
linear system, the conditions for § having to be indepoudent of the arbitrary
purameters involved in C (p. 20).

The neccessary and sufficient number of independent lincar equations that the
cucfticionts of €, must satisfy in order that ), may be of the form C;8,.1+ CpSu-m

(Ciy Cus having no common fuctor) is exactly Im if » > I+m, and
Im—% (I +m—n—1)(l+m—n—2)

if 7 i3 less than !+ m but not less than Zor m.  Zhis is true no matter how gencral or
-specialized the forms of Ci, C,, muy be, subject to the condition mentioncd, and is proved in
the Proe. Lond. Math. Soc., Vol. XxvL., p. 503. Oncrosult of this theorem is that none
of the equations among the coeflicients of €, which express the condition thut ¢,
pusses through the whole interscction of €, C,, aro lost by virtue of the fact of any
number of the points of intersection of €, €, becoming absorbed in a single point.
Iu counexion with the above theorem there is, however, a paradox, which, like
other geometricul paradoxes, leads to importunt consequences. If the enrvo (), is
© degenerute, i.e., if €, = () Cy», then the total number of indopendent cquations
may bo very much reduced. Theindependent linear equations for the cocflicients of
'y will not be linear in the cocflicients of €y, €y, and will not be independent if
G, C have any common multiple points. The reason is that, if Ci, C, have a
common multiple point at 4, the form of their whole interscction at A
_may be assumed to some extent arbitrarily. If, for example, G be subject
to the siugle condition of passing through 4, € aud ¢, muy bo assumed to
have i of their simple points of intersection at oL on €, i being the smuller of the
two orders of the multiplo points of €, C,, at L. On tho other hand, if another
curve Yuss through these i points, it will be subjcct to, not 1, but i, conditions, C-
being known. It is to be understood that C, and Cu~ ure mutually connected.

VOL. XXXI.—No. 680. c
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This method of procedure, simple as it may appear at first sight, has
not, so far as I know, been anywhere elaborated. This may be re-
garded as o justification for attempting the imperfect elaboration
which follows.

In the vest of this paper we shall assume that C, C. have no
common point at an infinitely great distance from the origin.* If
this is not actually the case, we can choose a line, ax+ by = 1, which
neither passes through, nor infinitely near to, any common point
of C, C,., and then linearly transform C, C, by substituting
&ty tad’+by’'—1 for w:y:1. This ensures that the desired
property shall hold for the transformed curves, and we may deal
with these in the place of C, C..

Our next consideration is that of a cuvve C,, or rauther the general
enrve 0 = X'C' +X"C"+A"0" + ... of a given linear system C', C", ...,
which is not of the form C,8,.,+C,S,.,.. We require an answer
to the following question :—What is the number of the lm points of

* Two of the many reasons for making this assumption are the following :—

(i.) In varying the coefticients, whereby coincident points are changed to separate
points, it is sometimes necessary to add infinitesimal terms to (i, C., extending
beyond the terms of highest order in Ci, €,,., When this is the case the infini-
tesimnally displaced enrves will have a common group of asymptotic points in addition
to a common group of /m points corresponding to the whole intersection of €, Ci.

“Whennone of the im points are asymptotic, the two groups of points are absolutely
distinct, one gronp being entirely in the finite region, and the other being entirely
in the infinite rcegion. If, on the other hand, some of the /m points are asymptotic,
the two sets of asymptotic points wonld have to be dissociated from one another,
which might provo a troublesomo matter. .

(ii.) Onp. 677 of Vol. xxix. of the Proc. Lond. Muthk. Soc. the value found for
ppy 43 the number of arbitrary coeflicients in #,, is only valid if all the .V points are
in the finite region, a limitation which proviously escaped notice. This interpreta-
tion of the value of p, constitutes, in onr method, the connecting link between the
geometrical and analytical formulation of results (pp. 27, 28). Heuce, in using
this value for p,, withont moditication, it is essential that none of the N points
should escape to an infinite distance.

The disadvantage of the condition that €, €, are to have no common asymptotic
points is that the actual labour of any operations comnected with them may be
thereby materially increased. :

The case in which two curves have no common asymptotic points bears a ciose
analogy to the * simple”’ case of the intersection of two curves at a common
multiple point which have no contact of branches. There is, however, this differ-
ence, thut we know nothing about two given curves in the region of absoluteinfinity
(as distinguished from the infinite region), whereas we do know the course of a
given curve as it emerges from the infinitely small region surronnding a multiple

point.
! It is well to note that the n-ic excess of a given puint-group .V is that number of
the & equations supplied by the poiut-group for a general x-ic which are identically

.satisfied, owing to the values of the coefticients of the termis of the u-ic beyoud the
2" order being all zero. In other words, the n-ic excess of a point-group is that
numnber of the points whose etfect for an n-ic is lost ov nugatory, owing to the fuct
that the form of any algebraic curve at ubsolute infinity is indeterminate.
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intersection of (), C,, which the general curve C of the system may
be said to pass through ? If C passes through no multiple points
common to 0, C,, the answer is of course obvious, although the case
where C, C;, C,, have all three contact of a higher order than the first
has to be carefully treated. But,if C, (), C, have one or more
common multiple points, the answer is not obvious. The answer in
this case depends on whether the given linear system C is defined by
the geometrical conditions of passing through a given point-base,* or
by the analytical conditions of being comprised in a given linear
form. For analytical theory an answer may be given as folows:—

The maximum number of (simple) points which the general curve
C of a given linear system (', ", ... may be said to have in common
with C, C,, is N =Im—N’, where N'is the number of indcpend-
ent linear equations which must be satisfied by the cocfficients
of a general polynomial S, of order not less than I+4+m—2, in order
that CS may be of the form C,8' +C,. 8", ¢.c., in order that C'S, C’8S, ...
may one and all be of the form C,8"+C,, S".+

* A point-base of a.sximple kind is defined in the footnote, Proe. Lond. Math. Soec.,
Vol. xx1x., p. 676 ; but in this paper the term is used in its most general meaning.
A set of a independent linear equations among the coeflicicnts of a general poly-
nomial 8, giving to the curve § a property equivalent to that of paussing through
a rimple points all situated at .4, determines a basc-point at A of degree a and order
equal to the order of the mnltiple point which the curve § must have at A.
base-point may thus be defined as « point-group cvllected at a point, and may have pro-
perties just as varvied as those of a point-group in vespeet to ovder, deyree, cxcess,
and defect. A point-base is made up of base-points, its degrec being the sum of the
degrees of its base-points, and ita order being the order of the lowest enrve which
passes through it. If the basc-points are all simple points finitely separated, the
point-base is called a point-group.

Examples of point-bares (N, &¥’) occur in this scction, and examples of base-
points in the next section. Base-points which determine no dircctions, much less
curvatures, beyond those which are inherent in the specification of a higher
singularity, may be called simple base-points. They arc of two kinds:—(i.) the
ordinary ¢-point (i > 1), of degree 4i (i+1) and order i, which gives an ordinary
i-fold point to any cnrve, and (ii.) the k-point of degree S2i(i+1) and order &

. (& being the greatest of the i’s), specifying the componcut i-points of a higher singu-
larity, with the directions aund curvatures, &c., which determine the situations of
the component i-points relative to the point itself.

1 The reasoning by which this conclusion seoms to he justified is as follows : —.
We imagine such infinitesimal changes to be made in ¢}, €, €', €”, ... that the
curves to which ¢}, C,, are changed have Zn separate points of intersection in the
finite region, while the whole set of enurver to which €, C,,, €', C”, ... arc changed
have the greatest possible number .V of these Zm separate points in common, It
gecms probable that the infinitesimal terms to be added to ¢y, C,, need not extend
beyond the terms of orders Z and 2 ; but the truth of this is not evident, and we
therefore suppose that Ci, C,, are changed to Cp, Cy, where ¥ >  w' > m. The
curves Cr, O, therefore intersect in ' — Im points in the infinite region, besides
the m points in the finite region. Taking now ¢/, 7, ... to denote the curves fo
which the original €', €”, ... are changed, we may suppose, by continuing the

c 2
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The points common to C,, C,, through which C does not pass (N”in
number) are the points through which S does pass, by virtue of the
N’ independent linear equations satistied by the coeflicients of S.
The theorem of residuation treated analytically thus leads to the
extremely difficult problem of determining the most general linear
system 8, of order not less than !4 m — 2, which satisfies the identity

CS=08+Cn8"

for all values of the arbitrary parameters involved in C. Theoreti-
cally, however, S is absolutely determinate, and without ambiguity,
since the determination depends only on the solution of linear equa-
tions. Also, having determined S, we can determine the most
gencral system I, of order not less than I+ m—2, which satisfies the

identity KS=0,84C,8

for all values of the arbitrary parameters involved in S.* The lincar
system I constitutes the * complete” system, through N, which
contains the given system €. The equations for the coeflicients of
K will express the fact that K passes through the N = lm— N’ points
common to Cy, C, and the system C. If we substitute the coefficients

infinitosimal terms of ¢/, €”, ... far enough beyond their original terms of highest
order, that ¢’, ¢”, ... not only all pass through the IV points, but also through the
whole of the I'm’—lm points ; for the conditions of their passing through these affect
only the cocflicients of thoir terms of higher order, that is, terins with infinitesimal
cocflicients which may be choscn in any way desirable, these terms extending to an
order as high as we please. The conditions that €S, €S, ... should each be of the
form Cp S + Cpe 8” now only require that § should pass through the rewnaining
N’ = lm— N of the Im points. The coeflicients of § have then only to satisfy N
conditional equations. These equations are not only independent, but must con-
tinue to remain independent when all tho infinitesimal parts of tho cocfficients of
Cry Cyry €'y C”, ... become zero, provided ounly that S is of sufficiently high order.
This number N’ ir thercforo the irreducible minimum of indepeundent eguations
which must exist for §, i.e,, it is the same as the number &’ in the text. This
proves our theorem,

Also thoe condition that X should be of the form Cy 8’ 4 Cnr §” only requires that
X should pass through the ¥ points and the #m’—Im points. But, assuming A (liko
¢, ¢”, ...) to have infinitesimal terms proceeding far enough, the conditional equa-
tions corresponding to the I'm’ — i points will affect ouly the infinitesiinal cocflicients
of X, and the only equations among the finito coefficients of I are those sgplied
by the IV points. It is to be noticed that A and § arc not mutually connected.

¢ The number of independent equations for the coefficients of I will bo V. This
is proved in the last footnote. If A were taken of less order than !+m—2, the
number of independent equations might be less than N. See, however, the last
paragraph of the paper, p. 30.

The fact that only N = Im— N equations have to be satisfied Ly the coefficients
of K, notwithstanding that § has all but iV’ of its cocfticients arbitrary, is a special
property. This property ought to be capable of direct analytical proof; and the
same remark applies to properties mentioned later, pp. 24-26.
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of any curve of the system C for the coefficients of K in the N
equations, we shall obtain a set of NV identities among the coefficients
of C,, C,, ¢, 0", ... which will not of course be linear in any of these
coeflicients.

If now we take C,, as base-curve, the two point-bases N, N’ (foot-
note, p. 19) are residunal, having C; for their connecting curve; while
N is the point-base of highest degree on C,, through which C,, ", C”, ...
all pass. The general system S through N’ cuts C,, for the rest in
the whole scries of point-bases coresidual to N.  So also the general
systema I through N (which includes the linear system C) cuts (0,
for the rest in the whole series of point-bases residual to N.
Finally any two curves of the systems K, S throngh N, N’ ¢ut
C. again in two residual point-bases for which S’ is the connecting
curve. This is the general theorem of residuation on the base-
curve C,,.

I1. Nocther's Fundamental Theorem.

Denoting by C,, C,,, C, given non-homogencouns polynomials in two
. . ’
variables @, y, of orders I, m, n, and by S, S, &c., nnknown poly-
nominls to be chosen as desired, we may enunciate Noether's
“fundamental theorem in the theory of Algebraic Functions” as
follows :¥—

The necessary and sufficient conditions that C, may be capable of
being written in the form
Cl‘s’n—l'+ Cmsu-m

are that for each and every point of intersection € =a, y =1b of the two
curves Cy = 0, C,, = 0 there should caist a curve

c.—CS-C.8" =0

which has @ t-fold point bt x=a, y =10, the number ¢ Laving any

® The following papers in tho Mathematische Annalen directly disenss Noether’s
theorem :—

Vol. vi., 1873, pp. 351-359 (M. Noether) ; xxvir., 1886, pp. 527-536 (A. Vosx) ;
XXX., 1887, pp..401-409 (L. Stickelberger); pp. 410-417 (Nocther) ; xxxiv.,
1839, pp. 447-449 (. Bertini) ; pp. 450-453 (Nocther) ; xxxix., 1891, pp. 129-141
(A. Brill) ; xr., 1892, pp. 140-144 (Nocther) ; xrim., 1893, pp. 601-604 (I1. I.
Baker).

One) of the most intercsting proofs of Nocther's theorem is that by M. Ifalphen
in the Bulletin de lu Société Mathématique de France, Vol. v., 1877, pp. 160-163 (re-
produced in Clebsch-Benoist, Legons sur ln Géométric, Vol. 11., 1880, pp. 49-51).
Ialphen, however, assumes a result which appears to recquire proof. This proof
has been supplied by A. Berry in the Droc. Land. Muath. See., Vol XxX.,
pPp. 271-276. (Sce also scecond fuotnote, p. 16.)
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yntegral value not less than a certain mintmum, which minimum depends
on the character of the whole tntersection of the two curves C;= 0, C,,=0
af the point ¢ =a, y =b. 8', 8" may be different for different points.

A short explanation will serve to make the theorem clear. In the
first place the conditions of the theorem are obviously necessary, no
matter how large { may be; for this is at once seen by taking
8= 8., 8” = 8,.,.. The only question then is as to the sufficiency
of the conditions.

Consider the simplest example to which the theorem applies; viz.,
when C,, C,, are single-branched and do not touch at the common
point a, b, so that their whole intersection at a, b consists of one
simple point. By taking ¢ =1, it is seen that the conditions of the
theorem require that C, should pass through the point @, b. And
the conditions of the theorem require no more than this; for it can
be easily proved, by taking the point a, b as origin and the tangents
to Cj, C., as axes of coordinates, that, provided only C, passes through
the origin, S’, 8" can be so chosen that the curve

c.—08-0,8"=0

has a multiple point of any desired order (from 1 upwards) at the
origin. In this simplest case of all the minimum value of ¢ is there-
fore unity.

So, in the most general case, however complex the character of
the whole intersection of C;, C,, at the point a, b may be, Noether
proves it to be sufficient, in order to know that C, is of the form
Ci8,-1+ C,, S, _, that S, §” can be found such that the curve

C.—C8-C,8"=0

has a multiple point of sufficiently high order at a, b, with similar
conditions for each point of intersection of the curves C,, C,.

The conditions of the theorem require that for every point of inter-
section of C,, C,, there should exist two curves S’, §” such that C, ¢s
the same as 0,8+ C,,S” to any degree of approximation; and, this
being so, the condition is satisfied for every point in the plane.
Looked at in this light the significance of the theorem is readily
comprehended.

The only modifications that have been made in the theorem since
Noether first gave it (I.c., Vol. v1.) relate to the determination of the
minimum value of £. The knowledge of the minimum is of some
interest, but has not yet been proved to be of any essential importance,
except in the two cases (ii.) and (iv.) below.
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(i.) The number ¢ need not exceed the number, a, of simple points to
which the whole intersection of C;, C,, at a, b is equivalent (Brill, Z.c.).
This is the minimum value of ¢ if, and only if, one at least of the
two curves O, C,, is single-branched at the point a, b; but in this
case simpler conditions can be substituted for those of the theorem,
viz., that C, should have contact of order a—1 at a, b with the
single-branched curve.

(ii.) If G, C, have respectively i-fold and j-fold points at a, b,
and have no contact (so that ¢j is- the number of simple points to
which their whole intersection at a, b is equivalent), the minimum
value of ¢ is 7+j5—1 (Noether, L¢., Vol. v1.).

This is called the * simple "’ case.*

(i) If ¢, C, have i-fold and j-fold points at a, b, and their
whole intersection at a, b is equivalent to ¢j+ @ simple points, the
minimum value of ¢ does not exceed 1+j+8—1. (Bertini, l.c.)

(iv.) If O, C,, have multiple points of higher singularity at a, b
which can be resolved into ordinary multiple points (including
ordinary cusps) common to C,, C,,, of which any one pair of corre-
sponding components is i-fold for C, and j-fold for C,, with the
corresponding whole intersection equivalent to 7j simple points, then
it is sufficient that C,— (1§’ —C,, 8" should have a multiple point of
higher singularity at a, b whose corresponding component is of order
i+j—1. (Noether, l.c., Vol. xxx1v.)

As regards its application to the theorem of residuation Noether's
theorem seems open to criticism. Noether possibly did not regard his
theorem from this point of view when he first gave it, but subsequently
both he and others have so regarded it. It should at least be made
clear that the conditions in the theorem supply a theoretical rather
than a practical test ; but the direct contrary seems to be implied in
much that is written on the subject. Although a great step
towards the general theorem of residuation, it does not advance the
whole way. The theorem only gives us a test for answering the
question whether C, is of the form 0;8,.,+C, S, .. or not, whereas,
as we have seen in Section I., we want to know the conditions
which S must satisfy in order that CS (C being partially or wholly

¢ The ** simple’’ case requires only that the two curves have no contact at the
common multiple point. The two multiple points may be of any kind of singularity
provided this condition holds.
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given) may be of the form (;S'+C,8”. The latter question in-
cludes the former, but the former does not include the latter.

It will be seen that Noether's theorem supplies us with a sufficiency
of locul tests for deciding, in the most general case, whether O, is of
the form 0,8,.:4+0.8,_, or not; or rather, as we should prefer to
say, it provides a local test for deciding whether C, does or does not

" pass through the whole intersection of C,, 0, at & common multiple
point. The local tests are quite independent of one another ; and, if
satisfied at every point of intersection of (i, C,,, the final result follows
that C, is of the form C,S,.;+C,. S,.,.. We proceed to explain how
much is theoretically required for the satisfying of Noether’s tests.

The number of simple points to which the whole intersection of
C, C,, at a common multiple point is equivalent may be found by
taking the multiple point as origin and equating coeflicients in the

identi
1dentaty 8 +0,8 =5,

where 3, §’, 8” are general ordinary power series, i.e. unterminated
series arranged in ascending positive integral powers of z, y. The
number of independent linear cquations that result for the coefficients
of X alone is the number of simple points required.*

For the equating of coefficients, write the identity

CS'+C,S8" =3
in the form

Ci(wg+u+uz+...)+C,, (ug' o) +ug’+...) = wgtu +uy+ ...,

where 1, as usual, stands for a homogeneous polynomial in 2, y of
order p. Arrange the equations in sets, the p set coming from the
equating of coefficients of terms of order p—1. The (p+1)™" set of
equations will involve the coefficients of w,, #)_;, %, (i, § being the
orders of the multiple points of C,, C,, at the origin) together with
the coefficients of 3, S’, §” which have appeared in the p previous

¢ Assuming that the number of equations, a;, for the cocfficients of X does
not exceed the number, a, of the simple points of intersection of €, C» which are
absorbed at the origin, it can be proved that a, = a as follows : —If we substitute
for X a general polynomial S, of sufficiently high order » > l+m—2 (§, §”
being still power series), the equations for the coefficients of S, will be g, in
number ; and, if we add to these all the other equations for S, corresponding
to the other points of intersection of i, C,, we shall obtain a total of 3, equa-
tions, i.e. & number of equations not exceeding Za or /m. But these equations,
in their totality, require &, to be of the form CiS,.1+ C,Su-m, by Noether’s
theorem, and are therefore equivalent to /m independent equations (footnote, p. 17).
Hence Za, is not less than #n, and assuming it is not greater than /m, from above,
we have Za, = /m = Za ; therefore a; = a, 8, = B, &e. :
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gets of equations. If the (p+1)* set is the first which does not
supply any new equations for the coefficients of 3 alone, that is, if
the first p+ 1 sets are such that the coefficients of §’, S cannot all
be eliminated 80 as to result in an equation which involves the co-
efficients of w,, then, and not till then, the equating of coefficients may
stop. From the first p sets the coefficients of §’, 8" may then be
‘eliminated so as to give -all the equations which hold for the co-
efficients of 5 alone. It goes without saying that this- method can-
not in general be carried out practically.

The number p is the minimum value of £ mentioned in the enuncia-
tion of Noether's theorem. It seems impracticable, and of no
great consequence, to find a simple and general analytical formula
for it.

The above is an extension to the general case of a method (or
illustration) employed by Noether for the “simple’ case in the
Math. Ann., Vol. vi. Noether assumes without proof that the
equations, taken in sets, actually determine the coefficients of S’, S”
in terms of those of X, This is true in the ‘ simple,” but not in the
general, case. For example, if :

015y2+a:v’+---, GmE?/z"'bz"*"'"

the first two sets of the equations only involve «, and the coefficients
of u,, which are zero ; the third set brings in u; and %", but does not
determine both; the fourth set determines u; and «;, but not the
newly introduced coefficients of u; and «;"; while the fifth set is the
first which does not supply any new equations for the coefficients of
3 alone. The minimum value of ¢ is 4 in this example.

By determining all the independent equations for the coefficients
of =, and making them all to hold when O'S, C”’S, C"”'8S, ... ave substi-
tuted for 3, we obtain all the independent equations which must
hold for the coefficients of S; and we thus determine the most
general system S such that any curve of the system CS passes
through the whole intersection of C,, C,, at the origin. 71he number
of independent equntions for the coefficients of § will always be less
than the number for 3, provided all the curves of the system C pass
through the origin. The difference gives the number of simple
points common to C, C,, at the origin through which the general
curve of the system C may be supposed to pass. Also the difference
will be the number of independent equations that must hold for the
coefficients of a general polynomial K in order that K'S may be of
the form 3, or ;8- C,, 8", to the necessary degree of approximation
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at the origin. In other words, the number of independent equations
for the coefficients of K together with the number of independent
equations for the coefficients of 8 will be equal to the number of
independent equations for the coefficients of =, or the number of
simple points to which the whole intersection of C,, C,, at the origin
is equivalent. From these systems S and K, which satisfy local
conditiouns at one place only, we can proceed to those systems S and
K which satisfy the like conditions at as many places as we please,
and, in particular, at all places, as on p. 20.

The theorem of residuation is, however, essentially of a geometrical
character ; and the problems it suggests are not likely to be com-
" pletely solved without the free nse of geometrical methods. We can
solve, by the aid of geometry, the problem of the determination of
the general linear systems S and K for (at least) that case in which
the linear system C reduces to a single fixed curve. I hope to prove
this, and other statements made in this section, in a later paper.

ITI. The Generalized Riemann-Roch Theorem.

By the generalized Riemann-Roch theorem we mean the theorem
given on pp. 526, 527 of Vol. xxv1. of the Proc. Lond. Math. Soc.,
which is restated in a more convenient form at the beginning of the
footnote on p. 688 of Vol. xxix. The proof in Vol. xxvr. holds for
the general case if the theorem of residuation is assumed to hold
generally. The theorem is applied below to the general case.

‘We suppose the general curve C of the given linear system
C’, C”,... to have no fixed constituent. We may then choose two
curves C;, C,, of the system, whose orders are as low as possible, so
as to have no common constituent; and we assume their whole inter-
section to lie in the finite region.

‘We have explained in Section I. that the least degree N''of the
whole point-base common to C;, C,, which is not common to all the
members of the linear system is the number of independent linear
equations that must be satisfied by the coefficients of a general poly-
nomial S, of order I+ m—2, in order that the identity

c8§=08+0,8"

may hold for all values of the arbitrary parameters involved in C.
It may be observed in passing that the identity of the polynomials
0S and C,S8’+C,.S"” is a very different thing from the identity of the
same expressions when, as in Section II., S, §’, 8” are unterminated
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power series. The latter case only requires the equating of- co-
efficients from the beginning, arriving at a stage where it may stop ;
but the former case requires the equating of coefficients to the end
bringing no new unknown coefficients into the new equations after
a certain time. '

We imagine now that all the coefficients of S°, S” have been
eliminated and that we have all the resulting equations for the co-
efficients of S.

‘We suppose the N’ equations for the coefficients of S to be solved
in the following way:—Suppose S = wy+u,+us+... +u,p-g. The
coefficient %, may be determined in terms of the remainder from one
of the equations, and its value substituted in the rest, so that we get
a new set of N'—1 equations from which u, has been eliminated.
From this new set of equations the coefficients of u, may be deter-
mined, and their values substituted in the rest of the equations.
From the new set of equations the coeflicients of u; may be deter-
mined, and their values substituted in the rest of the equations; and
so on. Suppose that all the coefficients of wu,+u+...4u,., ave
determinable in this manner, but that all the coefficients of w, cannot

~be so determined. This last must happen if N’ <1 (p+1)(p+2);

and it may also happen if N 2 § (p+1)(p+2).

The fact that all the coeﬁiclents of wy+u;+...+u,_, are deter-
minable in terms of the remaining. coefficients of S accounts for
3p (p+1) of the N’ equations, so that there are N'—ip(p+1)
equations among the coefficients of wu,+...+% 4m-2. Also, if all the
coefficients of u, are not determinable in terms of the coefficients of
U1+ ... + 1, g, then there are a certain number p, of the coeflicients
of u, which are arbitrary ;* while there willbe N'+p,—% (p+1)(p+2)
equations among the coeflicients of u,,,+... +u,,,,._g. Solving this
new set of equations for the coefficients of u,,,, it will be found that
there are a certain number p,,, of these which are arbitrary, where
pper > Py The Umits of possibility of the value of py.\ ave p,+1 and
p+2. Proceeding in this method of solving, the whole N’ equations
will in time become exhausted (say) when a certain number of the

* The way in which this may happen, even when N" 2 A (p+1)(p+ 2), is that
some of the coefficients of u, cannot be determined separately, but only in sets of
two or more. A set being determined may be said to determine one in the set,
whichever one we like, leaving the rest in the set arbitrary. If the elimination uf
all the coefficients of «, should result in the complete disappearance of some of the
coefficients of w41+ ...+ 4m-2 from the N'+p,—3(p+1)(p+2) equations, such
coefficients would be nrbltrdry
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coefficients of u, have been determined in terms of the arbitrary
coefficients of u, and the coefficients of %,,1+ ... +%;,m-5 Which last
are therefore all arbitrary. We ought then to have

N'+pt+ppnt...¥p,=35(g+1)(g+2),
and g+1>p,>p 1> >p, > 0.

The N' equations become exhausted as soon as p,,, = ¢+2. This
would not, however, be the case if ¢}, C,, had any asymptotic points
in common, through which the general curve C of the linear system
did not pass; for then there would be equa.tlons in which only the
coefficients of the terms of highest order in S would be involved,
even if the order of S exceeded !4+m —2 by any amount, and very
possibly also other equations in which only the coeflicients of the
terms of the two highest orders in S would be involved, and so on.

The lowest curve through the point-base N is of order p, since in
u, there are one or more arbitrary coefficients; and the order of the
point-base is therefore p,* and its degree N'. It must not, however, be
supposed that N' is the simplest point-base derivable from N. This
last would be found by drawing the two curves of lowest order
through N, having no common constituent, to intersect again. The
order of the point-base N, which is the order of the lowest curve
through N, is given below ; but we have no theorem at present which
determines with certainty the order of the other lowest curve. The
orders, degrees, and forms of the several base-points of N’ may be
found by the methods of Section II., by transferring the origin to’
each base-point in succession. .

We take now the numbers

e 0y 0y Pps- Pty ooo Po=ts Py §+2, q+3, ...,

which are the differences of the successive defects of the point-base
N’; and write down their successive differences, or second differ- °
ences of the defects, viz.

o 01 0) 5 poh s aq-h aqv aqu 1) 1; 1) see o

This series of numbers constitutes the characterization of the point-
base N’, which we express by dropping the zeros at the beginning

* The order p of the point-base N’ cannot exceed, but may be less than, the
smaller of the two numbers /, m, since these are the orders of two curves passing
through the point-base.
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and units at the end, changing the suffixes to 1,2, ..a, and
writing

N =(,, &, ... &),

where pta=q+2=33 4§ >1

. The generalized Riemann-Roch theorem then gives us the characteri-
zation of N, which is as follows (assuming m 2 [) :*—

() N= Q" 2+ 3,41, 8,141, ... ,41), if L = p+a (=39);

(i) N=A"*%8, ... i_puy Giy+1, i §4+1),if p<l<ptas<m;
(i) N = (3.—=1, ... 8uoper—1, Smopy oon Sicpers Gipt 1, oon §+1),

_ if p<lsm<pta;
Gv) N= Q1" 8, 8y o &), | #fp=1l ltasm
(V.) N= (Bﬂ—l) sce am-hl—l’ 8m--h wes .al)’ if rp= l, m< l+a-

The symbols 1™-- 2-P~% in (i.) stand for 1 repeated m-—! times,
followed by 2 repeated l—p—a times. Similarly for 1"-?-*in (ii.)
and 1"-'-%in (iv.). Cases (iv.) and (v.) are the simplified forms of
(ii.) and (iii.) when p = I, and may be still further simplified (if §,=1)
by the omission of any units at the end.

The order of N' is p, which is the value of 3 (d—1). The order of
N is the value of = (6—1) for N, ¢.e., ‘it is ! in cases (i.), (ii.), (iv.),
l+m—p—a in case (iii.), and m—a in case (v.).

The lowest order that can be chosen for S so that the -equations
among its coefficients may determine the point-base N’ without
ambiguity is, I think, ¢+1 = 33—1, which would leave the co-
efficients of the terms of highest ordenr in § entirely arbitrary. It
would be of great importance to find methods for determining the
value of g+1, so that $ might be taken of order g+ 1, instead of order
1+m—2. The order ¢+1 will be sufficiently high if the whole
system of curves of order g+1, whose coefficients satisfy the N’
equations, could not have a puint-base in common of higher degree
than N'. This property. holds in what appears to be the most un-
likely case, viz., the linear system of curves determined by z*, "'y,

-2

«""*y% ... y" have no point-base in common of higher degree than

* In this application we regard &, and consequently 3,, 5, ... &, a8 Imown.
The numbers 2, ¢, 4, !, m are then also-known, viz., p = % (§—1), ¢ = 252, ais
the number of the 3's (3,>1), and ?, m are the orders of the two curves drawn
through .V’ and intersecting for the rest in N,
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gn(n+1). Hence, for the complete specification of the point-bases
N’ and N, it appears that we may choose for the order of S the value
g+1, or 38—1; and for the order of K the value of 38—1 for N,
e, l+m—p—1 in cases (i.), (ii.), (iii.), m—1in (iv.) and (v.) if
6,>1, and a lower order in (iv.), and (v.) if §, =1, since then we
should omit all units at the end of (iv.) and (v.), and the value of
30—1 for N would diminish accordingly. The general algebraic
curve through N’ is PS+P'S’+... =0, where S, §', ... are poly-
nomials of order g+ 1 whose coefficients satisfy the N’ equations, and
P, P, ... are polynomials with arbitrary coefficients. Similarly for
the general curve through N.

Concerning the Four Known Simple Linear Groups of Order 25920,
with an Introduction to the Hyper-Abelian Linear Groups.
By Dr. L. E. DicksoN. Received March 18th, 1899,

Read April 13th, 1899.

Introduction.

In a paper* giving a résumé of the known systems of simple
groups and a table of the orders of all known simple groups not
exceeding one million, I find that, apart from the order 25920, every
case in which two or more simple groups of the same order exist has
been completely investigated as to their simple isomorphism or non-
isomorphism. The greater part of the present paper deals with the
four known simple groups of order 25920, viz.,+

(1) The simple group 4 (4, 3), defined by the decomposition of the
‘Abelian group on four indices taken modulo 3.

* ¢ The Known Finite Simple Groups,”” Bulletin of the American Mathematical
Society, July, 1899.

t [Note of August 14th.—1 should have referred to a number of important
investigations in which occur substitution-groups and groups of collineations
isomorphic with the above groups of order 25920. Jordan (7Traité des Substitutions,
PP- 316-329) shows that the Galois group of the equation for the 27 lines on a
general cubic surface has the order 2-25920, and proves (pp. 365-369) that it is
isomorphic with the Abelian group for the trisection of hyperelliptic functions of
four periods. A proof involving less calculation has been given by the writer
(Comptes Rendus, Vol. cxxvur., p. 873, 1899). The present article was written



