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On the Parallel Surfaces of Oonicoids and Conies,

By SAMUEL ROBERTS, M.A.

{Read January llth, 1872.)

1. If a straight line of given length moves with one extremity on a
given surface, and remains normal to it in all positions, the locus of the
other extremity is called a parallel of the given surface, or primitive.

Hence the parallel surface is the locus of the centres of spheres of
constant radius which touch the primitive, or it is the envelope of
such spheres or of spheres of constant radius which have their centres
on the primitive. The idea of parallel curves in plane space is thus
extended in a direct manner to space of three dimensions.

In the present paper, I propose to discuss the parallels of quadric
surfaces or conicoids; but in several cases, where the results for a
general surface of the order m are analogous to those corresponding to
them for a conicoid, I have given general expressions, the proofs and
developments of which, I hope to give on some future occasion.

The parts of the theory already worked out are, as far as I know,
contained in Dr. Salmon's " Geometry of Three Dimensions," 2nd Edi-
tion, p. 148, and in Professor Cayley's paper on the quartic surfaces
( * £U, V, W)8, ("Quarterly Journal of Mathematics," vol. xi., p. 15
et seq.) I have also had occasion to refer to a paper by Professor Clebsch
on the problem of normals and the surface of centres (Crelle-Bor-
chardt, t. lxii., p. 64).f

I . The Parallel of a Central Conicoid.

2. The equation of a parallel of a central conicoid, represented by

t Prof. Clebsch, in the memoir referred to, has considered tho surface of centres
in a generalized way. Parallel surfaces might be similarly treated. In fact, if
x2 + f/2 + z* + u>2 es 0 represents a fixed quadric surface, equal quasi-spheres having a
double contact with it along a plane are represented by

x" + y1 + z5 + w»- (Xx + Yy + Zs + Ww)J = 0;
and X, Y, Z, W are proportional to the coordinates of the quasi-centre.

Forming the condition that these quasi-spheres may touch

* + £ + £ + * o,
a b e d

we get s £ X l _ l = 0.
e+a

The discriminant with regard to 6 must be made homogeneous. I have not found
any important advantage in point of symmetry, and therefore confine myself to the
special forms.
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in rectangular coordinates, is obtained by equating to nothing the dis-
criminant with respect to 0 of the quartic equation

*£L + J£ . + J^__0-.# = o ; (1),
0 + a 6 + b 8+e v '

which may also be arranged thus :

;
or again, if we put O'+^'for 0, a for a+<f, b' for b+d\ d for
we have the equivalent and symmetrical form

F+J + <r+b' + 2 1 = : 0

The forms which I principally use are (1) and (2). I call k, which is
the value of the constant normal distance between the parallel and its
primitive, the modulus.

.The equation (1) is obtained by forming the discriminant with
respect to a, (3, y of

The equation of the parallel is thus the cpndition that a sphere of the
radius k shall touch the primitive, the coordinates of the centre being
the current coordinates relative to the parallel. If, on the other hand,
&, y, s are given constants, we have an expression connecting the
squares of the six normal distances from the point whose coordinates
are x, y, t to the quadric. Corresponding to these distances, there can
be described through the point six parallel surfaces.

It is obvious, especially from the form (3), that «•, y1, «*, —fc* enter
the equation in the Bame way ; and since the origin is not generally on
the locus, its order is 12.

A similar remark is true of surfaces generally. The order of the
parallel surface is equal to twice the number of normals which can be
drawn to the primitive from a given point; that is to say, for a general
surface of the order m, the order of the parallel is 2(m*—m*+m).

Limiting Case &=0.

3. When the modulus} is nothing, the quartic (1) contains 6 as a
factor. Hence (Salmon's " Higher Algebra," 2nd Edition, Art. 106,
p. 86) the equation of the parallel is of the form

a b c
where $ = 0 represents the imaginary developable which circumscribes
the system of confocals

W+ + T&~l = ° (a)>
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This developable is generated by planes which touch the primitive and
pass through the tangent lines of the imaginary circle at infinity, and
the result is most readily extended to surfaces of higher order by the
aid of this definition.

If X, Y, Z of the parallel (mod. Jc) correspond to as, y, z of the primitive,
we have

&- TcV- h -
x = * + ^ T = * + ^ z = * + ^ s 1 0

from which we get (1) by means of

c
If k=0, we have generally X=je, Y=i/, Z=«, except for points on the

curve 2 - - 1 = 0, 25^ = 0.
a a2

The developable * = 0 is the parallel of this curve, mod. 0; and, gene-
rally, the corresponding developable is the parallel (mod. 0) of the curve

» = 0, *(£)'= 0.
The surface * = 0 is of the 8th order, having the focal conies of the

primitive and the circle at infinity for double lines, together with a
cuspidal curve of the order 12. It will be observed, from the form of the
equation, that the sections by planes parallel to the principal planes
are plane parallels to an imaginary modulus of the focal conies in those
planes. Projected orthogonally on them, the sections in question form
systems of parallels, and the loci of their cusps, t. e. the corresponding
projections of the edge of regression, are the evolutes of the focal
conies ("Messenger of Mathematics," August and November, 1871).

In like manner, the section at infinity is the envelope of the conio

0 + a V + b 0 + c '
or four right lines, together with the nodal circle

The general characteristics of the surface are those of a developable
touching two given conicoids, or of the reciprocal of a quadriquartio
curve.

Sections by the Principal Planes and by tlie Plane at Infinity.

4. In order to obtain the equation of the section of the parallel by
the principal plane z=0, we may make «2=0 in (1). The quartic then
contains 0 + c as a factor, and the resulting equation is of the form
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\ DM of JSL + / £ - • - ¥ H -St. + X +«-*' } '= 0;
(. 0+a 0 fo ) C c—a o—b )

that is to say, we have the plane parallel (mod. h) of the principal
section of the oonicoid by the plane 2=0 and the conio

which is a nodal curve, since z enters the equation of the parallel sur-
face as a square.

The sections by the other principal planes are of the same kind.
The section by the plane at infinity is obtained by making the terms

in (1) independent of x, y, z vanish. In this case, the quartic may be
homogeneously written

ydz2 _Q

6+at} 6 + bn

The resulting equation is therefore of the form

X (»»+y1+e*)' (bca*+cay7+abz*)* = 0.

It follows that the section at infinity contains the nodal conies

a5«+y»-j-a» — 0, ft«^+caf+abz2 = 0,

and besides the right lines determined by

(&-e)*fi5+(c-a)*y + («.- J)*z = 0 (5).

It will be observed, that since k, a finite length, is evanescent at in-
finity, the section is the same as for £=0 .

Similarly, for a surface of the order m, the section of the parallel at
infinity contains the corresponding section of the primitive as a nodal
curve, the circle at infinity multiple in the degree m (m—l)a and the
2m (m—1) common tangents.

5. We have now to consider the relations of the several nodal conies
to the plane parallels with which they are associated.

The plane parallel of the section of the primitive by the piano aj=O
meets the axis of y in the two double points

c
but these points lie on the conic (4).

In like manner, the same conic passes through the two double points
on the axis of x of the plane parallel of the section of the primitive by
the principal plane y=0.

This determines the conic which has, with the focal conic in its
plane, common asymptotes, their points of contact being two of tho
intersections of the lines (5).

Again (Salmon's " Geometry of Three Dimensions," 2nd Edition,
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p. 402), when we make za=0 in (2), and take the discriminant relative
to 0, we in effect find the envelope of the conies

which envelope will touch a conic of the system corresponding to a
given value 0, where it meets the consecutive conic

fry* __i _ A m

e+&)» 1 ~ ° ' (7)*
For the plane 2=0, we make 0 = — c. The first conic is the double

conic of the parallel in that plane; the second conic is the correspond-
ing cuspidal conic of the surface of centres (Clebsch, Crelle-Bor-
chardt, t. lxii., p. 64; Salmon's " Geometry of Three Dimensions,"
pp. 143 and 402). Hence the double conic of the parallel touches the
plane parallel, which makes up with it the complete section by the
plane 2=0 at the points where it meets the corresponding cuspidal
conic of the surface of centres.

The coordinates of the points are '
, (W-c^c-a , td&—ca\*e-6

8!=s±lT=r) —• y = = ± hrri
and the common tangents therefore are

Similarly, the nodal conic at infinity '
hex* + cay1 + abz% = 0

is touched by the lines (5) at points on the surface of centres, and the
circle asl+j/8|2J = 0
is touched by the same lines where it meets

the corresponding cuspidal conic of the surface of centres.

6. I investigate here the general intersections of the conic (4) with
the associated plane parallel, because they will recur in the sequel.

If we write u for Jaj'+oy8—ab—t?(a + b), ufor as'-j-y2 — a—6—c— A2,
and — c for 0, the equations (6) and (7) may be replaced by

c*v—cu+2cs—aW = 0 (8),

-& (c-ay (c~6)9 = 0 . . . (9),
the second equation representing the differential of (4) with respect to
c, after dividing by the same quantity.

The discriminant of — + - ^ - - « - * " = 0,
6+a 0 + b '

or 0 s - (v + c) 03—M0 + abk% = 0,
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is -
If u be eliminated from (8), (9), it will be found that, after division

by the factor c (a + b)—(c3+ab),, the result is

When therefore c2t>+2o8—abl& is substituted for cu in (10), the re-
sult will be divisible by {oh + 3c3+abk*)*,

EInowing this, we are able to see that the result of the elimination of
cu is, when multiplied by c8,

(fv+Bc'+abVy {e*i;+2(e*+a*4*&)} {e*t>+2(c*—a*J*&){ = 0.
Wa have also

= 0.

Equating to nothing the corresponding factors—that is to say, the
two first, the two second, and the two third—we obtain in sets of four
the intersections in question.

The Complementary Nodal Lines.

7. Independently of the five nodal conies in the principal planes and
the plane at infinity, there is a nodal curve of the order 16, which we
shall find to break up into two groups of right lines corresponding to
positive and negative values of k. I call these the complementary
nodal lines.

The equation (1), when expanded, is

+ \^2bc+abc-2(bcarl)\ 0 + abcP — 0 ;
where 2a denotes a+b + c &c.

We may write it 0*+B03+C0a+D0+E = 0 (11),
and we must bear in mind that E is constant, and B, G, D are quadrio
functions.

The conditions that this equation may have two pairs of equal roots,
are the equalities

4 C - B >
r _ 4 E C - D a _ D _ E B _ 8 E + B D n g .

8 8B • B"" D "" 40 K }'
These give seven different equations, which, however, in the present
case, are reducible to the two pairs* of equations,

D-E f B = 0 (13), D + E*B = 0 (15),
40-B»-8E* = 0 (14); 4C-Ba+8E* = 0 (16),

showing that the nodal curve in question breaks up into two lines of
the ordjr 6 corresponding to positive and negative values of k.
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It will be convenient to call these by anticipation the two nodal
groups.

8. When we ma]te E=0=& in (11), divide by 6 and take the discri-
minant of the residual equation, the result represents, as we know, the
imaginary developable circumscribing the system of confocals (a).

The equation is then of the form

27 (afcc-2 bcx*y+4> [2 i c - 2 (b+c) as4]8

+4(a&c-2&caja)(2a-2a5a)a— (2 a— 2a?)a[2&e-2(&+e) a?1]1

- 1 8 ( 2 a - 2 » a ) [ 2 6c-2(6+c)ar !](a6c-26cxa)=0. . . ( l7) .

The intersection of this with the primitive is given by the surface
[2 6c - 2 (6+ c) a?]* {4 [2 Jo—2(& + c)ar»] — (2a—2a>«)a} = 0 . . ( 6 ) .

The first factor relates to the line of contact

\ dy I \dz I
The second factor corresponds to (14) and (16).

I find it of consequence, with respect to the general theory, to remark
that the complementary nodal groups when &=0 are represented by the
intersection (taken twice) of the conicoid with the developable (17)
as distinguished from the line of contact. This intersection is known
to consist of eight rectilinear generators of the conicoid. The cuspidal
curve, which will be presently considered, is represented in the same
limiting case by the cuspidal edge of the developable and the line of
contact taken three times. Thus a portion of the cuspidal curve is
replaced by two united nodal curves, as in plane space we find cusps
superseded by pairs of united double points.

9. The equations (13), (14) and (15), (16) may be written, if we
attend to the corresponding signs,

. D=pE*B = 0, 4 ( C = F 6 E * ) - ( B - 4 E * ) ( B + 4 E 1 ) = 0 (c),

or in full,

(be—k */abc) as2 + (ca—h */abc) y* + (db—h </aFc)t?

+k*</abc - # 26c1 + h >/abc 2a-a6o = O...(18),

(2*a)a+22 (6+o-a—tfy+A;*-2^2(1+8&v'a6c

-2a*(2a*-2a*)(2a*-2&*)(2a*-2cl) = O...(li>).

The circle at infinity is a double line on the surface represented by
the second equation and the intersections of 2»'=0, 2bcz* = 0 count
twice on each oft he groups. They are in fact sextuple points on the
total nodal curve.



64 Mr. S. Roberts on the Parallel Surfaces [Jan* 11,

For the plane a=0, the equation D—E B = 0 becomes

lcx*+(My%-alo-W?>bo-k>/abc(rf+y%-2a-h1) = 0 ;

or, according to the former notation,

eu—Tc/abov—abh2 = 0.

Substituting in the same way in BJ—4C+8E = 0, we get

v*+4 (M+c«+c8) + 8&\/a6c = 0 ;

or, eliminating u, {c*v + 2(c*+akbh)\* = 0,

and similarly, {cu+a*b*k (2c' + aV&) }a = 0.

The nodal groups therefore meet the principal planes in the points
of simple intersection of the corresponding nodal conies and plane
parallels (§ 6). These points are eight in number, and may be sepa-
rated into two sets of four, each set belonging to one of the nodal
groups, and each point being a double point thereon. The points are
triple on the total nodal curve.

The actual coordinates are given by

c(a-b) a*+ (o - a)(ako*-b*ky = 0,
e(b-a) ya+ (c-b)(b*c*-a*ky = 0,

and the same with k of the opposite sign.
When &=0, the systems of equations give the umbilics real and un-

real of the primitive.
The results are, of course, analogous for the other principal planes.
By the foregoing conclusions, and the consideration of the reciprocal

surface, I was led to infer that the complementary nodal curve must
consist of sixteen right lines. I shall now show that this is really
the case.

10. If we eliminate sa from

( 2 / ) ( 2 ) = 0,
we have

+ 2 j [K (V— /*M) +/iaK-/iv] aja+ [\ (v—f
+ (v-/uM)a-/i8 (MVN) = 0.

Identifying the given pair of equations with (18) and (19),

v—fiM = tfi/abc—Kt2ab + fc'/abc2a--abc
— (a+b—c—ft9) (ab—h </abc)

a

Ma-N=(a+6-c-fca)3
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therefore (v-/iM)a-/ia (Ma-N) -{a-
Again fftK—fiv = (b + o—a—k3) ah (>/a

+ (^/ab—k v/c)a {c Sab—k Jc (a + b) + k2 Sab | Sab

— (Sab—

therefore if (v—/xM) +/uaK—pv = 6 (a— 6)(c —a)(\/a6—

Similarly the coefficient of y* is

a(a-b)(b-c)(y/ab-hy/cY.
Hence we have

\b(c-a)a?-a(b-c)yt\a

+ 2\b(c-a)xi+a(b-c)y1}(a-b)(Sab-kScy
+ {a-b)XJab-k^cy = 0,

or \b(c-a)xi+a(b-c)y2+(a—b){y/ab-kycy\%

—4>ab (c—a)(b—6) asa^a = 0 ;
giving finally

b (c—a) 05+ v^a(6—c) j/-f </b—a

Each of these equations represents four planes containing one group
of eight right lines. The planes are, of course, tangents to the coni-
coid represented by (18), which may be written thus :

</bcx* Sea y%

— _ . - l = 0 . . . . ( 2 1 ) ;

and the right lines are the eight generators of the conicoid passing
through the circle at infinity.

We can consequently substitute for the equation (19) a form corre-
sponding to second factor of (i), but derived from the above equation.

The six traces of the planes (20) on the plane at infinity are the six
lines joining the points of intersection of

Ha2 = 0, S(6caja)=0.

The planes consequently touch the conicoid (21) at its twelve umbilics,
and the nodal group consists of the eight imaginary generators on
which the umbilics lio by threes.

VOL. IV.—NO. 4 5 . P
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If now we eliminate k from

»/b (c—a)x — Va(b—c)y + */b—a(vdb — k^/c) = 0,
t/c(b—a)x — */a(c~-b) z + »/c—a (vca—k^/b) = 0,

we get

>/(a— 6) (a—c)

representing eight planes independent of k which contain the whole of
the sixteen r ight lines. In selecting the forms of the equations from
which we eliminate, we must take care that both the planes contain
the same line of the group.

The order of the total nodal curve is 26.
For a surface of the order m and otherwise general, the order of the

nodal curve is 2m8—4m'+6m*—6m1—14wi?+l 7m.

I may remark that each section of the parallel surface by a plane (22)
consists of a pair of nodal r ight lines twice over and a curve of the 8th
degree, with eight double points and twelve cusps. In fact, considering
one of the pair of nodal r ight lines, we have seen that i t meets a nodal
conic and a nodal r ight line in each of the three principal planes.
Moreover, the pair of nodal r ight lines in the plane meet another pair
and an intersection of two nodal conies at infinity. This accounts for
sixteen intersections of the plane with the nodal curve. There are
eight more, BIX of them on nodal r ight lines and two on the nodal
conies at infinity. These give the nodes of the section. The cuspidal
curve (§ 11) meets the plane in 24 points, but 12 of these are on the
nodal r ight lines and are due to stationary points ; the remaining 12
give the cusps of the section.

The section by any plane containing two nodal r ight lines is of course
similarly compound.

The planes (22) touch the circle a t infinity, where i t is met by the
primitive conicoid, and touch the conicoid at the eight points

o« 6» c*

which are remarkable as being points through which no confocal dif-
ferent from the primitive conicoid can be drawn. The planes inter-
sect in these points as triple, and in two points on each of the
intersections of the principal planes' and the line at infinity as qua-
druple. The eight points above mentioned coincide with their principal
centres of curvature, and therefore lie on the surface of centres—in
fact, on the cuspidal conies.
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The Cuspiolal Curve.

11. The equations of the cuspidal curve, corresponding to the case
of three equal roots 8, are obtained by equating to zero the two funda-
mental invariants of (1) ; that is to say, we have

12E-3BD + Ca = 0 (23),
72EC+9BCD-27D4-27EBa-2C3 = 0 ; (24).

The curve therefore is of the order 24, and forms the complete inter-
section of a quartic and a sextic surface.

From the above we get, by elimination of the term BCD,
108EC-27Da-27EBa+C3 = 0 (25);

and again, by means of (23),

(O-6E l ) 8 -27(D-E 'B) a =
(O + 6El)8-27(D+E1B)a =

or (C-6E l ) 8 - (C + GE*)8-27KD-E*B)a-(D+E*B)8| = 0,

(C-6E*)s+(C + 6E*)8-27{(Dn-E*B)a+(D+E*B)a} = 0 ,

which are equivalent to (23) and (25).
The cuspidal curve meets the plane at infinity in the points of inter-

section of S (6 + c) JB8 = 0 with 2asa = 0 and " S (lex1) = 0; that is to
say, in the eight points of contact of the tangents common to the nodal
conies at infinity, which are also the points where the locus of the in-
tersection of three rectangular tangent lines to the primitive meets the
primitive and the circle. Each of these points counts as three inter-
sections with the cuspidal curve. They are, in fact, stationary points
on the curve.

12. To find the intersections of the cuspidal curve with the principal
plane z=0, we may employ the equations (26), note being taken of the
extraneous curve, counting six times, where C=0 meets the plane at
infinity.

Making za=0, we may write those equations, according to the
former notation,

(u + cv + ci-6k\^abcy+27(m—tfab+ky/abcv)* = 0,
(w+cv+ca+6k Safe)3 + 27 (cw - tfab—k </abc. v)a = 0.

But for the cusps of the plane parallel represented by the discriminant
of 0 s - (v + c) 6s - ud + abk2 = 0,
that is to say, of the plane parallel which forms part of the section of
the parallel surface by the plane z=0, wo have

( ) , ()
values which satisfy the equations of the cuspidal curve. Hence, as

F 2
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might be geometrically anticipated, the twelve cusps of the plane
parajlel are on the cuspidal curve.

Again, we have seen that the points where the double conio in the
pjane z=0 touches the associated plane parallel are determined by

c2v+3c8+aW = 0, en+c*+2abtf = 0.

The values of v and u thence derived also satisfy the equations of the
cuspidal curve. Moreover, from the form of these equations, it appears
that the points in question count three times as intersections with the
cuspidal curve. They are, in fact, stationary points.

13. Since the elimination of 0 from (2), and its first and second dif-
ferentials with respect to 0, gives the equations of the cuspidal curve of
the parallel, and since the like elimination from those differentials gives
the surface of centres, we see, what is also apparent geometrically, that
the cuspidal curve lies upon the surface of centres. This seems to be
generally true. A system of parallels may be regarded as a system of
surfaces having a common surface of centres. There will be two
branches of the cuspidal curve corresponding to the two sheets of the
surface of centres. The general order for a surface of the order m is

Stationary Points due to four equal roots 6.

14. We have next to consider the points corresponding to the case
when (1) has four equal roots.

These points are stationary points of the cuspidal curve, and are in
one way obtained by combining (2) with its first, second, and third
differentials with regard to 0.

We have then to eliminate 0 and obtain the equations of three sur-
faces whose 32 nett intersections are the points in question.

Thus we may infer that these points are, in fact, the intersections of
the cuspidal curve of the parallel with the cuspidal curve of the surface
of centres, i. e. its eight cuspidal conies not in the principal planes or
the plane at infinity.

In fact, the equations (c) and (26) have been so written that we see
at once that the 32 points determined by

C = 6a»JE* (27)

are points on the complementary nodal lines and on the cuspidal curve.
The above equations are directly obtained by making (1) a perfect

biquadratic or fourth power.
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Further, the system of conditions being

s oa?a 1 = 0 s "^ = 0 s fla?3 — 0
"/«_•_,.>« » ^ ( 6 + a ) 8 ' (0 + o)4 '

, = o, j^^-i-a

the three last may also be written

_ =̂  0 v.
(6 + a)

From these we get

?/8 _

therefore, b / the second of the given system of equations,

nX* &>y °kz - 1 = 0...(22).
( 6 )

The points in question lie therefore in the eight planes (22), in
which also lie the cuspidal conies of the surface of centres not in the
principal planes or the plane at infinity.

15. Actually to determine the points, we may revert to the system
(27), which may be written

a9 = 0 ,

( = 0,
giving

3} (c -6 )
- {(h + c) a? - fc2Sa- 26c+6 (a&e#)» w2 { a (c - 6) = 0.

The coefficient of &a is — Jc(c-6) , and the value of o,22a+aJe
is as. Hence we get

akx = ± ' v y ' ,
v (a — 6) (a—c)

6 i ± { &

Those points lie upon the cuspidal conies of t ie surface of centres which
are determined by tho cones
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a* (6-a)* (c-a)* #*- 6* (a-J)* (o-i)* y*-a+6 = 0,
fc* (a-5)* (c-b)* y* - c* (a-e)* (i-c)* a*- J + c = 0,
c* (a-c)* (J-c)* z* - a* (6-a)* (c-a)* x*-c + a = 0.

The right lines (13), (14) then intersect the cuspidal conies in sixteen
points on two spheres. The points are determined by

B = ±4E*,
D = ±4E»,
0 = 6E*.

The right lines (15), (16) intersect the cuspidal conies in the sixteon

points B = ±4E* v ^ l ,
D = ±4E* f-L,
C=-6E* ,

also on two spheres. Each sphere passes through one point in each of
the eight planes (22), and each plane contains four points which are
determined by the cuspidal conies of the surface of centres.

When k=Q, the thirty-two points fall together in eight points which
are the intersections of the primitive, the locus of the intersection of
three rectangular tangent lines, and the locus of the intersection of
three rectangular tangent planes.

I I . The Parallel of a Paraboloid.

16. This case requires a separate discussion, though some detail may
be dispensed with.

If the primitive is represented by

a b

the equation of the parallel is obtained by equating to zero the dis-

criminant of J^- + JlL-e(2z + d)-kt=z0 (28),
d+a v\b

As before, the equation of the parallel represents also the relation
which exists between the squares of the five normal distances from a
point to the primitive; and, from the manner in which «J, y*, — fcs

enter, the order of the parallel is 10.
When &=0, we have the paraboloid itself twice- over and the de-

velopable circumscribing the confocal system

0 + a
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The characteristics of this developable are those of a developable
circumscribing two conicoids which touch, or the reciprocal of a quadri-
quartic curve with a double point. The cuspidal curve is therefore of
the order 6. There are two nodal conies, and the line of simple inter-
section with the primitive is of the order 4. The remark in § 8 holds
good in this case also.

Sections by the Principal Planes and the Plane at Infinity.

17. Making y '=0 in (28), we have a factor 0+6, and the section is
given by

Disct.(Disct. o f ^ — { 2 h + 8)-w\ ( T + & ( 2 * - & ) -(. o+a ) Co—a

and contains the plane parallel (mod. h) of the parabola which is the
section of the primitive by the plane y=0, together with a nodal
parabola.

The case is similar with respect to the section by »=0.
As to the section by the plane at infinity, we may make £=0 . The

section is then determined by

(a5»+2,.+*9)(«f+</')' ( ~ + f )"= 0.
a 3

The lines \- \- = 0 are nodal lines.
a b

The plane at infinity touches along the lines «9+2/* == 0 ; but they
appear not to be nodal.

18. If we write u for «*—2az—P, and v for — 2z—a—b, and pro-
ceed as in § 6, we get for the intersections of the nodal conic in the
plane y = 0 with the associated plane parallel

(b2v + 36s+aWf. 16*«+2 (&• + a%} j b*v + 2 (6*-a*k)} = 0,

These expressions give the finite intersections.
These points are singular in the same manner as in the general case;

that is to say, the complementary nodal lines which will be next dis-
cussed pass in pairs through the four finite simple intersections. The
cuspidal curve passes through the two finite points of contact, each of
which counts as three intersections.

Two of the points of contact are at infinity, and each of these also
counts as three intersections .with the cuspidal curve.

The Complementary Nodal Lines.

19. We may still make use of equation (11), but B is now to be taken
as of the first order in z, y, z. Consequently the equations (14) and
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(16) aro only of the second degree, and the nodal curve divides into
bwo lines of tho older 4, each corresponding to one value of y/&a.

In fact, for the primitive f- -f— 2z = 0 wo have
a o

=0 ...(29),

(30).2 /
The sphere is one of those parallel (modulus h) to the sphere which

passes through the intersection of the primitive with the developable
circumscribing the confocal system.

Eliminating ya from (29) and (30), we got

or (b-a)i?— i Ja(z-^-\ + y/b(>/ab-k)\ = 0,

representing two planes.
Similarly we get ' ^ '*

( a - 5 ) y a - f y j ( a - ^ i ^ ) + y a ( V o j " - ^ ) | l = 0 ,

representing other two planes.
Hence the nodal line in question consists of four right lines, imagi-

nary generators of the paraboloid (29). Tho other nodal group also
consists of four similar right lines.

The intersections of 2a?a = 0, — + •%- = 0 at infinity are inter-
a b

sections of pairs of lines of the nodal groups. The total order of the
nodal curve is 14.

The Cuspidal Curve.

20. The surfaces (23) and (24) intersect in more than tho cuspidal
curve of the parallel. This curve is of the order 18. In fact, the sur-
faces 12E-3BD + C2 = 0, 96EC + 3BCD-27Da-57EBa = 0,

respectively of the orders 4 and 5, intersect in the cuspidal curve, and
in the curve where 0 = 0 meets the plane at infinity; i.e., in the lines

This cuspidal curve also lies on the surface of centres, and it will bo
observed that its order is twice the order of that surface, as in the ge-
neral case.

The curve meets each of the principal planes .u=0, y=0, as has been
stated in two finite points counting as three, and also passes through
the six cusps of the corresponding plane parallel of a parabola. Also
in each of these planes the curve passes through the point whero the



1872.] of Oonicoids and Conies. 73

axis of z meets the plane at infinity, each passage counting as six
intersections with those planes. The nature of these intersections is
most clearly perceived by reference to the general case where the cor-
responding section of the primitive is an ellipse.

We now see, from the form of the above equations, that the curve in
question meets the plane at infinity in the point, or rather adjacently
to the point where the axis of z meets the plane at infinity, and also
where a '+y' + s8 = 0 is touched by the lines x7+y* = 0.

21. We have then, at the point where the axis of z meets the plane
at infinity, a singular point of high complexity. From the analogy of
the general case, I infer that the singularity arises from the union of
two stationary points in each of the planes sc=O, y=0, and of four
stationary points in the plane at infinity. We shall see subsequently
that this estimate of the singularities is consistent with the general
characteristics.

In the case of the plane parallel of a parabola, we have two branches
having with one another a contact of the second order at infinity; i.e.,
the corresponding singularity counts as three adjacent, but not coin-
cident, double points. There is evidently a corresponding singularity
here, but it is more difficult to conceive clearly, and involves more,
probably, than the mutual contact of two sheets of the surface.

Stationary Points due to four equal roots 0.

22. Interpreting the equations (27) in accordance with the forms.of
B, C, D, E for a paraboloid primitive, we see that there are sixteen
such points.

We have, by substitution in these equations,
2z + a+b—4> (a&fc2)1 a» = 0,

a,»+2,«_2 (a+5) z—abtf + 6 (aW)* w* = 0,
bx*+cy*—2abz-(a+b) fca+4 (a&fc2)1^ = 0,

a\b-a) ' V = b\a-b)

2 '
These values satisfy the equation

>/b — a \/a— b 2

representing four planes. We also get these equations by eliminating
h from (31).
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If now we determine for the surface of centres the cuspidal conies
not in the principal planes or the plane at infinity, by means of

= 0,

_4- "y = 0
(0+a)* ^(0 + 6)*

'* 6y' 1 n

we get "(IIJLK\* — 7—h\ = = '

«* L _ = o
(0+a)* (6-a)
40+2«+a+6 = O;

and the cuspidal conies are in the four planes (32). They are also
determined by the cylinders

itX f *• li'Xx Mtk M) /%. d>\x >**& I *m 3t ^ _ rt
%} I C» ̂ ~* w I « • • • " * • I O "̂™ Cm 1 «B "*T" c# •"• O —•• v/«

2 4

2 4

III. The Parallel of a Central Oonicoid of Revolution.
23. If in the fundamental equation (1) we put a = 6, the biquadratic

contains the factor 0+a, and we have, by taking the discriminant with
regard to 0, the extraneous planes (a'+y*)' = 0, and the parallel of a
central conicoid of revolution.

The nett equation of the parallel is thus reduced to the degree 8, and
is the discriminant of a cubic equation. From the form

it is evident that the parallel is represented by writing aj'+y1 for 9? in
^ («*, «*, —W) = 0, the equation of the plane parallel of the conio

— H 1 = 0. The surface is therefore generated by the revolution

of the plane parallel of a conic about one of its principal axes. The
general nature and form of the surface is easily conceived. It is in-
structive, however, with reference to the general characteristics, to
consider the nodal and cuspidal curves.

A section by a plane perpendicular to the axis will consist generally
of four circles.' For 8=0, however, we have a double circle

o—a
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due, of course, to the revolution of the corresponding pair of double
points of the revolving parallel. There will also be a pair of nodal
conies at infinity; namely, the circle at infinity and a conic having a
double contact with it.

Hence we have a nodal curve of the order 6. We shall also have six
cuspidal circles due to the corresponding pairs of cusps of the plane
parallel. The order of the cuspidal curve is therefore 12. The double
points of the revolving plane parallel situate on the axis give rise to a
pair of conical points or cnicnodes.

IV. The Parallel of a Paraboloid of Revolution,

24. The order of the parallel is reduced to 6. The finite double
point of the parallel on the axis generates a cnicnode. The three corres-
ponding pairs of cusps generate three cuspidal circles. We have,
besides, to estimate the singularity generated by the revolution of the
three united double points of plane parallel at an infinite distance on
or adjacent to the axis. The result seems to be that at infinity the
lines asa+ya = O are cuspidal. The revolution of two symmetrically
placed adjacent double points at infinity gives rise to the lines aj*-f y* = 0
as nodal on the surface. The addition of a double point on the axis of
the generating curve again gives these lines on the surface. The three
united double points cause the lines to be cuspidal (art. 30).

Y. The Parallel in space of a Central Conic.

25. The parallel surface of a curve is a tubular surface. For a curve
of the order m and rank r, the order of the tubular surface is, in ge-
neral, 2 (r+m), and the class 2r. When the primitive is an ellipse, the
parallel is called the elliptic ring. Using the term " ring " in a free
sense, we may similarly speak of the hyperbolic ring, and the parabolic
ring.

For the equation of the parallel of the central conic —h V — 1 = 0,

z=0, we must take the discriminant, with regard to 0, of

: 1 *- 1- 1 = 0 (33),
e+a e+b e v J

obtained by putting c=0 in (1). The primitive is thus treated as a
limiting case of a surface, as conies are included in a system of confocal
conicoids. The equation (33) can, however, be obtained directly.
(Gayley, Quarterly Journal of Mathematics, xi. p. 19.)

The equation of the parallel surface is therefore obtained by writing
a2— fc2 for —fc2 in the equation of the plane parallel of the primitive.

As long as sa < ft2, the section of the surface by a plane parallel to



76 Mr. S. Roberts on the Parallel Surfaces .[Jam 11,

that of the primitive, is a plane parallel of the primitive modulus
W—z*. The planes z%—k* — 0 touch the surface along conies which
are the same as the primitive in form and magnitude. Outside these
planes the sections are imaginary. The order of the surface is evi-
dently 8.

If y=0 , 8 + b becomes a factor of the cubio equation, and the discri-
minant is of the form

If *=0, we have

] [£ z-=^- 1 ] = 0.
For the plane at infinity, the section is determined by the discriminant

« a? . y* . z2
 A

of T-a + e+b + T = 0>
or \tba*+ayi+(a + b)jy-4!ahzi(zi + y3 + z'>)\ (asa+y' + *9)J = 0.
We have found three nodal conies, and two .torsal conies, indicating
nodes on the reciprocal surface.

The equation (33) gives for the cuspidal curve

0'+3B08+3C0+D = 0,
C - B a = 0, BD-C a = 0, D - B C = 0.

Its order is 12.
There are two cnicnodes at infinity where the primitive meets the

plane at infinity.

V.
If, however, the primitive is a circle, the parallel surface is the com-

mon tore or anchor ring, generated by the revolution of a circle about
an axis in its plane. The surface has as nodal conic'the circle at in-
finity, and four cnicnodes; viz., two on the axis, and two at the
points where the primitive meets the plane at infinity, that is to say,
on the nodal circle. The order is 4. A good deal has been written on
this surface and the general tore.

VI. The Parallel in space of a Parabola.

26. The equation of this parallel is obtained in the same manner as
that of a central conic by equating to nothing the discriminant of

g - # = 0 (34),

the result of writing 5=0 in (28). We may, however, derive the form
independently, as in the last case.
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As long as y% < &*, the section by a plane parallel to the plane of the

primitive represented by 2z = 0, is a parallel of the primitive.

The planes y1— A9 = 0 touch along two parabolas equal and similar
to the primitive.

When »=0, 0 + a i s a factor of (34), and the discriminant is of the

form

showing a nodal parabola.
The order of the surface is evidently 6, and we have a cuspidal curve

of the order 6.
There are two adjacent cnicnodes at infinity where the primitive

meets the plane at infinity.*

VII . The "Parallel of a Oone of the second order.

27. Let — + £ + — = 0 be the equation of the cone. For the
a b c

equation of the parallel we must equate to nothing the discriminant of

0+a 0 + b 6+c
The surface is a developable of the order 8, with four double conies
and a cuspidal curve of the order 12; the form is similar to that of the
developable generated by a plane which touches a conic at a constant

inclination to its plane. If, indeed, we write £ for —, A for —, B for
a a

T.9 &* as*
—, 0 for —, X* for —, &c, the equation becomes
be a

<+A Z+B C+G
so that the parallel surface is a homographic deformation of the deve-
lopable circumscribing a system of confocal conicoids, and has the same
general characteristics.

I need not dwell on the cases of cylinders. Their double and cus-
pidal edges correspond to the nodes and cusps of the corresponding
plane parallel.

* A model of this surface, constructed under the direction of Prof. Henrici, is in
the possession of the Society.
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T H E RECIPROCAL SURFACES AND GENERAL CHARACTERISTICS.

(I.) Primitive a Central Conicaid.

28. The equation of the reciprocal surface may be formed by writing

-+yfc for - in the reciprocal of the primitive equation with respect
P P
to a concentrio sphere of radius unity.

3 2 3

Then the reciprocal of — + -*f- + — —1 = 0 being
a b e .

oX8+6Ya+cZs-l = 0,

we get (aXa+6Ya+cZ2)-(l + ^ ) 8 = 0,

where p = v^X"+Ya+ZJ, for the equation sought.

This is of the form
J )=0 . . . (85).

I use the above method because it is applicable to surfaces generally.
For the particular case (and many others to which the substitution

-+k for - is not applicable), Prof. Cayley has given an equally
P ' P
simple process. We have only to form the reciprocal of (1), and take
the envelope of that reciprocal relative to 0 as parameter. (" Quarterly
Journal of Mathematics," vol. xi., pp. 15—25.)

It is not within the scope of the present paper to go into much
detail with, regard to the reciprocal surfaces, and develops the meaning
of the several forms considered as tangential equations of the parallels.
I confine myself to a few points bearing on the characteristics.

As quartic surfaces with nodal curves of the second order, the re-
ciprocal surfaces have received much attention from various geometers.
I refer to Prof. Cayley's " Sketch of Recent Researches upon Quartio
and Quintio Surfaces," "Proceedings," No. 32, p. 186.

Several more recent researches on the subject have, however, now
appeared. I find some conclusions as to the case of a quartic surface
with two intersecting nodal lines in a paper by Dr. Zeuthen, entitled
"Recherche des singularity qui ont rapport a une droite multiple
d'une surface," "Math. Ann.," b. iv., p. 18. A memoir by Herr
Budolf Sturm, entitled " Ueber die Flachen mit einer endlichen Zahl
von (einfachen) Geraden, vorzugsweise die der vierten und funften
Ordnung" ("Math. Ann.," b. iv., p. 245), contains valuable details
relative to quartio surfaces with a nodal conic and cnicnodes. The
author determines the most important of the singularities which be-
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come point singularities on the reciprocal surface. An earlier acquaint-
ance with this memoir would have materially assisted me in the study
of parallels.

For a general surface of the order m, the reciprocal of the parallel is
of the order 2m (m—l)a, or twice the class of the primitive as in plane
curves.

The equation (35) gives for the nodal conic at infinity

(a -#)X a +(&-fc ' ) Y*+(o-k ) Za = 0,

the reciprocal of which represents the corresponding node-couple torse
of the parallel surface (Cayley).

The pinch-points or cuspidal points on the nodal curve are deter-
mined as the intersections at infinity of

Y*+ Za = 0.

(II.) Primitive a Paraboloid.

29. The reciprocal equation may be written

(aXa+&Y*-2Z)a-4fc'Z8(Xa+Ya+Za)=0 (36),

obtained either directly or in the manner pointed out in the last article.
The nodal curve now consists of two intersecting right lines. The

four pinch-points fall together in the point (X=0, Y=0, Z=0) , being

determined by . aX*+6Ya = 0 ,
Xa+ Y»+Za = 0,

Z = 0 .

The singularity at the origin consists of four pinch-points and an
adjacent cnicnode or conical point.

In fact, if we substitute X'cos w—Tsui « for X, and X'sin o>+Y'cos w
for Y, and then make Y*= 0, we get for a general section by a plane
through the axis of Z

{(a cos1 w + b Bin* to) X/a-2Z}»-4*aZJ (X*+Za) = 0.

This represents the reciprocal of the plane parallel of a parabola, and
corresponds to a tangent cone (cylinder) to the parallel surface from a
point at infinity. The section therefore is a unicursal quartio curve
having three adjacent double points at the origin; that is to say, two
branches have there a contact of the second order, and the axis of X' is
the tangent. Now two of these adjacent double points are due to the
intersection of the nodal right lines at the origin. The third double
point indicates a cnicnode adjacent thereto.
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(III.) Primitive a Central Conicoid of Revolution.

80. The equation of the reciprocal surface is

It may also be written

showing that we have a nodal conic at infinity and two torsal conies
lying on the same surface of the second order as the nodal conic. The
pinch-points at infinity are given by

X"+Y"+Z" = 0.
The two torsal conies correspond to the two cnicnodes on the axis of
the parallel surface. We have also two cnicnodes or two points in the
nature of cnicnodes ; for if a quartic surface is represented by

JP-TJMN - 0,.
where L, M, N are linear, but U is of the second order, we have in
general, besides the nodal conic, two cnicnodes

U = 0, M = 0, N = 0,
and it may so happen that these points also lie on the conic, their co-
ordinates satisfying L=0. This is the case in the present instance.

The fact that the original parallel and the reciprocal surface are both
snrfaces of revolution assists us to see the necessity of a singularity of
this sort; for, taking the equation of the generating curve as

{(a-*») X*+(c-*3) Z a - 1 }a-4#(Xa+Z2) = 0,
we know that the curve is a quartic, binodal at infinity and sym-
metrical about the axis of z, which it cuts at right angles. There are
then, from geometrical considerations, no proper cnicnodes, which, if
any, would be due to double points on the axis. Yet, since the re-
ciprocal is of the order 8, we must have a singularity with the effect of
two cnicnodes in reducing the order of the reciprocal.

(IV.) Primitive a Paraboloid of Revolution.

31. The reciprocal equation is

The pinch-point system
X2+Ya = 0 ,
Xa+Y2+Z2 = 0,

Z = 0 ,
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shows that the multiple lines have pinch-points all along them. In
other words, the Hues X2 + Ya = 0, Z = 0 are cuspidal. In fact, the
equation may be written, in the form

The effect, then, of the revolution of the three adjacent, double points
at the origin in the generating plane curve is to cause the nodal lines
to be cuspidal (§ 24).

(V.) Primitive a Central Conic.

The equation of the reciprocal surface may be written
2) = 0.

This is obtained by making c=0 in (35).
The equation may also be written in the form

showing that, in addition to the nodal conic at infinity, there are two
torsal circles lying on the same quadric surface as the nodal conic.
These correspond to the two cnicnodes at infinity of the parallel sur-
face. The form also shows that there are two cnicnodes.

(V.) Primitive a Circle.

In this case, the reciprocal surface has the same characteristics as
the parallel; that is to say, there is a nodal conic at infinity, and there
are four cnicnodes, two on the axis and two on the nodal conic.

The surface is generated by the revolution of a central conic about
an axis in its plane and parallel to a principal axis. It is therefore a
particular case of the general tore.

(VI.) Primitive a Parabola.

The reciprocal equation is

obtained by making 6=0 in (36).
In this case, the nodal lines are coincident (tacnodal). The singu-

larity beyond this is equivalent to four pinch-points and three points hi
the nature of cnicnodes.

We have seen, in a similar case, that there is a point in the nature
of a cnicnode at the origin.

From the nature of the substitution <f» (X, Y, Z, 1 =fc lp) = 0 for
^ (X, Y, Z) = 0, it follows that in general, if there is a cnicnode on

VOL. IV.—NO. 4 5 . Q
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$ (X, Y, Z) = 0, there will be two corresponding cnicnodes on the re-
lated surface. In the present case, the parabolic cylinder aXa—2Z W = 0
having a node at infinity, X=0 , Z=0, W=0, the related surface has
the corresponding singularities X=0 , Z=0 , l±Jcp = O.

The equation may, in fact, be written in the form

- l } = 0 ,

showing that the points X=0 , Z=0, ldbfy> = 0 are triple points on
the surface, though not triple on the nodal lines.

(VII.) Primitive a Gone of the Second Order.

33. The reciprocal curve is a spherical conic determined by

&Y* +
corresponding to the primitive

a o c
I do not dwell on this and the remaining cases.

34. We are now in a position to consider the general characteristics
of the several parallels. For this purpose I make use of Dr. Salmon's
notation. (See his chapter on reciprocal surfaces; also Cayley, T. R.
S., 1869, Part I., "On Reciprocal Surfaces," and "Corrections and
Additions" thereto, R. S. Proceedings, 1871; also Zeuthen, " Mathe-
matische Annalen," Band IV., Heft i., 1871.)

I must content myself here with a list of the singularities to which
my results refer, and a few formulae. Although this is repetition, the
list may be useful for reference, when the original sources are not at
hand.

Characteristics of a Surface.

n, order of surface. n\ class of surface.
a, order of tangent cone. a', class of section by any plane.
£, number of its double edges. £', number of its double tangents.
K, number of its cuspidal edges. *.', number of its inflexions.
fc, order of nodal curve. b', class of node-couple torse.
/ , number of its actual double / ' , number of its actual double

points- planes. '
k, number of its apparent double k't number of its apparent double

points. planes.
tf number of its triple points. t', number of its triple planes.
5, its class. q\ its order.
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p, number of points where nodal
curve meets curve of con-
tact of tangent cone.

j , number of pinch-points.
c, order of cuspidal curve.
h, number of its apparent double

points.
r, its class.
cr, number of points where cusp-

idal curve meets curve of
contact of tangent cone.

0, not defined, but on the cusp-
idal curve.

X, number of close points.
/3, number of intersections of

nodal and cuspidal curves,
stationary points on the
latter curve,

y, number of like intersections,
stationary points on nodal
curve.

1, number of like intersections,
not stationary.

B, number of binodes.
C, number of cnicnodes.
u»j number of off points.

p, order of node-couple curve.

/ , number of pinch-planes.
c', class of spinode torse.
h\ number of its appai'ent double

planes.
r, its order. •
</, order of spinode curve.

0', not defined.

x', number of close planes.
/3', number of common planes of

node-couple torse and spinode
torse, stationary planes of
spinode torse.

y', number of common planes, sta-
tionary planes of node-couple
torse<

i', number of common planes, not
stationary planes of either
torse.

B', number of bitropes of surface.
C, number of cnictropes.
<!>', number of off planes.

With regard to these, we have the following fundamental equations:

a(a—1) = w
c—K'= 3(w—a),

c(c-l) =
a(n-2) = K—
6 (n—2) = p + 2)3 + 3y + 3t,
c(w—2) =

and the same with accented letters.
o 2
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85. In the absence of a general theory as to the effect of multiple
points existing on the nodal and cuspidal curves, I propose to give the
usual characteristics of the several classes of surfaces to which the
parallels belong. The specialities of these will then be remarked upon.

There is a certain number of characteristics which may be taken as
.known. Thus we have those of a general section and of a general
tangent cone; or what is the same thing, we know the order of the
surface and its reciprocal, and the orders of its nodal and cuspidal
curves and of those of its reciprocal. These characteristics form a
class by themselves, being independent of isolated point and plane
singularities.

Following Dr. Zeuthen, we have t = t '=0 .
In the table marked (A), under the numbers I., II.) &c., I refer to

the sections concerning the parallels to which the corresponding
columns relate, and give the characteristics of the reciprocal of a
quartic surface.

I., with a nodal conic;
II., with a nodal conic and a cnicnode;

III., with a nodal conic and two cnicnodes;
IV., with a cuspidal conic ;

V. = III., with a nodal conic and two cnicnodes;
(V.), with a nodal conic and four cnicnodes;

VI., with a nodal conic and three cnicnodes;

and further I give
VII., the characteristics of the reciprocal of a quadriquartic curve

or those of the developable circumscribing two conicoids.
The characteristics I.—VI. may, of course, be regarded as those of

the corresponding quartic surfaces, the meanings of corresponding
letters being interchanged.

The deficiency expressed by Prof. Cayley's formula,

is nothing in each case, VII. excepted.
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n
a

a'
K

b
k
t
q
P
j
0

h
r
a
fl
X
e
0

ri
a'
y
K

V
k'
t'
4
P'

f
c'
h'
/
o

X
&
c

I.

12
8
8
12
26
200
40
10
36

24
180
36
16
52

4
8
4
12
2

2
4
4

II.

10
8
8
12
14
52
12
6
20

18
96
30
16
28

4
8
5
12
2

2
4
4

-

1

ni.
=v.
8
8
8
12
6
12

6
12

12
38
20
12.
12

2 .

4
8
6
12
2

2
4
4

2

rv.

6
6
1
8

8
12
32
8

16
1

4
6

8

2

2
2

2

V.

4
8
8
12
2

2
4
4

4

4
8
8
12
2

2
4
4

4

VI.

6
8
8
12
2

2
4
2
6
6
12
8
2

2

4
8
7
12
2

2
4
4

S

VII.

8
4
6

8
24

8
16

12
38
8
4
16

Observations.

36. I. The cuspidal curve being the complete intersection of aquartic
and a sextic surface, the number of apparent double points h = 180.
The class £=10 of the nodal curve is due to the five nodal conies; the
class of tho residue is thercforo zero, indicating that it consists of 16



8C Mr. S. Roberts on the Parallel Surfaces [Jan. 11,

right lines. In general, these correspond to the 16 right lines dis-
covered by Prof. Clebsch on the surface of the fourth degree with a
nodal conic.

A plane through one of these lines will cut the surface in the line
itself and a cubic with a double point. There will be in the section
four double points; two of them are due to the nodal conic; the
remaining two are points of contact of the plane. Hence the reciprocals
of these lines will be double lines on the reciprocal surface. The five
nodal conies correspond to Kummer's five bitangent cones on the
quartic surface.

In the special case of a parallel, we have seen that the system be-
comes two groups of eight generators of a conicoid. Four points of
quadruple intersection, being also points of intersection of the nodal
conies at infinity, become sextuple points of the nodal curve. These
points stand for 16 triple points and 12 apparent double points, or each
for four triple points and three apparent double points. There are also
eight triple points in each of the three principal planes.

/3=52 is made up of four points in each of the principal planes and
eight points at infinity, together with the 32 stationary points in the
eight special planes.

It might be supposed that the sextuple points on the nodal curve
would count for a greater number of triple points thau 16. If, however,
we consider the case of four planes intersecting in a point, which will
be a sextuple point of the nodal ourvo, the planes being regarded as a
single surface, we see that in this case also the sextuple point will
represent four triple points and three apparent double points ; for the
number of apparent double points for six non-intersecting lines is 15,
But the number of possible triple points is the number of ways in
which four planes can be taken three and three together, i. e. four. At
the same time, every triple point takes the place of three apparent
intersections. Thus we have four triple points substituted for twelve
apparent intersections, leaving three nnaccounted for. It does not
follow, however, that every kind of sextuple point on a nodal curve is
of this value. In like manner, we might take in planes intersecting in
one point, which would be a point of the order m on the surface, but of

the order ^ — - on the nodal curve. In the particular case, the
to

points appear to be quadruple points on the surface, equivalent in each

instance to , ' o ' . triple points.
1. 2 . o

We may regard the point as one where the tangents form a cone of
the order 4, with six double edges touching the nodal curve. For such
a point Dr. Zeuthen gives the addition j/(f» —2) to the expression for
6(w—2), The number of double edges touching the nodal curve is
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y, and the order of the conic fi. Putting y=6, n=4, we get a correct
result.

It would perhaps be better, in these cases of multiple points, to
follow Dr. Zeuthen, in denoting by h the Pliickerian number df the
double edges of a cone through the double curve, and substituting
h—f— 3£ + 2. . . for k in the expression for 6(n—2)(n—3).

II. The cuspidal curve is the intersection of a quartic and a sextic
surface, less the intersection of a quadric and a cubic surface; and
7i=96. The class g=6 of the nodal curve is due to three nodal conies,
and the class of the residue is zero, indicating that it is made up of
eight right lines. In the case of the parallel, the cuspidal curve is
reduced to the intersection of a quartic and a quintic surface, less a
conic; and h = 96. The class q is 4, because a nodal conic at infinity
consists of right lines, i.e. has an actual double point, or / = 1.

The singular point on the axis at infinity counts as a union of eight
points j3, two in each of the principal planes and four in the plane at
infinity. The number 28 is thus made up of four points finite and in
the two principal planes, the eight united points, and the 16 points in
the four special planes. There are four triple points t in each of the
principal planes and the plane at infinity.

The 'cnictrope' is not a proper one, and corresponds to a point in the
nature of a cnicnode on the reciprocal quartic surface.

The order q'=0; for, referring to the reciprocal surface, we see that
the nodal conic has an actual double point, or f=-1.

For the manner in which the complementary nodal lines are reduced
in number, see the memoir before alluded to, of Herr Rudolf Sturm, on
the quartic surface with one cnicnode and a nodal conic, &c.

When there is a cnicnode, four lines on the quartic surface become
'binary,' or equivalent to two ordinary lines. These 'binary' lines are
such that planes through them touch at one point. The eight ordinary
lines correspond to the eight double lines of the reciprocal surface.

III. The cuspidal curve is, in general, the intersection of two quartic
surfaces, less the intersection of two quadric surfaces ; and ft=38. In
the case of a parallel, we have two points at infinity, each of which may
be regarded as the intersection of three branches of the nodal curve
with six branches of the cuspidal curve ; that is to say, we have three
nodal conies and six cuspidal circles intersecting in two common points.
One nodal conic at infinity is the circle, and one is a conic having a
donble contact with the circle.

The case of a parallel of revolution is simple geometrically ; but, as
far as I am aware, does not come within existing general formulae for
characteristics.
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IV. The cuspidal curve consists of four conies which intersect in two
common points. Hence r is reduced 24 by these, in addition to the
reduction by 12 points h. These points also present the singularity
0 = 16 which enters the formula for c («—2) in the same way that 3t
enters the formula for 6(n—2). If a is the number of such singular
points, the addition is 8a. In the case of the parallel, r is reduced to 6
because the cuspidal conic at infinity contains an actual double point.
In like manner r '= 0. In place o f / = 4 , we now have x'=2, on account
of the multiple lines of the reciprocal being cuspidal.

V. The torsal conies of the parallel surface pass through the cnic-
nodes, and the same is the case in the reciprocal surface. Also 2'=0, on
account o f / '=1 .

V. For the parallel, we have a particular case of the general tore,
and the characteristics are the same as for a surface generated by a
conic revolving about an axia in its plane. The speciality is that, con-
sidering a section by any plane through the axis, the generating conio
and its reflection intersect in two points at infinity.

VI. The cuspidal curve is the intersection of a quadric and a cubio
surface, and h=6. In the case of the parallel q'=0, because the nodal
line of the reciprocal surface is made up of two coincident lines or
y " = l . The three 'cnictropes' are represented by three points in the
nature of cnicnodes on or adjacent to the nodal lines.

37. It will be remarked that in several instances the characteristics
of a tangent cone are the same as those of a general plane parallel of a
conic. When the primitive is a central conicoid, having therefore no
special relation to the line at infinity, we may determine these charac-
teristics by considering a tangent cone from a point at infinity. This
of course is a cylinder, and will be the parallel of the corresponding
tangent cone (cylinder) to the primitive. Hence a section of the former
cylinder perpendicular to its axis will be a parallel of the corresponding
sectioir-qf the latter. This appears to be generally true for a surface of
order m, not specially related to the plane at infinity, and enables us
to infer the characteristics of the general tangent cone of the parallel
surface.

38. The general form of a parallel surface of a conicoid can be per-
ceived without much difficulty, when we know that the real portion of
the nodal curve consists of the real nodal conies.

For the purpose of illustration, I refer to the case of an ellipsoid as
primitive.

I will suppose that the modulus is less than the least of the principal
scpiinxcs, but greater than the radii of curvaturo at tho vortices
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on the major axis of any one of
the three principal sections. Let
Oxy, Oxz, Oyz (Fig. 1) represent
the principal' planes enclosing a
quadrant of the primitive. The
sections of the parallel by these
planes will consist of an outer oval
which is not represented and an
interior curve. The three outer
ovals belong to the exterior sheet y
of the surface, which presents no (Fig. 1.)
visible singularity,ifcscontour being
similar to that of an ellipsoid. The interior curves are represented, so
far as they lie within the qnadrantal space Oxyz, by the lines Oabcd,
Ode/g, and Oghka.. Through the points b, fc, which are double on the
corresponding plane parallels, we have a real nodal ellipse kb; and
through / , also double on the corresponding plane parallel, a nodal
hyperbola passes, lying in the plane Oxz, and touching the plane
parallel, suppose, in I, Beyond this point of contact, which is a
stationary point on the cuspidal curve, the hyperbola is the intersection
of imaginary sheets.

If now, with a free hand, we join ch and ce,-the figure gives us a
general notion of a quad-
rant of the interior sheet
of the parallel surface.
The complete sheet will,
in its general features, ,pj 2 \
resemble the Figure 2.
Outside this, we shall have, as I have said, a surface presenting no
visible singularity, but resembling an ellipsoid. ,

The form of the interior sheet will vary by the disappearance of (1)
the nodal ellipse, (2) the nodal hyperbola, (3) both. And again, the
form will vary by the disappearance of (1) two twisted ovals of the
cuspidal curve, (2) four. I t would seem that we cannot have more
than four of such ovals, or more than two actual nodal conies. The
general form of the surface, when the primitive is an hyperboloid of two
sheets, can be perceived in a similar way. The outer superficies will be
hyperbolic, and the two hyperbolic sheets of this portion of the surface
may intersect in a real nodal ellipse. The remaining portion of the
surface due to negative value of the modulus may exhibit a pair of
cuspidal ovals and two hyperbolic sheets.

"When the primitive is an hyperboloid of one sheet, the parallel sur-
face may exhibit cuspidal edges on both the principal sheets.

We may have an exterior surface with an elliptic ring bounded by



90 Mr. S. Roberts on the Parallel Surfaces, fyc. [Jan. 11,

the real nodal ellipse and a pair of cuspidal ovals. This ring and the
exterior surface generally will enclose a surface of the general form of
an hyperboloid of one sheet, but with annexed surfaces bounded by the
actually nodal part of the nodal hyperbola and two cuspidal ovals.
There would be no great difficulty in determining all the possible
variations of forms of the surfaces, but the subject requires either
drawings or models for its satisfactory discussion.

39. Instead of considering a single parallel surface, wo may consider
the system of parallels for a given primitive.
. It appears that the locus of the cuspidal curves of the parallels is the
common surface of centres. Moreover the locus of the stationary points
of the parallels will be the cuspidal curves of the surface of centres in
the principal planes and in the 8 special planes. The locus of the
nodal right lines will be the 8 special planes. I am supposing the primi-
tive to be a central conicoid, but similar conclusions follow in the
other cases.

"We can see that the discriminant with regard to &' of the discri-
minant with regard to 0 of (1) will be of the gross order 60.

This discriminant is made up of the principal planes and the plane
at infinity twice over, the 8 special planes twice over, and the surface
of centres three times over. It is evident that the curves of curvature
and geodesies are intimately connected with the theory of parallels.
A system of normals along a line of curvature of the primitive will trace
a line of curvature on the parallel; and when in the unwinding of a
series of threads from the surface of centres their extremities generate
the primitive, we may in precisely the same way generate a parallel
surface. The subject, however, is full of interesting matter, which
awaits investigation.

40. It is also obvious that, as in the theory of plane parallels, the
parallel of the parallel of a surface will break up into two parallels.
The discussion of the characteristics in this case belongs however to
the general theory with regard to surfaces of a higher order than the
second. The order can be determined by the help of the previous
results. It appears that the degree of a parallel is diminished by 8p
when the primitive has the circle at infinity for a multiple curve of the
order p. Also the degree is diminished by 4 for a pair of simple con-
tacts with the* circle at infinity. The order in the general case is in
terms of characteristics of the primitive, twice

order + class + order of tangent cone.

In the present instance, therefore, we have for the order of the parallel
of the parallel of a central conicoid •

2 ( 1 2 + 4 + 8 ) - 8 , 2 - 4 . 2 = 24.
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For the circle at infinity is a nodal ljne, and the surface otherwise has
£ contacts with the circle. And generally for a surface of the order m,

Order of parallel of parallel .

—8m(m—I)9—2.
= 4>\m+m(m—l)2+ra(w,—1)\
= 2 x order of parallel.

February 8th, 1872.

Prof. CAYLEY, V.P., F.R.S., in the Chair.

The Chairman stated that the President had made enquiries at the
Home Office as to the mode of procedure requisite for obtaining a
Charter for the Society, and that the matter would come on for con-
sideration at the next subsequent meeting of the Society, when members
would have an opportunity of stating their views upon the desirability
of incorporation.

Mr. J. "W. L. Glaisher, B.A., F.R.A.S., was elected a Member of the
Society.

Mr. T. Cotterill, M.A., gave an account of his -paper " On an Alge-
braical Form, and the Geometry of its dual connection with a Polygon,
plane or spherical."

The Chairman, Dr. Hirst, and Prof. Clifford took part in a discussion
on the paper.

The following presents were received :—
" Monatsbericht," Sept., Oct., and Dec, 1871.
" Journal of London Institution," Nos. 10, 11, 12.
The first 22 numbers of the "Bulletin des Sciences Math6matiques et

Astronomiques," from the commencement to October, 1871: from M.
G. Darboux, the Editor.

" M6moires de la Society des Sciences Physiques et Naturelles de
Bordeaux," tome viii., ler et 2me cahier, 1870.

March Uth, 1872.

W. SPOTTISWOODE, Esq., F.R.S., President, in the Chair.

Mr. W. Paice, M.A. Lond., was proposed for election.
The President made a statement to the effect that it had been

deemed desirable to apply for a Charter, and that he had taken the
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requisite steps for ascertaining the right mode of procedure; and, in
reply to questions by Mr. Sprague and Mr. A. J. Ellis, said that the
expense would most likely be small, as there was little prospect at the
present time of the application being favourably entertained ; and that
even if the application were acceded to, it would not be at the Society's
expense. The President's proposal—that application should be made
to the Council Office for the grant of a Charter, the draft of which had
been drawn up by Prof. Cayley—was then agreed to unanimously, and
the subject dropped.

The Treasurer then proposed and Prof. Clifford seconded a vote of
thanks to Mr. Drach for his present to the Society of two rather rare
and interesting early works on Mathematics, by Vieta and Ubaldi
respectively.

Prof. Clifiord gave a full account of his paper " On a new expression
of Invariants and Covariants, by means of alternate numbers." Refer-
ence was specially made by the author to the ""Vorlesungen fiber die
complexen Zahlen und ihre Functionen," of Dr. Hermann Hankel
(1867, part I ) .

Mr. Tucker (Hon. Sec.) then read portions of a communication from
the Hon. J. W. Strutt, '• On the Vibrations of a Gas contained within
a Rigid Spherical Case."

Mr. A. J. Ellis, F.R.S., readout the following problem, which had
been proposed to him by Prof. Haldeman, of Pennsylvania, United
States (who is' writing a treatise on English Versification): " The
number of lines in a rhymed stanza being given, how many variations
of rhyme-distribution does it admit of, supposing no line to be left
without a rhyme ?" It may be interesting, further, to state, that the
Professor remarks, " Of seven-line stanzas, I liave observed in actual use
twenty-eight. The sonnet stanza, .of fourteen lines, is very rich; the
examples within my reach having given me two hundred and twenty
varieties."

The following presents were received:—
" Francisci Vietse Opera Mathematica": edited by F. A. Schooten,

1646.
" Guidi Ubaldi Mecanicorum liber," Venice, 1615 : from Mr. S. M.

Drach, F.R.A.S., F.R.G.S.
" Geometria rigorosa di Pietro Dott. Cassani": from A. Stein,

Venezia.
" Crelle's Journal," 74 Band, zweites Heft.
" Annali di Matematica," Serie 2\ torn. v. fasc. 1, Nov. 1871.
rt Proceedings of the Royal Society," Vol. xx. No. 132.
" Bulletin des Sciences," Nov. Dec. and Index, 1871, and Jan. 1872.

• " Journal of the London Institution," No. 13.
" Vierteljahrschrift der Naturforschenden Gesellschaft in Zurich,
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redigirt von Dr. Rudolf Wolf.," 15 Jabrgange (mostly 4 Hefte in each)
from 1863, to the 16th Jahrgang (1871), three parts. Duplicate of
8th Jahrgang viertes Heft.

On the Vibrations of a Oas contained within a "Rigid Spherical
Envelope* By the Hon. J. W. STRUTT, M.A.

{Read March Uth, 1872.)

Whatever may be the motion of air within a sphere, it may always
be resolved into a series of simple vibrations represented analytically
by terms involving circular, or imaginary exponential, .functions of the
time. These exist in perfect independence of one another, so that it is
sufficient to consider only one at a time. Moreover, the function con-
taining the time (etto*) will run through the expressions for the
velocity-potential,t and its differentials with respect to space as a
simple factor, and may therefore be omitted from the beginning.

If X be the wave-length, h = 2JT -f- X, the conditions to be satisfied are

throughout the interior, and at the surface of the sphere

f = 0 (2).
dr

The main problem before us is the determination of the possible
values of k or X in terms of the radius of the sphere.

Let«// be expanded in La Place's Series
" (3),

+ ^ ^ ^ + l ^ . = 0 ......(4),

of which the solution is

* The problem here discussed was referred to in a paper on " the Theory of
Resonance," Phil. Trans., 1871. Its publication seems of interest, as it is the only
case of the vibration of air within a closed vessel which has hitherto been solved,
with complete generality, oxcept perhaps that of a rectangular parallelepiped. Con-
siderable alterations and additions have been made since the paper was sent in to the
Mathematical Society, partly in accordance with the advice of Sir W. Thomson and
Professor Clerk-Maxwell, and partly in consequence of my own further reflection on
the subject.

t It is assumed that the motion is irrotational, so that a velocity-potential exists;
And, further, that it is so small that the square may be neglected throughout.

X Stoke1 s Phil. Mug. Dec. 1868, or Phil. Trans., 1868.


