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Article

Multicellular Nature of 
Neuropathology

Omnis cellula e cellula, the concept introduced by Rudolf 
Virchow1 remains the fundamental principle of physiol-
ogy and pathophysiology, which regards the dissection of 
cellular mechanisms as a main step in understanding and 
revealing the nature of the normal function and of the dis-
ease. The cellular pathophysiology therefore reduces 
morbid developments from the whole body to the behav-
ior of individual cell types or even individual cells. In 
conforming to this principle, experimental neurology is 
the most extreme case, because it considers neurological 
disorders solely (or almost solely) from neuronocentric 
angle.

This neuronocentricity comes at odds with the intri-
cate structure of the neural tissue formed by many types 
of cells of different origin, physiology, and functional 
specialization. These many cellular types exist in a state 
of continuous communication, which defines the func-
tional outputs of the nervous system; similarly these het-
erogeneous cell populations and their interrelations 
represent the substrate for pathology.

The cells dwelling in the central nervous system 
(CNS) are broadly classified (according to their develop-
mental roots) into cells of ectodermal and mesodermal 

origin (Fig. 1). The ectoderm derived cells are neural 
cells (the scions of neuroepithelial common progenitor) 
represented by neurones, astroglia, oligodendroglia, and 
NG2 glia. The mesodermal cells are subdivided into CNS 
resident microglia, and cellular elements of blood vessels 
such as endothelial cells, pericytes, smooth muscle cells 
and fibroblasts. In pathological conditions the CNS 
parenchyma can also be invaded by blood cells such as 
platelets, leukocytes and various macrophages. In sum-
mary, each and every cell composing CNS tissue is 
responsible for the physiological function and is 
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contributing to neuropathology. Among all these multiple 
cell types, however, the neuroglia, being the main homeo-
static and defense element of the CNS assumes particular 
importance in evolution of neurological diseases.

Neuroglia: The Homeostatic and 
Defensive Arm of the CNS

Evolution of Housekeeping Neural Cells

Evolution of the CNS that progressed from a diffuse ner-
vous system in early multicellular organisms through 
centralization that occurred in the early invertebrates 
because of fusion of neural ganglia to the multilayered 
CNS of vertebrates required continuous specialization of 
the cellular elements. The very first glia that emerged in 
nematodes assisted formation of the sensory organs 

(Bacaj and others 2008; Hartline 2011; Reichenbach and 
Pannicke 2008); at the subsequent phylogenetic steps 
glial cells (mainly of astroglial appearance) became 
highly specialized and assumed full responsibility for 
nervous system homeostasis in insects, crustaceans and 
mollusks (Verkhratsky and Butt 2013). Emergence of 
chordate coincided with the fundamental rearrangement 
of the CNS architecture: assembly of ganglia was substi-
tuted by the layered brain. This was the result of an 
appearance of a new type of glial cell, the radial glia, 
which became the focal point for neurogenesis and migra-
tion of newly born neural cells to their appropriate posi-
tions within appropriate layers (Rakic 2003). In ancient 
ancestors of vertebrates (in echinoderms and in early 
hemichordate) as well as in early vertebrates (in some 
chondrichthian or teleost fish) the radial glia is the only 
glia in existence; in these species the parenchymal glia 

Figure 1. Multicellular nature of the central nervous system. The CNS tissue is composed of many cell types of ectodermal 
(neural) and mesodermal origin. The neural cells include neurons, astrocytes, oligodendrocytes, and NG2 glia. Cells of 
mesodermal origin are represented by microglia, endothelial cells, and smooth muscle cells of blood vessels. Blood flow through 
brain capillaries is controlled by pericytes (Hamilton and others 2010), which in the CNS may also be of neural descent.
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(that attained such a high degree of diversification in 
invertebrates) are absent. Increase in the thickness of the 
neural tube triggered a new wave of glial evolution and in 
higher vertebrates multiple types of parenchymal astro-
cytes have developed (Reichenbach and others 1987).

The second major type of glia, the myelinating cells 
(oligodendrocytes, and oligodendroglia-related NG2 cells 
in the CNS and Schwann cells in the periphery) similarly 
appeared early in evolution (Bullock 2004; Hartline and 
Colman 2007; Roots 2008). The most ancient glial struc-
tures enwrapping axons with many layers of membranous 
lamellae emerged in annelids and crustacean; incidentally 
the fastest velocity of nerve impulse propagation of 210 
m/s has been detected in prawns of genus Penaeus (Xu 
and Terakawa 1999). Myelin proper appeared later in 
early vertebrates; with placoderms (extinct early jawed 
armored fish that lived in the early Silurian period ~420 
million years ago), being arguably the first species acquir-
ing myelinated nerves (Zalc and others 2008).

The microglial cells, which are migrants from the 
myeloid tissue to the brain, invaded the nervous tissue at 
the early evolutionary stages being present in annelids 
and mollusks; in both species the microglial cells undergo 
characteristic modification that turn the primary macro-
phages into resident innate immune cells of the nervous 
system (Kettenmann and others 2011).

Brain Homeostasis: The Fundamental Function 
of Neuroglia

Neuroglial cells are disseminated in every part of the CNS; 
their densities, morphological appearances and physiology 
differ significantly between CNS regions, and yet their 
main function, maintenance of stable CNS environment 
(i.e., homeostasis), is vigorously pursued throughout.

Astrocytes, which are arguably the most diverse glia, 
are highly versatile cells contributing to all levels of 
CNS homeostasis from molecular (by balancing the 
composition of the interstitial fluid) to subcellular (e.g., 
by regulating synaptogenesis and modulating synaptic 
transmission), cellular (by controlling neurogenesis and 
neural cells development), organ (by creating astroglio-
vascular units and defining the cytoarchitecture of gray 
matter) and system (being involved in sleep regulation 
and systemic chemosensitivity). Astrocytes in particular 
regulate many aspects of CNS neurotransmission being 
often the central foci for neurotransmitters metabolism 
and trafficking. In particular, astrocytes are fundamental 
for maintaining glutamatergic and GABA-ergic trans-
mission by supplying neurones with the neurotransmit-
ter precursor glutamine and regulating extracellular 
glutamate concentration; similarly astrocytes are central 
for regulation CNS adenosine by virtue of astroglia-
specific adenosine kinase (see Boison and others 2010; 

Kettenmann and Ransom 2013; Verkhratsky and Butt 
2013 for details).

Oligodendrocytes myelinate axons of central neurones 
in both grey and white matter, thus being a critical element 
for brain connectome (Fields 2014; Zatorre and others 
2012). Myelination of axons not only speeds up the nerve 
impulse propagation and possibly saves energy (due to 
limiting the area of ion transfer to nodes of Ranvier) but 
also allows for miniaturization of the nervous system, 
which seems to be critical for evolution of highly con-
nected CNS in mammals. Myelin sheath is a dynamic 
structure that can be remodelled in various forms of neu-
roplasticity (Fields 2005; Snaidero and others 2014). 
Oligodendrocytes also contribute to periaxonal ion and 
neurotransmitter homeostasis, provide axonal metabolic 
support and are capable of rapid dynamic regulation of the 
action potential propagation (Fields 2008a). The NG2 
glia, lineage-related to oligodendrocytes, may be involved 
in myelination/remyelination in the adult brain as well as 
contribute to general housekeeping (Nishiyama and others 
2009; Richardson and others 2011).

Microglial cells originate from c-kit+ erythromyeloid 
precursors present in the extra-embryonic yolk sac 
(Kierdorf and others 2013), which invade neural tube 
very early (at E10 in mice (Ginhoux and others 2010)) in 
embryogenesis. Microglial precursors disseminate 
throughout the CNS and undergo transformation into 
ramified microglia, characterised by specific morphology 
(small cell body and long, thin motile processes) and 
physiology (expression of extended complement of 
receptors to neurotransmitters and neurohormones, as 
well as classic “immune” receptors, such as Toll-like 
receptors, and receptors to chemokines/cytokines; 
Kettenmann and others 2011). Microglia contribute to 
CNS development by removing apoptotic neurones and 
shaping neuronal networks through synaptic tripping; 
loss of microglial function in embryogenesis may be one 
of the primary mechanisms of neurodevelopmental disor-
ders such as autism (Collingridge and Peineau 2014; 
Kettenmann and others 2013; Tremblay and others 2011).

Neuroglia Form the Defense System of the 
Brain

Neuroglial cells instantly react to every kind of insult to 
the CNS tissue by mounting a homeostatic response. In 
brain ischemia, for example, astroglia exert neuroprotec-
tion by removing excitotoxic factors (K+ ions and gluta-
mate), scavenging reactive oxygen species (astrocytes are 
sole vendors of the main reactive oxygen species [ROS] 
buffers glutathione and ascorbic acid) and supporting 
neuronal metabolism (Verkhratsky and Butt 2013). 
Besides the homeostatic response, neuroglia possess an 
evolutionary conserved program of profound remodeling 
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in response to polyetiological lesions to the CNS, gener-
ally defined as reactive gliosis (Burda and Sofroniew 
2014; Pekna and Pekny 2012). The reactive gliosis is for-
mally classified into reactive astrogliosis, proliferative 
response of NG2 cells and activation of microglia. All 
these gliotic processes contribute to the tissue response to 
the damage; this response further includes reactions of 
non-neural cells and cells invading CNS parenchyma as a 
consequence of, for example, disruption of blood-brain 
barrier (Burda and Sofroniew 2014). Reactive gliosis is a 
complex and multistage process that is fundamentally 
survivalistic, being aimed at neuroprotection and regen-
eration; glial reactivity is disease specific and produces 
multiple phenotypes of activated neuroglial cells, which 
contain the damage (for example by making the glial 
scar), remove pathogens and assist in postlesion regener-
ation of the neural networks (Burda and Sofroniew 2014; 
Pekna and Pekny 2012; Pekny and others 2014; Sofroniew 
2009; Sofroniew and Vinters 2010).

Gliopathology: Central Element of 
Neurological Diseases

Conceptually, a disease (from Old French desaise “lack of 
ease”) can be defined as a failure of homeostasis (in which 
homeostasis is considered in its broad sense embracing all 
levels of organisation of the living system). It is therefore 
little surprising that neuropathology, to a great extent, rep-
resents the impotence of neural homeostatic system, that 
is, neuroglia. Failure of neuroglia to protect, to contain 
and to resolve the damage lies at the very core of patho-
logical progression and defines the neurological outcome. 
When and if neuroglial homeostatic and defensive mecha-
nisms are exhausted, the neural tissue dies (for gliocentric 
concept of neuropathology, see Coulter and Eid 2012; De 
Keyser and others 2008; Giaume and others 2007; Heneka 
and others 2010; Parpura and others 2012; Rajkowska and 
Miguel-Hidalgo 2007; Rodríguez and others 2009; Seifert 
and Steinhäuser 2013; Verkhratsky and others 2013a; 
Verkhratsky and others 2012).

Often, neuroglia represent a primary pathological ele-
ment of the disease. For example, sporadic mutations of 
astroglia-specific glial fibrillary acidic protein (GFAP) 
cause Alexander disease manifested by severe degenera-
tion of white matter or leukodystrophy (Messing and oth-
ers 2012). Similarly expression of mutant MECP2 gene in 
astrocytes affects neurodevelopment, whereas their expres-
sion in microglia induce neurotoxic phenotype; thus both 
types of glia participate in pathogenesis of Rett syndrome 
(Maezawa and Jin 2010; Maezawa and others 2009). 
Another mutant gene Hoxb8 associated with trichotilloma-
nia (or hair pulling disorder) is expressed exclusively in 
microglia, and at least in mice microglial pathological 
remodeling causes compulsive behavior (Chen and others 

2010). Astrocytes are primary targets for many (if not all) 
toxic encephalopathies (Butterworth 2010b), the ammo-
nium toxic encephalopathy being a noteworthy example. 
Hyperammoniemia, which results mostly from liver failure 
but also from urea cycle deficiencies or Reye’s syndrome 
causes polymorphic mental and behavioural symptomatol-
ogy represented by confusion, forgetfulness, irritability 
and alterations of consciousness such as lethargy, somno-
lence and, in the terminal stages, coma. Astrocytes are pri-
mary targets of hyperammoniemia; and related 
encephalopathy can be regarded as a toxic astrogliopathol-
ogy. The astrocyte-specific enzyme, glutamine-synthetase 
provides the main pathway for ammonia detoxification. 
Accumulation of ammonium by astrocytes increases activ-
ity of glutamine synthetase and alters astroglial homeo-
static functions compromising K+, glutamate and water 
homeostasis, which, in turn, causes aberrant neurotrans-
mission (that underlies psychotic symptoms) and (in termi-
nal stages) brain edema (Brusilow and others 2010; 
Butterworth 2010a; Rangroo Thrane and others 2013; 
Rose and others 2013).

In many other pathologies, neuroglial contribution 
appears to be secondary, mounting in response to polyeti-
ological lesions. Reactive astrogliosis for example, 
occurs in a wide variety of neuropathologies from acute 
trauma and stroke to neurodegeneration (Burda and 
Sofroniew 2014; Heneka and others 2010; Pekna and 
Pekny 2012). Importunately, astroglial reactivity results 
in an appearance of numerous phenotypes, which are dis-
ease specific (Pekny and others 2014). Reactive astrogli-
osis is an important component of progression and 
resolution of neuropathology, and suppressing astroglial 
reactivity increases neuronal vulnerability, exacerbates 
pathological development and alters postlesion regenera-
tion (Burda and Sofroniew 2014; Pekny and others 2014; 
Sofroniew 2009). Similarly, activation of microglia 
appear as a multistage and multivector process that results 
in emergence of multiple neuroprotective as well as neu-
rotoxic cellular phenotypes (Kettenmann and others 
2011; Ransohoff and Perry 2009). Finally, several types 
of neuropathology are associated with glial asthenia, 
atrophy or degeneration. Here, astrocytes, for example, 
reduce their territorial domain with a decrease of synaptic 
coverage and homeostatic prowess, or else degenerate 
and die. Astrodegeneration is characteristic for neuropsy-
chiatric diseases and seemingly contributes to the major-
ity of neurodegenerative processes (Verkhratsky and 
others 2012; Verkhratsky and others 2013b).

Neuroglia in Neurodegenerative 
Diseases

Gliopathology in neurodegenerative diseases is repre-
sented by gliodegeneration (i.e., loss of glial function) 
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and by glial reactivity, the latter being often initiated by 
emergence of specific lesions.

In neurodegeneration associated with toxic encephalop-
athies, for example, astrocytes frequently are the primary 
pathological element; the progression of the disease is 
defined by down-regulation of astroglial glutamate trans-
porters, which results in accumulation of extracellular glu-
tamate and glutamate excitotoxicity. This mechanism is 
central in poisoning with metals, such as lead, aluminum, or 
manganese. Similarly, astroglia-specific glutamate homeo-
stasis appears as a primary target in methylmercury-induced 
encephalopathy (also known as Minamata disease 
(McAlpine and Araki 1958)), in which accumulation of 
methylmercury into astrocytes inhibits glutamate, gluta-
mine and cystine transporters, thus compromising gluta-
mate homeostasis and inducing excitotoxic neuronal death, 
which in turn defines symptomatology manifested by cog-
nitive decline, impaired vision and hearing, as well as motor 
symptoms (Ni and others 2012; Yin and others 2007).

Another example of astroglial loss of function as a pri-
mary pathogenic step is the Wernicke encephalopathy, the 
thalamocortical neurodegeneration, which appears as a sub-
strate for Korsakoff syndrome (ante- and retrograde amne-
sia, apathy and confabulation (Korsakoff 1889; Wernicke 
1881–1883). In this pathology, a severe down-regulation of 
astroglial glutamate transporters induces a massive neuro-
nal death; astrocytes also display signs of morphological 
degeneration. Astrodegeneration in combination with astro-
gliotic response is observed in the HIV-associated demen-
tia, which is the primary microglial infectious pathology, is 
associated with astroglial atrophy and decrease in astroglial 
population, which correlates with cognitive impairment 
(Thompson and others 2001). Signs of astroglial atrophy 
and death have been identified in non–Alzheimer’s disease 
dementias in combination with astrogliosis, especially in 
frontotemporal and thalamic dementia (Broe and others 
2004; Kersaitis and others 2004; Potts and Leech 2005).

Astrodegeneration and astroglial asthenia are central 
factors for pathogenesis of amyotrophic lateral sclerosis 
(ALS). In experimental models of ALS (expressing disease 
related human mutant gene of superoxide dismutase 1, 
hSOD1) atrophy and death of astrocytes precede damage to 
motor neurones and clinical symptoms, whereas selective 
silencing of hSOD1 gene in astrocytes delays ALS progres-
sion (Rossi and others 2008; Rossi and Volterra 2009; 
Yamanaka and others 2008). In Huntington disease loss of 
astroglial glutamate uptake as well as increased astroglial 
release of glutamate contributes to neurodegenerative pro-
gression (Behrens and others 2002; Lee and others 2013).

Neuroglia in Alzheimer’s Disease

Progressive dementia with specific histopathology repre-
sented by senile plaques (extracellular depositions of 

β-amyloid) and interneuronal tangles resulted from 
abnormal phosphorylation of tau protein has been named 
“Alzheimer’s disease” (AD) by Emil Kraepelin 
(Kraepelin 1910) in honour of his pupil and subordinate 
Alois Alzheimer who described the family form of this 
dementia (Alzheimer 1907). The leading hypothesis of 
AD regards overproduction of β-amyloid or failure of its 
clearance as a main pathogenetic step (Braak and others 
1998; Gerlai 2001; Hardy and Selkoe 2002; Karran and 
others 2011; Korczyn 2008). This hypothesis, however, 
currently tries to weather a mounting critique (Castellani 
and others 2009; Castellani and Smith 2011; Hardy 
2009). A pathological role for astroglia in the disease pro-
gression was foreseen by Alzheimer himself, who 
described glial cells closely contacting damaged neurons 
and populating senile plaques (Alzheimer 1910).

Atrophy and Reactivity of Astrocytes in Animal 
Models of AD

The notion of atrophic changes in astroglia that appear at 
the early stages of AD emerged in recent years following 
in depth morphological studies of the brains of transgenic 
animal models. Couple of dozens of mice AD-like strains 
have been produced in a recent decade; all of them bear 
mutant genes associated with family AD in different 
combinations (Gotz and others 2012; Oddo and others 
2003). Most of these mice express mutant genes for amy-
loid precursor proteins and or presenilins, which allows 
production of β-amyloid in animals, wild types of which 
are lacking this pathway; the brains of these mice there-
fore become overloaded with β-amyloid and form bona 
fide senile plaques. Some of the transgenic AD mice carry 
in addition mutant gene for tau protein and hence develop 
both senile plaques and intraneuronal tangles.

Reduction of astroglial profiles (as revealed by immu-
nostaining with antibodies against GFAP and glutamine 
synthetase [GS]; Fig. 2) together with decrease in astro-
glial complexity and number of principal and secondary 
processes have been quantified in hippocampi from mice 
with experimental amyloidosis (the PDAPP-J20 mice 
expressing mutant APP; Beauquis and others 2013; 
Beauquis and others 2014) and in 3xTg-AD mice that dis-
play senile plaques and tangles (Olabarria and others 
2010; Verkhratsky and others 2010). Importantly, these 
atrophic changes occurred before the emergence of amy-
loid plaques (i.e., before 12 months of age for 3xTG-AD 
mice); at the same time total number of astroglial cells 
remained stable in all age-groups (up to 24 months). 
Signs of astroglial atrophy have been found in other 
regions of the brain (Fig. 2); in particular they appear 
very early (~1 month of age) in entorhinal cortex (Yeh 
and others 2011), and quite early (~6 months old) in pre-
frontal cortex (Kulijewicz-Nawrot and others 2012).
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In AD animal models, astrodegenerative changes are 
complemented by astroglial reactivity. Reactive, hyper-
trophic astrocytes occur in hippocampus in response to 
development of senile plaques and perivascular β-amyloid 
deposits, with which reactive astrocytes are associated 
(Olabarria and others 2010). Reactivity of astroglia in AD 
animals is of a mild variety with preservation of astroglial 
domains and no signs for glial scar formation (Fig. 3). 
The reactive astrocytes show reduced expression of GS 
(Fig. 4; Olabarria and others 2011) and generate aberrant 
Ca2+ signals represented by spontaneous Ca2+ oscillations 
and abnormal Ca2+ waves (Kuchibhotla and others 2009). 
Astroglial reactivity however was not uniform through-
out the brain; accumulation of extracellular β-amyloid 
failed to induce reactive astrogliosis in entorhinal and 

prefrontal cortices (Kulijewicz-Nawrot and others 2012; 
Yeh and others 2011).

Increased astroglial reactivity may delay evolution of 
β-amyloid burden. In Tg2576 mice expressing the APPSwe 
mutation (Hsiao and others 1996) β-amyloid pathology 
develops relatively slower when compared with APP/PS1, 
PDAPP-J20 and 3xTg-AD mice. The β-amyloid deposits 
in these mice are morphologically similar to those detected 
in humans (Yamaguchi and others 1998) and are repre-
sented by fleecy, granular, cored, and diffused amyloid 
plaques (Fig. 5). Phenotypically, the Tg2576 mice are sim-
ilar to a prodromal stage rather than to full AD (Ashe and 
Zahs 2010). The slow progression of β-amyloid pathology 
on Tg2576 mice is associated with prominent early astro-
gliosis as demonstrated by strong GFAP-immunoreactivity, 
which is observed before the appearance of β-amyloid 
plaques. The density of reactive astrocytes changes with 
age and shows regional differences in distribution, mor-
phological phenotype as well as localization in relation to 
β-amyloid plaques. At the advanced age (17-22 months 
old) the double immunolabeling with antibodies for 
β-amyloid1-42 and GFAP demonstrated the presence of 
mainly atrophic and fewer reactive astrocytes; these latter 
were concentrated around β-amyloid1-42 stained plaques, 
while the atrophic astrocytes were observed distant to the 
amyloid plaques (Fig. 6A, B). Decrease in astroglial reac-
tivity therefore is inversely correlated with extracellular 
β-amyloid load. At the same time inhibition of reactive 
astrogliosis in the AD mouse model significantly increased 
β-amyloid load and exacerbated pathological progression 
(Kraft and others 2013).

Incidentally, GFAP-positive astrocytes in the hippo-
campus of Tg2576 mice express α7-acetylcholine nico-
tinic receptors (nAChRs). These nAChRs expressing 
astrocytes are detectable only in older Tg2576 mice, 
being undetectable neither in wild type controls nor in 
young transgenic animals. The α7 nAChRs were identi-
fied in astrocytes surrounding β-amyloid plaques in the 
cortical regions of postmortem brains of sporadic AD and 
family AD; with the number of α7 nAChR expressing 
astrocytes being significantly higher in postmortmem 
brain tissue from AD patients with APPSwe mutation in 
comparison to sporadic AD patients, suggesting that this 
subpopulation of astrocytes may contribute to a reactive 
response to β-amyloid deposition (Yu and others 2005).

Nicotinic α7 receptors contribute to learning and 
memory and are known to protect from and interact with 
various forms of β-amyloid (Lilja and others 2011; Ni 
and others 2013; Shimohama and Kihara 2001). It is 
hence possible that α7 nAChR-expressing cells represent 
a subpopulation of astrocytes involved in neuroprotection 
and repair. This is further supported by our recent find-
ings of an increased density of α7 nAChR-expressing 
astrocytes in the hippocampus of Tg2576 mice that 

Figure 2. Atrophy of glial fibrillary acidic protein (GFAP)-
positive astroglial profiles in the main mnesic areas associated 
with Alzheimer’s disease. Confocal micrographs illustrate 
decreased GFAP-positive astroglial profiles in the hippocampal 
dentate gyrus and Corni ammonia 1 (CA1) regions as well as 
in the entorhinal cortex and prefrontal cortex in 3xTg-AD 
mice compared with control animals.
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received neural stem cell implants (Fig. 6C); this increase 
was also accompanied by improved cognitive perfor-
mance (Lilja, Malmsten, Verkhratsky, Nordberg, Marutle, 
own observations).

Molecular mechanisms triggering astroglial reactivity 
remain debatable. There are indications that soluble 
β-amyloid induces abnormal Ca2+ oscillations in cul-
tured primary astrocytes (Abramov and others 2003; 
Abramov and others 2004), although these results were 
not universally confirmed (Grolla and others 2013; 

Ronco and others 2014). Chronic exposure of cultured 
astrocytes to β-amyloid resulted in significant changes in 
the Ca2+ signaling toolkit in hippocampus (up-regulation 
of metabotropic glutamate receptors and InsP3 receptors) 
but not in the entorhinal cortex (Grolla and others 2013). 
The InsP3 receptors are fundamental for inducing astro-
glial reactivity (Kanemaru and others 2013), and their 
insensitivity to β-amyloid may contribute to the absence 
of reactive astrogliosis observed in the entorhinal cortex 
of 3xG-AD mice.

Figure 3. β-Amyloid depositions trigger gliotic response in associated astrocytes in the hippocampus but not in the entorhinal 
cortex. (A, B) Confocal images of hippocampal preparations labeled for glial fibrillary acidic protein (GFAP; green) and β-amyloid 
(red) illustrating differential changes in GFAP profiles in astrocytes in close association with Aβ plaques (A) and atrophic profiles 
of astrocytes distant from β-amyloid deposits (B) in 3xTg-AD mice. (C, D) Confocal dual labeling images (GFAP in green 
and β-amyloid in red) showing absence of reactive response of astrocytes in the entorhinal cortex of 3xTg-AD mice around 
perivascular vascular β-amyloid deposits (C) and β-amyloid plaques (D).
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Figure 4. Down-regulation of glutamine synthetase (GS) expression in hippocampal astrocytes in AD mice. (A, B) Light 
microscopy images of GS-positive (A) and glial fibrillary acidic protein (GFAP)-positive (B) astrocytes. (C, E, G) Confocal 
images of hippocampal preparation labeled for GS (C, red), GFAP (E, green), and their co-localization (G, yellow). (D, F, H) 
High magnification confocal images illustrating the co-expression of GS and GFAP. (I, J) Ubiquitous co-expression of GS and 
GFAP in wild type control mice (I) and down-regulation of GS expression (astrocytes lacking GS are indicated by arrows) 
in 3xTg-AD mice (J). DG = dentate gyrus; GcL = granule cell layer; Lac = stratum lacunosum moleculare; MoL = molecular 
layer; Or = stratum oriens; PcL, pyramidal layer; Rad, stratum radiatum. Modified with permission from Olabarria and others 
(2011).
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Astrocytes in Human AD

Astroglial reactivity (defined by an increase in GFAP or 
S100β expression) was frequently described in the AD 
post-mortem tissues (Beach and McGeer 1988; Griffin 
and others 1989; Meda and others 2001; Mrak and Griffin 
2005), and even some correlation between increased 
GFAP levels and the Braak stage of AD were claimed 
(Simpson and others 2010). Incidentally, however, no 
correlation between reactive astrogliosis and β-amyloid 
load was identified (Simpson et al., 2010). Other studies 
however found no differences in the expression of GFAP 
between demented and non-demented brains (Wharton 
and others 2009).

In vitro binding assays in postmortem AD brain have 
demonstrated an increased [3H]-deprenyl binding (indic-
ative of astroglial activation) in the hippocampus, paral-
leled by an increase in [3H]-PK11195 (indicative of 
microglial activation) binding as well as [3H]-PIB (depict-
ing emergence of fibrillar β-amyloid plaques) binding in 

the frontal cortex (Marutle and others 2013). Quantitative 
autoradiography binding studies have shown a clear lami-
nation pattern with high [3H]-PIB binding in all layers 
and [3H]-deprenyl binding in superficial layers of the 
frontal cortex; in the hippocampus in contrast a low bind-
ing to fibrillar β-amyloid by [3H]-PIB and high binding to 
activated astrocytes with [3H]-deprenyl was detected 
throughout (Marutle and others 2013).These observa-
tions suggest a distinct regional pattern for astroglial acti-
vation in AD brain.

Modern molecular imaging provides a new tool to 
study the brain and to better understand functional distur-
bances as well the time course of different pathological 
changes. The introduction of β-amyloid positron emis-
sion tomography (PET) imaging for visualizing of fibril-
lar amyloid plaques in the brain (Klunk and others 2004; 
Nordberg and others 2010) has provided new and valu-
able insight into the dynamics and the time course of 
deposition of fibrillar β-amyloid in the brain in the course 
of transition from preclinical to clinical stages of AD.

Figure 5. Heterogeneity of β-amyloid plaques in the brains of Tg2576 mice with Alzheimer’s disease (AD). 
Immunohistochemical labeling of (A) cored and (B) diffuse β-amyloid1-42 plaques, and (C) fleecy and (D) granular β-amyloid1-42 
deposits in Tg2576 mice brain (Voitenko, Marutle and Nordberg, own observations).
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For visualization of early signs for glial activation in 
AD brains a PET technique using 11C-deuterium-l-
deprenyl (11C-DED) to measure the binding to mono-
amine oxidase B in the astrocytes has been developed 
(Fowler and others 1997); this tracer was used for exam-
ple in visualizing astroglial reactions in Creutzfelt-Jacob 
disease (Engler and others 2012), amylotrophic lateral 
sclerosis (Johansson and others 2007) and epilepsy 
(Kumlien and others 2001). These studies showed an 
increase in 11C-DED signal in the parietal, occipital and 
frontal cortices in Creutzfeldt-Jacob disease (Engler and 
others 2012); similarly increased 11C-DED binding was 
identified in the white matter and in pons in amyotrophic 
lateral sclerosis. PET studies with 11C-DED have also 

demonstrated an association of increased binding with 
normal brain aging (Fowler and others 1997).

When using a multitracer PET concept consisting of 
11C-PIB (fibrillar β-amyloid), 18F-FDG (cerebral glucose 
metabolism), and 11C-DED (astroglial activation), the 
highest binding of 11C-DED (highest astrogliotic response) 
was observed in patients with mild cognitive impairment 
(MCI) and high levels of fibrillar amyloid plaques in the 
brain (PIB+) reflecting prodromal AD in comparison to 
clinically demented AD patients and MCI patients with no 
obvious fibrillar β-amyloid plaques as well as to healthy 
age-matched controls (Fig. 7; Carter and others 2012). 
The in vivo PET observations are in agreement with ear-
lier findings of gliosis in different cortical layers in 

Figure 6. Different types of glial fibrillary acidic protein (GFAP)-positive astrocytes are present in the brain of Tg2576 mice.  
(A, B) Images of GFAP-positive reactive astrocytes associated with β-amyloid plaques (A) and distant to the plaques (B) in the 
cortex of Tg2576 mice. (C) Double immunolabeling with antibodies for α7 nAChRs and GFAP demonstrated an abundant 
presence of α7 nAChR/GFAP-positive astrocytes in the dentate gyrus of 8-month-old Tg2576 mice following intrahippocampal 
neural stem cell implantation. GFAP-positive reactive astrocytes are labeled brown and α7 nAChR/GFAP-positive cells are 
labeled black at 20× magnification.
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postmortem AD brain tissue (Beach and McGeer 1988). 
The observed different laminar distribution of fibrillar 
β-amyloid plaques and astrogliosis most probably repre-
sents processes evolving in parallel with different regional 
distribution and time course (Marutle and others 2013). 
These observations support the assumption that astroglio-
sis might be an early sign for histopathological changes in 
the course of AD and even might precede large deposition 
of fibrillar β-amyloid plaques in the brain. In presymp-
tomatic AD mutations carriers high 11C-DED binding is 
detected before amyloid plaques can be identified in the 
brain (Nordberg 2014). Recently, a significant negative 
correlation was observed between 11C-DED binding and 
gray matter density in the parahippocampus in prodromal 
AD patients (Choo and others 2014).

Micro-PET studies in Tg2576 mice using 11C-DED for 
detection of astrogliosis and 11C-PIB and 11C-AZD2184 
for detecting fibrillar β-amyloid similarly revealed an 
increased 11C-DED binding at age preceding emergence 
of plaques pathology (Rodriguez-Vieltez et al. submit-
ted). Most importantly however, high level of astrogliosis 
was associated with MCI and prodromal AD, whereas the 
decline of astrogliotic response signaled development of 
cognitive deficits associated with clinically evident AD.

Oligodendroglial Decline?

The white matter occupies 50% of the human brain 
(Fields 2008b) and is a fundamental part of interneuronal 
connections dubbed “the brain connectome” (Sporns and 
others 2005), a name that is gaining in popularity. 
Oligodendrocytes are the major myelinating cell present 
in the white and in the gray matter in the CNS. Primary 
and/or secondary oligodendrocyte death and myelin dam-
age occurs in most, if not all, CNS diseases including 
stroke, perinatal ischemia, multiple sclerosis, psychiatric 
disorders, traumatic injury and Alzheimer’s disease 
(Matute 2010). In physiological aging white matter expe-
riences the most substantial changes being reduced by 
~11%, compared with only 3% decrease in the cortical 
volume (postmortem volummetry, Haug and Eggers 
1991; or magnetic resonance imaging, Albert 1993); it 
has been claimed that 20% to 40% of myelinated axons 
seem to disappear from fiber tracts in senescent CNS 
(Lintl and Braak 1983). This loss in white matter goes in 
parallel with a (somewhat surprisingly) substantial 
increase in oligodendrocytes density with ~50% increase 
in oligodendroglial cells number in visual cortex of old 
monkeys when compared to adult (Peters and Sethares 
2004); senescent oligodendrocytes also display altered 
morphology (Peters 1996).

Severe loss of white matter, which correlates with cog-
nitive impairment, is also observed in AD (Bronge, 2002) 
with lesions being prevalent in early-stage AD at periven-
tricular and deep white matter (Burns and others 2005). A 
high proportion of AD patients have prominent white 
matter degeneration (known as leukoaraiosis) and pro-
found apoptotic death of oligodendrocytes (Brown and 
others 2000). This apoptotic death may be associated 
with aberrant Ca2+ homeostasis (Matute 2010). It has 
been also found that β-amyloid can either directly dam-
age oligodendrocytes (Xu and others 2001). Injection of 
1 nM β-amyloid into corpus callosum severely damaged 
oligodendrocytes and destroyed myelin (Jantaratnotai 
and others 2003). Aberrant Ca2+ homeostasis and 
increased sensitivity to glutamate damage was observed 
in olgodendrocytes from PS1 mutant AD model mice 
(Pak and others 2003), whereas in the 3xTg-AD mice 
region-specific alterations in myelination and in oligo-
dendroglial profiles preceded emergence of β-amyloid 
plaques and intraneuronal tangles (Desai and others 
2009).

Microglial Paralysis?

Microglial cells are intimately involved in developmental 
plasticity of the brain and the spinal cord and in providing 
multicomponent defence against polyaetiological insults 
to CNS (Gomez-Nicola and Perry 2014; Kettenmann and 

Figure 7. High astrogliosis in the brain of patient with 
mild cognitive impairment associated with high β-amyloid 
load indicative of prodromal AD (left panel) in comparison 
with clinically demented patient with Alzheimer’s disease 
(AD; right panel). Representative parametric images of 
11C-D-deprenyl binding (that reports monoamine-oxidase 
activity in astrocytes) were obtained by position emission 
tomography. The patient with mild cognitive impairment 
(MCI) also showed high presence of fibrillar amyloid plaque as 
measured with 11C-PIB (the status that could be identified as 
a prodromal AD). The positron emission tomography scans 
show sagittal sections of the brain at the level of basal ganglia. 
Color scale: red = very high, yellow = moderate high, green = 
high, blue = low 11C-D-deprenyl binding. Photo courtesy A. 
Nordberg, Karolinska Institutet.
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others 2011; Kettenmann and others 2013). Activation of 
microglia, viewed as a sign of neuroinflammation, is 
widely considered to contribute to neurodegeneration; 
and indeed activated microglial cells appear at senile 
plaques in AD and are often prominent in other neurode-
generative disorders (Heneka and others 2010; Perry and 
others 2010; Perry and Teeling 2013). There are however 
mounting indications for functional insufficiency of acti-
vated microglia in neurodegenerative conditions, which, 
for example, is manifested in failed phagocytic capacity. 
Phagocytosis is impaired in activated microglia in the 
context of AD (Gomez-Nicola and Perry 2014; Krabbe 
and others 2013) and microglia cannot effectively remove 
misfolded prion proteins in prion disease (Hughes and 
others 2010). The predisposition for functional microglial 
asthenia can be associated with genetic variants of trig-
gering receptor expressed on myeloid cells 2 (or TREM2), 
which is expressed in activated microglia and regulates 
pro-inflammatory/phagocytic balance (Guerreiro and 
others 2013) or with alterations in complement system 
(Lambert and others 2009).

Incidentally microglial densities are increased in nor-
mal ageing (Tremblay and others 2012) and at the early 
stages of neurodegenerative diseases such as AD 
(Rodríguez and others 2013; Rodríguez and others 2010) 
and HD (Tai and others 2007). Increase in microglial den-
sity in ageing is connected to the decrease in their func-
tion (Streit and Xue 2013); and possible early decrease in 
microglial density in neurodegeneration also indicates 
their asthenic transformation.

Pathological Potential of Gliodegeneration

Morphological atrophy of astrocytes at the early stages of 
the AD may have several pathologically relevant conse-
quences. First and foremost this may result in decrease of 
astroglial synaptic coverage. Perisynaptic glial mem-
branes that enwrap most (~70% in hippocampus) of the 
synapses in the CNS form “astroglial cradle” fundamen-
tal for maintenance of synaptic transmission through 
multiple molecular cascades sustaining homeostasis of 
the synaptic cleft and supplying neuronal terminals with 
neurotransmitter precursors (Nedergaard and Verkhratsky 
2012; Verkhratsky and Nedergaard 2014). Reduced syn-
aptic coverage may therefore compromise synaptic 
strength and even promote synaptic loss. This synaptic 
loss is generally considered to represent the earliest mor-
phological symptoms of AD responsible for early signs of 
cognitive deficit (Coleman and others 2004; Terry 2000); 
moreover the degree of synaptic loss has been claimed to 
correlate with the severity of dementia (DeKosky and 
Scheff 1990; Samuel and others 1994). In addition 
asthenic astrocytes cannot support synaptogenesis 
(Eroglu and Barres 2010) thus affecting regeneration.

Astrodegeneration and loss of astroglial function com-
promise many other levels of CNS homeostasis thus con-
tributing to AD progression. Astroglia are the main source 
of ROS scavengers such as glutathione and ascorbic acid, 
and hence astroglial weakness may exacerbate ROS-
related damage. Similarly atrophic changes may affect 
the astrogliovascular unit as a whole thus lessening meta-
bolic support of neurons and even promoting local isch-
emia. Progressive decrease in glucose utilization has 
been observed in functional brain imaging at the early 
stages of AD (Mosconi and others 2008), which also 
could be related to astroglial atrophy. Degenerative astro-
cytes may also contribute to vascular deficits frequently 
observed in AD (Bell and Zlokovic 2009; Zlokovic 2008). 
Finally, paralysis of astrogliotic response in certain brain 
areas may explain their high vulnerability to AD, as 
indeed entorhinal cortex appears to be the first to be 
affected by the disease. In the clinical evolution of the 
Alzheimer´s type pathology failure of astrogliotic 
response may be fundamental for the disease progression. 
Brain imaging experiments have demonstrated a correla-
tion between a decrease in activated astroglia-associated 
signal and cognitive failure; in patients with high astro-
gliotic response the cognitive impairment remained mild 
even in the presence of β-amyloid load (Fig. 7; Carter and 
others 2012). Decrease in astrogliosis parallels with 
development of AD and precipitates terminal cognitive 
decline. Oligodendrocytes in AD also show the loss of 
function: despite very substantial increase in cell density 
the myelinating capabilities become impaired affecting 
inter-neuronal connectivity. Finally, deficient microglia, 
which lose their phagocytic capabilities may facilitate 
β-amyloid accumulation thus contributing to disease 
evolution.

Conclusions

The main function of neuroglia is preservation of CNS 
homeostasis in conditions of environmental pressure and 
in pathology. In that the defensive capabilities of neuro-
glia are fundamental for containing or facilitating the 
disease progression and neurological outcome. In neuro-
degeneration, neuroglial cells experience loss of impor-
tant homeostatic and defensive functions and thus 
asthenic or paralytic neuroglia may define the progres-
sion of the disease.
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Note

1. This aphorism is sometimes attributed to Robert Remak 
(Baker 1953) and frequently to François-Vincent Raspail, 
which is stated in numerous articles (e.g., Tan and Brown 
2006; Wright and Poulsom 2012), and even in Wikipedia 
(http://en.wikipedia.org/wiki/François-Vincent_Raspail); 
the original Raspail paper quoted in these sources (a paper 
on the development of starch in the grains of wheat: Raspail 
FV. 1825. Developpement de la fecule dans les organes de 
la fructification des cereales. Annales des sciences naturel-
les 6:224) does not contain the aphorism; we failed to find 
any original text written by Raspail that contains the text in 
question.
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