# a <- a1 * f1 + a2 * f2 + a3 * f3 # b <- b1 * f1 + b2 * f2 + b3 * f3 # 1 <- f1 + f2 + f3 #Install# install.packages('R2jags') install.packages('rjags') install.packages('coda') install.packages('ggplot2') install.packages('simmr') library(coda) library(coda) library(rjags) library(R2jags) library(ggplot2) library(simmr) #Input data# a <- rnorm(1, mean = -29, sd = .2) b <- rnorm(1, mean = .56, sd = .02) mix = matrix(c(a,b), ncol=2, nrow=1) colnames(mix) = c('d13C','d14') #Source endmembers# s_names = c("biomass", "liquid", "coal") s_means = matrix(c(-35,-25.5,-23.4,1.10,0,0), ncol=2, nrow=3) s_sds = matrix(c(1.8,1.3,1.3,0.05,0,0), ncol=2, nrow=3) simmr_in = simmr_load(mixtures=mix, source_names=s_names, source_means=s_means, source_sds=s_sds) plot(simmr_in) plot(simmr_in,xlab=expression(paste(delta^13, "C (\u2030)",sep="")), ylab=expression(paste(delta^14, "C (\u2030)",sep="")), title='Isospace plot of example data') simmr_out = simmr_mcmc(simmr_in) summary(simmr_out,type='diagnostics') posterior_predictive(simmr_out) prior_viz(simmr_out) summary(simmr_out,type='statistics') plot(simmr_out,type='density') plot(simmr_out,type='matrix') compare_sources(simmr_out,source_names=c('biomass','coal')) compare_sources(simmr_out,source_names=c('biomass','liquid','coal'))