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The goal

Our objective is to examine our ability to differentiate among RNA samples preserved under distinct conditions
in order to evaluate our ability to recover gene expression data from them.

We want to test three field-friendly approaches, and compare it to the gold-standard approach of triazol
preservation (which is Phenol-based solvent, and thus a hazard to handle and difficult to transport).

Model assumptions

RNA-seq data usually consists of number of reads that map to a particular gene. The counts can be modelled
by a Poisson Distribution or a Negative Binomial Distribution. Often times the data violates the assumption
of equal mean and variance of the Poisson, and that is why the more flexible Negative Binomial is used.

Here, we will use a Negative Binomial, parametrized by mean (mu) and size (dispersion parameter) to model
the mean number of reads mapping to a particular gene. Under this parametrization, prob = size/(size+mu)
and the variance is mu + muˆ2/size.

We will model four scenarios for the purposes of this study. In the first, we will examine the hypothesis that
the different preservation methods do not produce significant differences in downstream analysis. In the
second, the different preservation methods will vary in their performance relative to the control. But, we
will assume that the effect of the preservation treatment is equal across all genes (i.e., there is a uniform
effect of lowering or increasing the read count, either by poorly preserving the RNA relative to the control, or
performing better than the control).

The third and fourth scenarios assume that one of the treatments leads to uneven preservation effects across
different genes. In the third scenario, we assume that some genes are affected differently by the preservation
method because of their GC content. This means that the same genes are affected in a consistent manner
across replicates (if the gene is poorly preserved in 1 sample it will be equally poorly affected in another
sample). In the fourth scenario, we extend the third scenario by assuming that the effect is random across
replicates. Thus, read count at a gene might be poorly preserved in one replicate but well preserved in
another.

We will analyze the data using the edgeR package in R, which is designed to estimate differential gene
expression across two or more samples. Our hypothesis is that the different treatments should affect the total
amount of RNA we can recover from each sample, and thus should mimick results from a differential gene
expression study.

Ideally, we would have a preservation method that is cheap, safe, and easy to transport. But, that it
also performs as well or better than the control method (which involves dangerous goods, thus creating a
potentially unnecessary hazard as well as complications for transport), and is consistent in how it preserves
RNA across genes and samples.

Data simulation
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#common variables
nGenes = 5000
mean = 100
size = 0.5

std1 = sqrt(20)
std2 = 1

treats = 4
bioReps = 8
techReps = 3

deviations = c(0,-80,-20,50)

mainFac = factor(
rep(c("control","treatA","treatB","treatC"),

each=techReps*bioReps))
mainFac = relevel(mainFac,"control")
bioRepFac = factor(rep(

rep(paste("Bio",1:bioReps,sep=""),
each=techReps),treats))

design <- model.matrix(~mainFac)

In each case, we will model 5000 genes (approximately the number of genes in Plasmodium falciparum), and
8 biological replicates, with 3 technical replicates of each biological replicate. This will produce a total of 24
measurements per treatment, and 96 for the whole experiment.

Scenario 1

For the first scenario, 5000 values were drawn from a NB(mu=100,size=0.5) distribution. These were used as
the expected read count for each of the sampled genes. The mean read count for each gene for each biological
replicate under each treatment were then be drawn from a Normal distribution with mean equal to the value
drawn above and standard deviation 10 truncated at 0. Finally, the observed read count for each technical
replicate were then drawn from a Normal distribution with mean as drawn for the biological replicate and
standard deviation 1, again truncated at 0.

set.seed(seed = 1234)

meanGeneCounts = rnbinom(n = nGenes, size = size, mu = mean)

meanBiolTreats = matrix(0,nrow = nGenes, ncol = treats*bioReps)

for(i in 1:nGenes){
meanBiolTreats[i,] = rnorm(n = treats*bioReps,

mean = meanGeneCounts[i],
sd = std1)

}

readCounts = matrix(0,
ncol = treats*bioReps*techReps,
nrow = nGenes)
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for(g in 1:nGenes){
means = meanBiolTreats[g,]
for(t in 1:(treats*bioReps)){

nReads = floor(rnorm(n = techReps, mean = means[t], sd = std2))
nReads[nReads<0] = 0
p = 3*(t-1) + 1
readCounts[g,p:(p+techReps-1)] <- nReads

}
}

keep=rowSums(cpm(readCounts)>2)==96

readCountsKeep = readCounts[keep,]

nrow(readCountsKeep)

## [1] 3634

sc1_y = DGEList(counts = readCountsKeep,group = mainFac)

#plotMDS(y,labels = mainFac,col=rep(c("black","navyblue","gold","darkgreen"),each=24))

sc1_logFC <- predFC(sc1_y,design,prior.count=1,dispersion=0.05)

cor(sc1_logFC)

## (Intercept) mainFactreatA mainFactreatB mainFactreatC
## (Intercept) 1.00000000 -0.02393681 -0.0214690 -0.03553131
## mainFactreatA -0.02393681 1.00000000 0.5306645 0.50245388
## mainFactreatB -0.02146900 0.53066449 1.0000000 0.52501557
## mainFactreatC -0.03553131 0.50245388 0.5250156 1.00000000

sc1_y <- estimateGLMCommonDisp(sc1_y , design, verbose=TRUE)

## Disp = 0 , BCV = 1e-04

sc1_y <- estimateGLMTrendedDisp(sc1_y , design)

## Loading required package: splines

sc1_y <- estimateGLMTagwiseDisp(sc1_y , design)
#plotBCV(sc1_y)

sc1_fit <- glmFit(sc1_y, design)

sc1_lrt <- glmLRT(sc1_fit)

#topTags(sc1_lrt)
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sc1_FDR <- p.adjust(sc1_lrt$table$PValue, method="BH")
sum(sc1_FDR < 0.05)

## [1] 25

top <- rownames(topTags(sc1_lrt))
#cpm(sc1_y)[top,]
summary(sc1_dt <- decideTestsDGE(sc1_lrt))

## [,1]
## -1 14
## 0 3609
## 1 11

sc1_isDE <- as.logical(sc1_dt)
sc1_DEnames <- rownames(sc1_y)[sc1_isDE]
#plotSmear(sc1_lrt, de.tags=DEnames,ylim=c(-2,2))
#abline(h=c(-1,1), col="blue")

Scenario 2

For the second scenario, the same approach as above was applied. However, the values drawn from the NB
distribution were subttracted by 80 and 20 for the treatments A and B (representing preservation methods
that perform poorly relative to the control), and added by 50 for treatment C (representing a preservation
method that performs better than the control).

set.seed(seed = 7878)

meanGeneCounts = rnbinom(n = nGenes, size = size, mu = mean)

meanBiolTreats = matrix(0,nrow = nGenes, ncol = treats*bioReps)

for(i in 1:nGenes){
meanBiolTreats[i,] = rnorm(n = treats*bioReps,

mean = meanGeneCounts[i],
sd = std1)

}

readCounts = matrix(0,ncol = treats*bioReps*techReps,
nrow = nGenes)

for(g in 1:nGenes){
means = meanBiolTreats[g,]
for(t in 1:treats){

diff = deviations[t]
for(b in 1:bioReps){

pos = bioReps*(t-1)+b
nReads = floor(rnorm(n = techReps, mean = means[pos], sd = std2))
nReads = nReads + diff
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nReads[nReads<0] = 0
p = 3*(pos-1) + 1
readCounts[g,p:(p+techReps-1)] <- nReads

}
}

}

keep=rowSums(cpm(readCounts)>2)==96

readCountsKeep = readCounts[keep,]
nrow(readCountsKeep)

## [1] 1759

sc2_y = DGEList(counts = readCountsKeep,group = mainFac)

#plotMDS(y,labels = mainFac,col=rep(c("black","navyblue","gold","darkgreen"),each=24))

sc2_logFC <- predFC(sc2_y,design,prior.count=1,dispersion=0.05)

cor(sc2_logFC)

## (Intercept) mainFactreatA mainFactreatB mainFactreatC
## (Intercept) 1.0000000 0.8647053 0.9203601 -0.9665118
## mainFactreatA 0.8647053 1.0000000 0.9448840 -0.9390671
## mainFactreatB 0.9203601 0.9448840 1.0000000 -0.9483058
## mainFactreatC -0.9665118 -0.9390671 -0.9483058 1.0000000

sc2_y <- estimateGLMCommonDisp(sc2_y , design, verbose=TRUE)

## Disp = 0 , BCV = 0

sc2_y <- estimateGLMTrendedDisp(sc2_y , design)
sc2_y <- estimateGLMTagwiseDisp(sc2_y , design)
#plotBCV(sc2_y)

sc2_fit <- glmFit(sc2_y, design)

sc2_lrt <- glmLRT(sc2_fit)

#topTags(sc2_lrt)

sc2_FDR <- p.adjust(sc2_lrt$table$PValue, method="BH")
sum(sc2_FDR < 0.05)

## [1] 1341
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top <- rownames(topTags(sc2_lrt))
#cpm(sc2_y)[top,]
summary(sc2_dt <- decideTestsDGE(sc2_lrt))

## [,1]
## -1 446
## 0 418
## 1 895

sc2_isDE <- as.logical(sc2_dt)
sc2_DEnames <- rownames(sc2_y)[sc2_isDE]
#plotSmear(sc2_lrt, de.tags=DEnames,ylim=c(-2,2))
#abline(h=c(-1,1), col="blue")

Scenario 3

For the third scenario, the same approach as above for scenario 2 was applied. However, treatment C was
chosen to have an effect that varied across genes. For this treatment, the amount by which the mean expect
reads for a gene was modified was randomly selected with replacement from the vector [0,-20,-80,50,200] with
probability [0.1,0.8,0.05,0.04,0.01]. These were values were selected at the beginning of the simulations, and
remained constant across replicates.

set.seed(seed = 2222)

randomDev = sample(x = c(deviations,200),
replace = T,
prob = c(0.1,0.8,0.05,0.04,0.01),
size = nGenes)

meanGeneCounts = rnbinom(n = nGenes, size = size, mu = mean)

meanBiolTreats = matrix(0,nrow = nGenes, ncol = treats*bioReps)

for(i in 1:nGenes){
meanBiolTreats[i,] = rnorm(n = treats*bioReps,

mean = meanGeneCounts[i],
sd = std1)

}

readCounts = matrix(0,
ncol = treats*bioReps*techReps,
nrow = nGenes)

for(g in 1:nGenes){
means = meanBiolTreats[g,]
for(t in 1:treats){

diff = ifelse(t!=4,deviations[t],randomDev[g])
for(b in 1:bioReps){

pos = bioReps*(t-1)+b
nReads = floor(rnorm(n = techReps, mean = means[pos], sd = std2))
nReads = nReads + diff
nReads[nReads<0] = 0
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p = 3*(pos-1) + 1
readCounts[g,p:(p+techReps-1)] <- nReads

}
}

}

keep=rowSums(cpm(readCounts)>2)==96

readCountsKeep = readCounts[keep,]
nrow(readCountsKeep)

## [1] 1724

sc3_y = DGEList(counts = readCountsKeep,group = mainFac)

#plotMDS(y,labels = mainFac,col=rep(c("black","navyblue","gold","darkgreen"),each=24))

sc3_logFC <- predFC(sc3_y,design,prior.count=1,dispersion=0.05)

cor(sc3_logFC)

## (Intercept) mainFactreatA mainFactreatB mainFactreatC
## (Intercept) 1.0000000 0.8673904 0.9199124 0.6149711
## mainFactreatA 0.8673904 1.0000000 0.9489920 0.6872254
## mainFactreatB 0.9199124 0.9489920 1.0000000 0.6633538
## mainFactreatC 0.6149711 0.6872254 0.6633538 1.0000000

sc3_y <- estimateGLMCommonDisp(sc3_y , design, verbose=TRUE)

## Disp = 0 , BCV = 1e-04

sc3_y <- estimateGLMTrendedDisp(sc3_y , design)
sc3_y <- estimateGLMTagwiseDisp(sc3_y , design)
#plotBCV(sc3_y)

sc3_fit <- glmFit(sc3_y, design)

sc3_lrt <- glmLRT(sc3_fit)

#topTags(sc3_lrt)

sc3_FDR <- p.adjust(sc3_lrt$table$PValue, method="BH")
sum(sc3_FDR < 0.05)

## [1] 1601

top <- rownames(topTags(sc3_lrt))
#cpm(sc3_y)[top,]
summary(sc3_dt <- decideTestsDGE(sc3_lrt))
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## [,1]
## -1 1022
## 0 123
## 1 579

sc3_isDE <- as.logical(sc3_dt)
sc3_DEnames <- rownames(sc3_y)[sc3_isDE]
#plotSmear(sc3_lrt, de.tags=DEnames,ylim=c(-2,2))
#abline(h=c(-1,1), col="blue")

Scenario 4

For the fourth scenario, the same approach as above for scenario 2 was applied. However, treatment C was
chosen to have an effect that varied across genes and replicates. For this treatment, the amount by which
the mean expect reads for a gene was modified was randomly selected with replacement from the vector
[0,-20,-80,50,200] with probability [0.1,0.8,0.05,0.04,0.01]. The value by which the read count at a gene was
modified was selected to be replicate specific, and thus changed across replicates.

set.seed(seed = 9999)

meanGeneCounts = rnbinom(n = nGenes,
size = size,
mu = mean)

meanBiolTreats = matrix(0,
nrow = nGenes,
ncol = treats*bioReps)

for(i in 1:nGenes){
meanBiolTreats[i,] = rnorm(n = treats*bioReps,

mean = meanGeneCounts[i],
sd = std1)

}

readCounts = matrix(0,
ncol = treats*bioReps*techReps,
nrow = nGenes)

for(g in 1:nGenes){
means = meanBiolTreats[g,]
for(t in 1:treats){

diff = deviations[t]
for(b in 1:bioReps){

pos = bioReps*(t-1)+b
nReads = floor(rnorm(n = techReps,

mean = means[pos],
sd = std2))

nReads = nReads + ifelse(t!=4,
diff,
sample(x = c(deviations,200),

replace = T,
prob = c(0.1,0.8,0.05,0.04,0.01),
size = 1))
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nReads[nReads<0] = 0
p = 3*(pos-1) + 1
readCounts[g,p:(p+techReps-1)] <- nReads

}
}

}

keep=rowSums(cpm(readCounts)>2)==96

readCountsKeep = readCounts[keep,]
nrow(readCountsKeep)

## [1] 1728

sc4_y = DGEList(counts = readCountsKeep,group = mainFac)

#plotMDS(y,labels = mainFac,col=rep(c("black","navyblue","gold","darkgreen"),each=24))

sc4_logFC <- predFC(sc4_y,design,prior.count=1,dispersion=0.05)

cor(sc4_logFC)

## (Intercept) mainFactreatA mainFactreatB mainFactreatC
## (Intercept) 1.0000000 0.8714187 0.9237018 0.7575432
## mainFactreatA 0.8714187 1.0000000 0.9447789 0.8368684
## mainFactreatB 0.9237018 0.9447789 1.0000000 0.8027103
## mainFactreatC 0.7575432 0.8368684 0.8027103 1.0000000

sc4_y <- estimateGLMCommonDisp(sc4_y , design, verbose=TRUE)

## Disp = 0.01821 , BCV = 0.1349

sc4_y <- estimateGLMTrendedDisp(sc4_y , design)
sc4_y <- estimateGLMTagwiseDisp(sc4_y , design)
#plotBCV(sc4_y)

sc4_fit <- glmFit(sc4_y, design)

sc4_lrt <- glmLRT(sc4_fit)

#topTags(sc4_lrt)

sc4_FDR <- p.adjust(sc4_lrt$table$PValue, method="BH")
sum(sc4_FDR < 0.05)

## [1] 1349
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top <- rownames(topTags(sc4_lrt))
#cpm(sc4_y)[top,]
summary(sc4_dt <- decideTestsDGE(sc4_lrt))

## [,1]
## -1 855
## 0 379
## 1 494

sc4_isDE <- as.logical(sc4_dt)
sc4_DEnames <- rownames(sc4_y)[sc4_isDE]
#plotSmear(sc4_lrt, de.tags=DEnames,ylim=c(-2,2))
#abline(h=c(-1,1), col="blue")

Results

As we can see in figures 1 and 2, these four scenarios produce very different patterns that are easily recognisable.
In scenario 1 (Figure 1 top row), the MDS plot shows no structure in the read count data across the different
replicates and treatments, and we do not see any significant signatures of ‘differential gene expression’ in the
scatter plot. In scenario 2 (Figure 1 bottom row), the first component of MDS plot (x-axis) shows a clear
separation between the treatment A (the worser performer) and the two other treatments that preserved RNA
similarly to the control. In the scatter plot, we can see a number of genes showing signaturs of differential
expression (red dots), but log2 fold change is constrained to values between -1 and 1, showing no drastic
changes after accounting for differences in the total number of reads obtained for each treatment.

Scenarios 3 and 4 (Figure 2), show a different picture. In scenario 3 (Figure 2 top row), the first component
of the MDS (x-axis) shows a clear separation between Treatment B (performing similarly to the control), and
Treatments A and C. While the second component (y-axis), shows a clear separation between Treatments A
(uniform loss of reads across genes) and C (non-uniform loss of reads across genes). The scatter plot suggests
a trend for down-regulation of genes (loss of reads), but with a few genes appearing to be up-regulated (gain
of reads). This fits well with our simulation approach, in which the effect of the preservation method is
gene-specific. In scenario 4 (Figure 2 bottom row), we can see clear differences in the expected patterns
relative to scenario 3, if the effects of the preservation method are random across genes/replicates. The MDS
plot shows that samples from Treatment C do not cluster together, and the scatter plot shows a trend for
down-regulation towards genes with lower counts (left portion of the figure), but no signatures of up-regulation.
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Figure 1: Simulation results for scenarios 1 and 2. Left: MDS plots; Right: Scatter plot of log Counts per
Million reads vs log2 Fold-Change in read count; blue horizontal lines represent log2 fold change.
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Figure 2: Simulation results for scenarios 3 and 4. Left: MDS plots; Right: Scatter plot of log Counts per
Million reads vs log2 Fold-Change in read count; blue horizontal lines represent log2 fold change.
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