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Project Goal 

Our goal is to improve software in scholarship (science, engineering, and the humanities) by 
raising the visibility of software work as a contribution in the literature, thus improving 
incentives for software work in scholarship. 
Objectives 

We seek support for a three year program to develop a manually coded gold-standard dataset of 
software mentions, build a machine learning system able to recognize software in the literature, 
create a dataset of software in publications using that system, build prototypes that demonstrate 
the potential usefulness of such data, and study these prototypes in use to identify the socio-
technical barriers to full-scale, sustainable, implementations. The three prototypes are: 
CiteSuggest to analyze submitted text or code and make recommendations for normalized 
citations using the software author’s preferred citation, CiteMeAs to help software producers 
make clear request for their preferred citations, and Software Impactstory to help software 
authors demonstrate the scholarly impact of their software in the literature. 
Proposed Activities 

Manual content analysis of publications to discover software mentions, developing machine-
learning system to automate mention discovery, developing prototypes of systems, conducting 
summative socio-technical evaluations (including stakeholder interviews). 
Expected Products 

Published gold standard dataset of software mentions. Open source machine learning system for 
recognizing software mentions. Published dataset of software mentions from PubMed Open 
Access, SSRN, RePEC and ADS literature corpora. Open source prototypes of CiteSuggest, 
CiteMeAs, and Software Impactstory. Socio-technical roadmaps for their implementation as 
sustainable systems.  
Expected Outcomes 

Datasets for insight by scholars and science policy-makers; Improved citation of software; 
Improved resources for scholars to demonstrate the impact of their software work..
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Improving the visibility of scholarly software work 

1. What is the main problem and why is it important? 

When preparing publications, scholars too rarely cite the software they used in their research. For 

this reason software, and work on software, is relatively invisible as a form of scientific 

contribution. This lack of visibility reduces the incentive to share and support scholarly software. 

Without adequate incentives, academia underinvests in software work, and the end result is that 

the software used by scientists, engineers, and humanists is not as good as it could be and the 

effectiveness of scholarship is thus undermined. 

Scholars too rarely cite the software they used in their research. Researchers who build 

software have long pointed out that their contributions do not appear in publications (Katz, 2013; 

Katz et al., 2014; Stodden, 2010; Stodden, Guo, & Ma, 2013). Empirical research confirms this 

issue. For example, Howison and Herbsleb (2011) examined the work leading to three high-

quality papers by interviewing the authors about the software used, then interviewing the authors 

of that software and outward to all dependencies; very few of those packages (and none of their 

dependencies) were actually mentioned in the original papers. Interviews with scientists make 

clear that they feel that their software contributions are not visible in the scientific literature, an 

area that counts most for the reputations of scientists. One informant laughingly estimated that 

“less than 10%” of use results in actual citations (Howison, Deelman, McLennan, Silva, & 

Herbsleb, 2015). Sloan supported research has found similar issues with data and data citation 

(Borgman, 2007; Edwards, Mayernik, Batcheller, Bowker, & Borgman, 2011). 

Even when software use is mentioned in articles, those mentions are too often informal. Howison 

and Bullard (2015), attached as Appendix F, examined 90 randomly selected biology articles and 
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manually examined them for mentions of any kind, formal citations or informal mentions. They 

found that software is mentioned informally more frequently than it is cited formally. In fact, 

only 37% of mentions involved formal citations (either to domain papers or to “software papers” 

written to describe software). The remaining 63% of mentions were informal, such as just 

mentioning project names in the full-text, project URLs in footnotes, and citations to non-

standard publications such as user manuals and project websites. 

Software, and work on software, is relatively invisible as a form of scholarly contribution. 

The absence of software mentions in publications, and the informality of mentions when they do 

occur, means that systems that measure impact through bibliometrics based on formal citations, 

such as Google Scholar, Scopus, and Web of Science don’t help scholars that contribute via 

software make their case for scholarly contribution and impact. Perhaps even more importantly, 

qualitative stories of impact, of great value when making the case for support to funders, are hard 

for software-contributing scholars to find and report. For example, NanoHub developed a 

procedure for identifying and categorizing articles that mentioned their software, removing false 

positives, and categorizing the extent of use and type of impact (the full protocol is described in 

Howison et al, 2015). The system, while functional and innovative, was time-consuming, 

involving content analysis by multiple undergraduate students and review by post-docs and PIs. 

This lack of visibility reduces the incentive to share and support scholarly software. 

Scholarly software is rarely shared openly (Stodden 2010; Ince, 2012). While scholars hold 

legitimate competitive concerns, research demonstrates that they perceive the substantial work 

implied by sharing, and see the rewards to be insufficient and therefore have trouble prioritizing 

the work needed to realize the potential for software in scholarship. Sharing software is 

undoubtedly extra work; from adapting the software for use outside individual computers, to 
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documenting the limits of the code, managing user requests, to encouraging and testing code 

contributions (Trainer, Chaihirunkarn, Kalyanasundaram, & Herbsleb, 2015). Encouragingly, 

Trainer et al. also found evidence that scientists are interested in sharing, but wary of extra, 

unrewarded, effort. Their interviewees did not suggest that they resented providing support (in 

fact they felt an obligation to provide support). Rather they feared being unable to do support 

well, given other demands on their time, and that releasing their code might therefore slow down 

the work of other scientists. Thus, the issue is not that scientists, or other scholars, are selfish per 

se; indeed scientists are keen to share and to realize communitarian values of science (Stodden, 

2010). Rather the issue is that realizing the benefits of sharing requires more than simply 

uploading code. If science, engineering, and the humanities want well-supported software, then 

they must provide incentives and rewards to those undertaking this work. We argue that the best 

incentive is to acknowledge software work as a scholarly contribution and to do so through 

citations in the scholarly literature. 

Without adequate incentives, academia underinvests in software work, and the end result 

is that scholarly software is not as good as it could be. All is not well with software, even as 

software grows rapidly in importance across scholarship (Atkins, 2003; Joppa et al., 2013). Users 

frequently find it frustrating and poorly documented (Joppa et al., 2013; Katz et al., 2014). 

Software is often written using monolithic architectures, rather than adopting modular 

architectures (Boisvert & Tang, 2001). Software has been a source of concern in many fields, 

from retractions in biomedicine (Miller, 2006), to the identification of errors in important results 

in economics (the Reinhart-Rogoff Excel formula issue), and recent concerns over the validity of 

fMRI studies (Eklund, Nichols, & Knutsson, 2016). Even software deposited in repositories has 

not fared well over time: the Journal of Money, Banking, and Finance found less than 10% of 
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their repository was reproducible, in part because no maintenance had been done to keep 

software up to date (McCullough, McGeary, & Harrison, 2006). Researchers have found that 

sharing and studying software code is crucial for replication and understanding, over and above 

abstract descriptions of algorithms (Ince, Hatton, & Graham-Cumming, 2012).  

Beyond concerns over specific pieces of software there are concerns over the software practices 

of scholars, including scientist’s ability to manage versions, as shown in log files of efforts 

showing difficulties in recovering software and data released from the Climate Research Unit in 

the UK. Even if the results produced are accurate, the devaluation of software work and 

processes costs significant time and threatens the credibility of scholarly work. Perhaps more 

insidiously, evidence from the “Workshop on Sustainable Software for Science: Practice and 

Experiences” (WSSSPE) series of workshops makes clear that scientists do not do a good job of 

developing software in open communities, as is common in non-scientific open source software 

world (Katz et al., 2014, 2016). The work of monitoring downstream and upstream 

dependencies, encouraging outside contributions, timing and managing releases is substantial 

(Bietz, Baumer, & Lee, 2010; Trainer, Chaihirunkarn, Kalyanasundaram, & Herbsleb, 2015). If 

building quality software is not acknowledged as a scholarly contribution then the even more 

removed work of building software communities will be even more poorly rewarded and thus 

motivated. 

In summary, we argue that it is problematic that software is so rarely visible in the scholarly 

literature and in the reputation systems built on that literature. We identify the literature (journal 

articles, conference papers, and pre-print papers) as crucial because the literature is 

acknowledged as the most important representation of contribution (Merton, 1988). If software 

work is to be seen as an equally valid form of scholarly contribution, then it ought to be visible in 
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the manner that other scholarly contributions are made visible and accounted for: through 

citations in articles. Moreover, addressing the visibility of software work in the literature allows 

us to tap into the existing institutional valuation of citations, rather than attempt to build a 

parallel accounting system for software contributions. 

Thus we seek to address the problem of the invisibility of software in the scholarly literature, in 

order to alter incentives and, ultimately, to improve the software available to science, 

engineering, and the humanities. 

2. What is the major related work in this field?   

Most previous work attempting to raise the visibility of software work have been focused outside 

the scholarly literature.  Many systems examine and report on code dependencies (http://scisoft-

net-map.isri.cmu.edu/, http://depsy.org, http://libraries.io, https://www.versioneye.com).  Some 

repository-specific tools have used download statistics to rank packages or have provided a place 

for users to rate and comment (http://pypi-ranking.info/alltime, http://www.crantastic.org/, 

http://ascl.net). Unfortunately, these approaches miss software and scripts that aren’t released as 

formal packages (common in scholarly work) and they bypass the major mechanism of scholarly 

communication, the research paper. 

It is challenging to build incentives based on software use in the scholarly literature because of 

there has been no standardized citation practice to date, so software citation use is invisible to 

existing citation tools and incentive structures.  There are two approaches to improving this 

situation: prospective and retrospective. The prospective approach seeks to improve software 

citation practices in the future by designing standardized ways to cite software, building tools to 

make it easy to cite software, and working to drive use and uptake among scholars and 

publishers. This will make software references in papers published in the future visible to 
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existing citation tools.  The retrospective approach takes current and historical practices as given 

and seeks to mine the literature to make the best use of those mentions of software that are 

present. With this approach we can.  In this section we detail this major related work, before 

turning to our approach, which combines the retrospective and the prospective. 

The earliest efforts have favored prospective approaches. Language-specific formats like 

Python’s DueCredit (Halchenko & Matteo Visconti di Oleggio Castello, 2016) and R’s citation() 

function (Wickham, n.d.) embed authors’ preferred citation formats directly into source code. 

Others have proposed language-agnostic metadata formats to do the same thing, including 

GitHub CITATION files (Wilson, 2013) and the promising CodeMeta standard (CodeMeta 

Collaboration, n.d.). 

The FORCE11 Working Group on Software Citation (https://www.force11.org/group/software-

citation-working-group) is leveraging the experience of the FORCE11 organization in addressing 

data citation. They are defining a set of metadata elements that ought to be in ideal software 

citations and bringing together stakeholders including authors, style guide writers, scholarly 

societies, citation software producers, and publishers to design and implement new standardized 

citation formats and guidelines. Similarly, other players are working to provide new paths 

forward for software citation: for example, Mozilla Science, Github, and Zenodo are providing a 

way to archive a software release and obtain a DOI to reference it. Publication venues like the 

Journal of Open Research Software, the Journal of Open Source Software are providing new 

ways to obtain a citation target for software contributions, and some well established journals 

like ACM Transactions on Mathematical Software are providing peer reviewed publications of 

software itself. The Astrophysics Source Code Library (ASCL) is another important 

demonstration of the prospective approach. ASDL provides “landing pages,” identifiers, and 
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suggested citations for astrophysics software and is working with the Astrophysics Data System 

to improve indexing of software citations in the Astrophysics literature (Allen et al., 2015). We 

believe that these prospective efforts are important; indeed the PIs in this grant participate in 

these efforts and are working toward their success.  

In contrast, the retrospective approach seeks to leverage existing practice, analyzing the literature 

to identify mentions of software use and operationalize these mentions as incentives. A 

retrospective approach is possible, as mentioned above, because while formal software citation 

practices are problematic, software use is informally mentioned in the literature. Authors 

mention project names in the full-text, place project URLs in footnotes, cite user manuals and 

project websites, and more (Howison & Bullard, 2015). 

If we can automatically detect these informal mentions, in the same way that commercial 

services like Google Scholar automatically detect formal citation, we can significantly increase 

the visibility of research software in the literature. A retrospective approach, combined with the 

interventions we describe below, can quickly jumpstart a software credit ecosystem, while we 

wait for prospective approaches to gradually build a best-practice citation culture.  

However, there are challenges to the retrospective approach. In particular, it is difficult for 

machines to parse the diverse morphology of informal mentions, making them harder to detect 

than traditional, formal citations.  Largely because of this, researchers have only recently begun 

to tackle the problem of automatically finding software mentions at a meaningful scale.   

Their approach to date has been mostly rule-based. This straightforward natural language 

processing (NLP) technique uses a set of rules to score each word on its likelihood of being a 

software mention. For instance, the name “FooPlot” in the phrase “we used the FooPlot 1.2 

program” could score points for preceding “program” and having a version number next to it. 
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Words with enough points count as software mentions. Using the rule-based technique, Duck et 

al identify software mentions with a precision of 0.58 and recall of 0.68 (Duck, Nenadic, Brass, 

Robertson, & Stevens, 2013). In a later paper they improve this to 0.80 and 0.64 respectively 

(Duck et al., 2016). Priem and Piwowar (2016) employ a related approach in the Depsy 

application (http://depsy.org), using preset search phrases to find mentions. All these efforts rely 

on researcher intuition to guide the selection and weighting of rules, limiting the ability to 

optimize them systematically. Pan et al. (2015) address this limitation by generating the rules 

automatically, using a machine-learning bootstrapping technique. Their approach sacrifices 

recall (0.43) but results in greatly improved precision in identifying software mentions (0.94). 

However, it still relies on bootstrapping from a discreet ruleset. 

It is likely that much better results can be obtained by discarding the rule-based approach 

altogether. There is significant evidence for this in the literature around named entity recognition 

(NER), and particularly biomedical named entity recognition (BNER) (Settles, 2004). Like the 

nascent research in automatically extracting software mentions, BNER uses NLP to extract 

important terms from scholarly literature. However, unlike the software mention literature, 

BNER has evolved beyond its early use of rule-based techniques (Tang et al., 2014). Rather, 

today’s BNER research uses machine-learning approaches that have no explicit rules, and 

instead train a computer model to recognize entities in text. Several machine learning models are 

in use, but the most successful of these today is conditional random fields, or CRF (Lafferty, 

McCallum, & Pereira, 2001).  

Although of course identifying proteins in scientific articles is different from identifying 

software, but the problem space is similar enough to believe that applying state-of-the-art NER 

techniques, especially CRF, to the problem of automatically detecting software mentions will 
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produce much better results than rule-based efforts to date. This information can then be used in 

a variety of systems to promote culture change by making software more visible. For example, 

researchers have used NLP techniques to identify missing citations of traditional, non-software, 

articles (McNee et al., 2002), an idea that we extend to software below.  

3. Why are the proposers qualified to address this problem? 

Our team is well qualified to undertake this project, with experience and expertise in content 

analysis, machine learning, system implementation, and socio-technical studies of science. 

James Howison is an Assistant Professor at the UT Austin Information School, joining in 2011 

after a post-doctoral position at CMU (with James D. Herbsleb) and his PhD at the Information 

School at Syracuse. He studies software work, both Free and Open Source Software 

development and Scientific Software work. His thinking is socio-technical, equally focused on 

incentives and social dynamics as on technical structures in the software. In 2015 he was 

awarded an NSF CAREER grant to study scientific software projects attempting to transition 

from grant-funding to open source-like peer production. In 2015 he published a study of software 

mentions in the biology literature, building a reliable content analysis scheme and manually 

analyzing 90 randomly selected articles (Howison & Bullard, 2015).  

Dr Heather Piwowar is a cofounder of Impactstory.  Prior to Impactstory, Heather was a PhD 

student in Biomedical Informatics at the University of Pittsburgh in Dr. Wendy Chapman's 

Natural Language Processing (NLP) group, and a postdoc at Duke University. A focus of her 

dissertation and later research has been using NLP to identify instances of data sharing and reuse 

in the published biomedical literature (Piwowar, 2011; Piwowar & Chapman, 2008a, 2008b, 

2009). Piwowar’s 2007 paper on data sharing citations used NLP to identify more than 10,000 

instances of data sharing in the research literature; it has received more than 400 citations 
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(Piwowar, Day, & Fridsma, 2007).  As a postdoc, Heather also served as a paid NLP consultant 

to UBC's NeuroEthics department (Garnett, Whiteley, Piwowar, Rasmussen, & Illes, 2011).  She 

holds Bachelor and Master's degrees in Electrical Engineering and Computer Science from MIT, 

focussing on signal processing and artificial intelligence.  She has 15 years of professional 

software experience.  Together, she and Jason Priem designed, implemented and support 

Impactstory and Depsy. 

Jason Priem is cofounder of Impactstory, a nonprofit that grew out of his doctoral studies in 

altmetrics, scholarly impact metrics based online activity. Jason coined the word altmetrics, 

authored its founding document, with more than 300 citations (Priem, Taraborelli, Groth, & 

Neylon, 2010), and organized its first workshop. Since then the field has become a major and 

fast-growing subdiscipline of scientometrics. Jason’s experience in uncovering and 

understanding metrics of nontraditional scholarly products provides a solid background for the 

work proposed in this project. He is also a software developer of ten years experience, and has 

successfully designed, implemented and supported production-level, web-scale applications 

including Depsy and Impactstory. These applications have supported tens of thousands of users, 

and handle millions of rows of data daily. 

4. What is the approach? 

Our approach is a three year program to develop a manually coded gold-standard dataset of 

software mentions, build a machine learning system able to recognize software in the literature, 

and create a dataset of software in publications using that system. We will build three prototypes 

that demonstrate the potential usefulness of such data in addressing incentives for software work 

in science: CiteSuggest, CiteMeAs, and Software Impactstory. We will study these prototypes in 

use to identify the socio-technical barriers to full scale, sustainable implementations.  
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Figure 1: Overall architecture. The ML module (“find mentions”) scans the literature, after being trained 
on the annotated gold standard. Mentions are found and stored in the database, along with contextual 
information. The citation finder (“find preferred citation”) scrapes and parses webpages and repositories. 
The three prototype apps (CiteSuggest, CiteMeAs, and Impactstory) all present data from the ML 
database to users, covering different use cases around software credit and attribution. 

Gold standard development 

We will create and publish a gold standard dataset of software mentions. The dataset will support 

the work described below and provide a resource to the wider publication mining community. 

We have a reliable content analysis scheme in place (created for Howison and Bullard, 2015) and 

two trained coders. The scheme is described in Howison and Bullard (attached as an appendix, 

see Tables 3 and 4 on page 5 and 6 of that article). The scheme includes codes for the name of a 

piece of software, whether it was used or just discussed, whether it includes a URL, whether it 

includes a version indication (either version number or date), configuration details and coding for 

the creator (usually a person or company). The scheme also contains codes for any citation and 

codes for identifying the type of reference linked to in the bibliography (publication, software 

paper, project page/name, manual etc). 

The content analysis work will be undertaken by a team of undergraduates, managed by a 

doctoral student from University of Texas at Austin and overseen by James Howison, as PI. We 
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intend to train between 5 and 10 undergraduates. To avoid errors caused by fatigue we will limit 

the number of articles assigned at a time and include a percentage of articles assigned to multiple 

coders (to periodically check accuracy). We may arrange joint analysis sessions, such as bringing 

the coders together for content analysis “sprints.” The undergraduates will also be included in lab 

meetings to introduce them to the process of research. We plan to include undergraduate students 

from nearby Huston-Tillotson College, a historically black and minority serving institution in 

East Austin.  

We aim to build the dataset out to cover diverse fields: biomedicine, astronomy, and economics, 

with 350-500 articles from each field in the dataset using a random sampling strategy, stratified 

by venue. This work will be completed early in the grant, ideally in the first year. We will 

publish the Gold Standard dataset openly on Zenodo, under a CC-0 license. Appendix E 

(Information Products) shows an example of our anticipated published data. 

Machine Learning Implementation 

Using the gold standard dataset as training data, Piwowar and Priem will design and implement a 

machine learning system capable of automatically recognizing and extracting software mentions 

from full-text publications. By running this system over our selected corpora (see Information 

Products Appendix), we will create a uniquely comprehensive dataset of software mentions in 

the disciplines of economics, astronomy, and biomedicine. 

We will implement such a system using machine learning named entity recognition (NER). We 

will use the conditional random fields (CRF) algorithm, using the popular CRFSuite 

implementation via the NLTK Python library (Okazaki, n.d.). The CRF classifier is particularly 

strong for NER applications because it accounts for context of mentions by leveraging the 

sequence of words (Lafferty et al., 2001). 
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We will supply the CRF model with three types of features. First, we will employ a variety of 

standard features including bag-of-words, part of speech, capitalization, and others. To these we 

will add several document-level features like indexing terms, since these will improve 

identification of discipline-specific software packages. 

Second, we will also leverage previous rules-based work (Duck et al., 2016; Pan et al., 2015) 

including published “this is a software word” heuristics as features. A preprocessing step will to 

find which tokens (if any) are matched by a given rule, with the result being fed to the CRF 

model.  Some rules may turn out to be redundant within the model, and we will experiment to 

see which ones can be removed to improve performance. 

Finally, we use unsupervised word representations to add a set of additional features. We will 

run Google’s Word2Vec (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013) algorithm over the 

entire corpus. Word2Vec is a two-layer neural net that produces a word representation vector for 

each word in the corpus; this vector expresses the word’s meaning in ways that are often 

surprisingly robust. We then feed this vector as another feature into the CRF model. This 

approach has shown good results in both general (Turian, Ratinov, & Bengio, 2010) and domain-

specific NER tasks (Tang et al., 2014). 

Intervention Prototypes 

Prototype 1: CiteSuggest is a tool to recommend software citations based on submitted article 

text or source code. Authors will be prompted to upload their Word .doc, text, or latex 

manuscript. We then run the manuscript through our machine learning algorithm to find software 

this author mentioned.  

The next step will use data from a module that identifies the preferred citation using available 

data. This PreferredCitation module will use any URLs we are able to parse out of the literature 
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as part of the mention detection, particularly ones pointing to the software’s homepage, source 

repo, or package repo. To supplement these automatically discovered URLs, we will also 

experiment with using undergrads to manually look up and store URLs. We will automatically 

resolve these URLs, and then parse pages to find preferred citation information, examining using 

CodeMeta annotations, source code annotations (R CITATION, Python DueCredit, etc), as well 

as heuristic-identified plain text citations. (“please cite this package as <target>”). We will also 

check CrossRef to see if any software has a DOI assigned, and if so resolve and return the 

relevant metadata (author, name, date, etc as well as DOI string). 

We will identify the most appropriate formal citation using these steps, returning the first one 

found: 

● Is there a DOI for this software? Return the resolved metadata in citation format. 

● Is there an author-preferred software paper to cite? Return it. 

● Is there a most-commonly cited software paper to cite? Return it. 

● Else, return a generic citation template, appropriate for use in the reference list, populated 

by the software name and URL. 

After creating preferred citations for each software instance, we then present this list to the user, 

also with option to download in multiple reference manager formats. 

In addition to suggesting best-practice citations based on existing software mentions in papers, 

we’ll attempt to identify related software that the author may have neglected to mention at all, by 

matching patterns from our ML database (similar to Amazon’s “customers who made similar 

purchases to you also bought” feature and the citation recommendation approach of (McNee et 

al., 2002). These will be presented to the user with the list of preferred citations discussed above.  
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The CiteSuggest prototype will also allow authors to submit Python or R scripts that represent a 

processing workflow for a research project. Using components already implemented for Depsy, 

we'll read the first-level dependencies (the libraries that the user composed into their workflow) 

for the software package, using mechanisms appropriate for the language (e.g., import for Python 

and library() for R). We will deliver a list of appropriate formal citations using the same method 

described above. 

We will pilot this prototype with publication venues that we have worked with before. For paper 

submission we intend to pilot this with Ubiquity Press (working with Brian Hole) and the eLife 

journal (working with Mark Patterson). For code submission, we intend to work with the Journal 

of Open Research Software (JORS) (working with Neil Chue Hong and Matt Turk). We will 

demonstrate the tool to these venues, seek introductions to their lead users, and ask them to 

include the tool as a suggestion in their submission guidelines. In addition we will make the tool 

publically available and promote it as described below. 

Prototype 2: CiteMeAs for GitHub will help software projects on GitHub make clear requests 

for their preferred citations. To do this, we will start by identifying all projects in our ML 

database with a GitHub URL. We will then automatically submit pull requests to each GitHub 

repo with an updated README file that includes the sentence “Please cite this as: <citation>.”  

We will find the correct information to put in the “<citation>” field using the same techniques 

described above for the CiteSuggest prototype. The pull request will also include a 

codemeta.jsonld file filled out using data we hold in our ML database, particularly the  

"softwarePaperCitation" and "softwareCitation" fields (see example of these files at 

https://github.com/codemeta/codemeta/blob/master/example-codemeta.json). We will then 

monitor how the project reacts, updating our records of preferred citation if they edit our 
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suggested citations in the pull request or repository. The information sent in the pull request will 

also be exposed online in a web service. 

To pilot this prototype we intend to work with a sub-set of projects that have already indicated 

their interest in making explicit requests for citation, either by implementing R’s citation() 

command or participating in the Python DueCredit process. Our pilot will enable us to fine-tune 

how we make pull-requests and the language we will use to introduce our pull-request. After 

these small pilots we will proceed with broad-based outreach via pull-request to the full 

population of projects identified by our publication mining and which are on github. 

Prototype 3: Software Impactstory is an interface to help scholars that contribute software to 

to identify their software impact in existing literature. We will prototype this as a component of 

the existing Impactstory platform (http://impactstory.org), using the data from the corpora we 

have analyzed above. The Impactstory prototype will use this data to identify all of a user’s 

software products and papers related to those products. The database will be used again to pull in 

all literature mentions of each software project or software paper. Further, software dependencies 

and downloads will be retrieved from Depsy (http://depsy.org; Depsy PIs are Priem and 

Piwowar), so that mention metrics are part of a full software impact picture. 

Profiles will display which publications have mentioned a user’s software, as well as patterns 

and trends over time. Embeddable badges will be created that highlight the reuse of the software, 

supported by hard numbers and percentiles; Priem and Piwowar have several years of experience 

in data visualization of alternative impact data in this fashion.  In addition, the system will learn 

from observed practice of scholarly software projects, described in Howison et al. (2015), and 

provide context for each mention (e.g., surrounding sentences) allowing users to understand how 

their software was used, supporting both quantitative and qualitative stories of impact. 
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We will pilot the Software Impact Story prototype with existing users of Impactstory. Among the 

regular users of Impactstory is a sizeable community of academics who write software and have 

contacted us to express interest in tracking the impact of their software. We will invite them to 

join a pilot group to elicit feedback and generate engagement and publicity. 

We will work to build broad conversation around these prototypes, both to attract interested 

users and to help nurture and guide important early conversations in this area. In addition to our 

pilots, identified above, we will demonstrate prototypes at appropriate venues, such as 

presentations at conferences like the Research Data Alliance conference, FORCE11, and the 

Research Software Engineers conference. We will engage in regular updates and conversations 

via our Twitter accounts, which reach around 10,000 followers, and reach out to Depsy’s and 

Impactstory’s very engaged user bases. Finally, we will leverage our contacts with high-visibility 

publications including Science, Nature, and the Chronicle of Higher Education to encourage 

research press coverage, a strategy that has been consistently successful with Impactstory and 

Depsy.  

Socio-technical evaluations 

Finally, we will conduct socio-technical evaluations to understand the potential of our prototype 

interventions. We seek to understand the technical and social opportunities and barriers for their 

implementation and success. Accordingly we will undertake a qualitative, socio-technical study 

around each prototype, drawing on our technical experience in developing the prototypes and on 

interviews with stakeholders. The stakeholders for each prototype are different, and will build on 

and extend beyond the pilot groups we identify above. For example, for CiteSuggest we will 

contact publishers, representatives of scientific societies, and scholarly publishing technologists 
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(e.g., CrossRef). We will recruit participants in part through responses to the publicity generated 

by our prototypes. 

The interviews will be based around demonstrating our prototype and asking them to interact 

with it. We will, of course, ask straightforward questions about usability, but our emphasis will 

be much wider. Accordingly we will elicit answers to questions such as: What would it take to 

bring a prototype to full-scale implementation? Would a full-scale implementation have the 

impact that we anticipate? Who would benefit from such an implementation? Who would be 

motivated to provide the ongoing resources to realize a sustainable implementation? How might 

such a system be disruptive or undermine current desirable arrangements? We will identify 

potential users and beneficiaries and understand their incentives for ongoing support of a system. 

For example, our citation suggestion system may be useful within a publishing workflow, 

helping to normalize citations and helping reviewers assess whether articles are citing the 

software correctly. Our evaluations will understand whether there is real demand and potential 

for publishers or scientific societies to implement a sustainable system of this type, as well as a 

technical roadmap for implementation. We anticipate undertaking between 5 and 8 interviews 

with appropriate stakeholders for each prototype, for a total of between 25 and 40 interviews. In 

addition we will gain insight from informal reactions to our prototype demonstrations at 

conferences and workshops. 

The output of this work will be a technical and institutional roadmap for each prototype 

intervention. In addition we will improve our understanding of the stakeholders, capabilities, and 

incentives in the practice of science, the publishing system, and systems of evaluation and 

reward in science. Through this process we will generate a summative evaluation of our 

prototype interventions and provide empirical understanding of the practice of science, which we 
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will publish in fields such as scholarly communications (e.g., JASIST) and science and 

technology studies (e.g., Science, Technology and Human Values.). 

5. What will be the output from the project? 

1) A gold standard dataset of software mentions, published for text and data mining (TDM) 

community. 2) A protocol for conducting manual content analysis, including formats for adding 

to the gold standard dataset. 3) A trained machine learning system able to identify software 

mentions, available as open source.  4) A publically available dataset of Software Mentions 

extracted from corpora in biomedicine, economics, and astronomy. 5) Three prototype 

interventions, each with technical and institutional map for their implementation. Code for each 

proto type will available as open source. 6) Publications about challenges and opportunities for 

sustainable interventions, based on the socio-technical studies of the prototypes. 

6. What is the justification for the amount of money requested? 

The budget for this project totals $635,261 over 3 years (approximately $210,000 a year) and 

includes support at UT Austin and a sub-contract for Impactstory. UT Austin is primarily 

responsible for the content analysis and the socio-technical assessment. Impactstory is primarily 

responsible for the implementation of machine learning to find software mentions and the 

creation of the intervention prototypes. The project requests funding for three years effort, 

sufficient time to build out the dataset, take advantage of it for the creation of the prototypes, and 

undertake socio-technical assessments. 

Funds at UT Austin total include 2 months of summer salary support for PI Howison, who is 

employed in a 9 month tenure track position, a full graduate assistantship (20 hours week 

stipend, benefits, and full tuition costs), and funding for part-time hourly employment of 5-10 
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undergraduate students for content analysis. The graduate student will, under the direction of PI 

Howison, manage the team of undergraduate content analysis coders. Howison and the graduate 

student will undertake the socio-technical assessment interviews together (with Piwowar and 

Priem when appropriate). Additional amounts are budgeted travel for dissemination and research 

trips for the socio-technical assessment, and for publication costs. 

Funds at Impactstory total $307,796, over three years. The budget provides for 4.5 months of 

salary support plus benefits each year for each of PIs Piwowar and Priem. In addition the amount 

includes a modest budget for computing costs, to facilitate the large-scale computation 

underlying the machine learning. The budget includes travel and open access publication costs. 

7. What other sources of research support does the proposer have in 
hand or has he/she applied for to support the research team? 

In 2013 Impactstory was awarded a $300k from the National Science Foundation for a software-

citation related project: EAGER Award #1346575 "Investigating the value of automatically-

gathered software impact data."  This grant has resulted in the design, release, and support of 

Depsy (http://depsy.org/), a web application that helps build the software-intensive science of the 

future by promoting credit for software as a fundamental building block of science.  It has been 

featured in a Nature article, multiple blog posts, and spurred much discussion in conferences and 

online.  The Impactstory research team will continue to be funded by this grant at 50% FTE 

through September 2017, under a no-cost extension (in process).  We are in early talks with 

several private foundations that plan to enter the open science/altmetrics space; we will be 

submitting grant proposals to them in the next few months for funding in 2018 and beyond. 
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8. What is the status and output of current and/or previous Sloan grants? 

PI Howison was previously funded by the Sloan Foundation to organize a small workshop. The 

workshop brought together researchers undertaking empirical research on software and data 

practices, including the research groups of Christine Borgman (UCLA), Jim Herbsleb (CMU), 

James Howison (Texas at Austin), and the Sloan/Moore Data Science Studies groups. Many of 

the participants had not met before because they represent different fields of research 

(Information Science, Computer Science/CSCW, and Science and Technology Studies, as well 

as the emerging field of Data Science Studies). The workshop was successful, sharing research 

results and approaches and seeding ongoing interactions and collaborations among the 18 

participants. Josh Greenberg attended for the Sloan Foundation. 

Piwowar and Priem were previously funded by the Sloan Foundation with two grants.  The first, 

through Duke University in 2012/13 was for $125k, with the purpose of developing a prototype 

altmetrics web application into a robust application and a formal nonprofit organization to help 

transform research assessment and review.  This was successful: Impactstory was rewritten into a 

mature application, and Impactstory Inc was incorporated and granted 501(c)3 charity status.  A 

second Sloan grant, for $500k, was awarded to Impactstory Inc in 2013 to “support the scaling 

and further development to sustainability of ImpactStory.” Impactstory has successfully scaled 

and been developed since then: it currently has more than 3,500 users and is growing quickly, 

supported by strong word-of-mouth: 43% of surveyed users say they would strongly recommend 

Impactstory to a colleague. It has been an important touchstone of the altmetrics community with 

over 7,500 Twitter followers, and been featured in Nature, Science, The Chronicle of Higher 

Education, and on BBC Radio. Impactstory has experimented with several business models 

during the grant period, as was the goal of the grant, and remains financially healthy.  
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James Howison, Ph.D. 
School of Information     jhowison@ischool.utexas.edu 

University of Texas at Austin    http://james.howison.name 
Austin, TX       Phone: +1 315 395 4056 

 
Education 
Syracuse University  Information Science and Technology  Ph.D. 2009 
University of Sydney  Economics & Social Science    B.Ec. 1998 

 
Appointments 
Aug 2011–Present    Assistant Professor, School of Information, University of Texas at Austin 
Jan 2009–Aug 2011  Post-doc, School of Computer Science, Carnegie Mellon University 

 
Five Related Products 
Howison, J., & Bullard, J. (2015). Software in the scientific literature: Problems with seeing, 

finding, and using software mentioned in the biology literature. Journal of the Association 
for Information Science and Technology (JASIST), Article first published online: 13 May 
2015. http://doi.org/10.1002/asi.23538 

Howison, J., Deelman, E., McLennan, M. J., Silva, R. F. da, & Herbsleb, J. D. (2015). 
Understanding the scientific software ecosystem and its impact: Current and future measures. 
Research Evaluation, 24(4), 454–470. http://doi.org/10.1093/reseval/rvv014 

Howison, J and Crowston, K (2014) Collaboration through Open Superposition. MIS Quarterly. 
38(1) 29-50. 

Howison, J & Herbsleb, J. D. (2013) Scientific Software Production: Incentives and Integration 
In Proceedings of ACM Conference on Computer Supported Cooperative Work (CSCW 
2013). 

Howison, J., & Herbsleb, J. D. (2011). Scientific software production and collaboration. In 
Proceedings of ACM Conference on Computer Supported Cooperative Work (CSCW 2011). 

 
Five Other Products 
Crowston, K., Wei, K, Howison, J., and Wiggins, A. (2012). Free (Libre) Open Source Software 

Development: What We Know and What We Do Not Know. ACM Computing Surveys. 
44(2) 

Howison, J., Wiggins, A., & Crowston, K. (2012). Validity Issues in the Use of Social Network 
Analysis with Digital Trace Data. Journal of the Association for Information Systems, 12(12) 
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Howison, J., Conklin, M., and Crowston, K. (2006). FLOSSmole: A collaborative repository for 
FLOSS research data and analysis. International Journal of Information Technology and Web 
Engineering, 1(3):17–26. 

Berente, N., Howison, J. & King, J. (2013) Five Models for Interaction Between Science 
Enterprises and Organization Scientists” Atlanta Conference on Science and Innovation 
Policy. 

Wiggins, A., Howison, J., & Crowston, K. (2009). Heartbeat: Measuring Active User Base and 
Potential User Interest in FLOSS Projects. In Proceedings of IFIP Open Source Software 
Conference 

 
Synergistic Activities 
• NSF CAREER award (2015) “Sustaining Scientific Infrastructure: Researching Transition 

from Grants to Peer Production” (1453548) 
• VOSS Research Coordination Network with Nick Berente and John King 
• SBE SciSiP award “The Scientific Network Map” researching techniques to measure usage 

and impact of scientific software, in conjunction with Jim Herbsleb at CMU 
• Co-organizer of “Sharing, Re-use and Circulation of Resources in Cooperative Scientific 

Work” 
• Program Committee for WSSSPE2 workshop on Software Sustainability 
• Co-founded FLOSSmole, an NSF funded data and analysis sharing repository for research on 

free and open source software development. http://ossmole.sf.net 
• Teach “Building and Managing Online Communities” and “Data Wrangling” at UT Austin 

iSchool 

 
List of Collaborators 
Nicolas Berente (UGA), John King (Michigan), James D. Herbsleb (CMU), Kevin Crowston 
(Syracuse University), Robert Heckman (Syracuse University), Megan Conklin (Elon 
University), Lee McKnight (Syracuse University), Andrea Wiggins (Syracuse University), 
Jungpil Hahn (NUS), Gwanhoo Lee (American), Ewa Deelman (ISU/USC), Susan Winter 
(Maryland), Brian Butler (Maryland) 

 
Graduate Students and Advisors 
Advisors: Kevin Crowston (Syracuse University, Ph.D.),  
               James D. Herbsleb (Carnegie Mellon University, Post-doc) 

 
Graduate Students: Eunyoung Moon, Julia Bullard, Nicholas Gottschlich, Johanna Cohoon. 
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Heather A. Piwowar 

 
heather@impactstory.org 

 
Professional Preparation 
MIT  Electrical Engineering and Computer Science B.S.  1995 
MIT  Electrical Engineering and Computer Science M. Engineering 1996 
U of Pittsburgh Biomedical Informatics   Ph.D.  2010 
 

Appointments  

2012-present  Cofounder and employee of Impactstory, Carrboro NC.  

2010-2013  Postdoctoral Researcher, DataONE, National Evolutionary Synthesis Center NC. 

2010 NLP Consultant for Neuroethics group at UBC, Canada 

2001-2005  Senior Systems Developer, Precision Therapeutics Inc., Pittsburgh PA 

1998-2001  Senior Software Developer, Vocollect Inc., Pittsburgh PA 

1996-1998  Software Engineer, Ascend Communications Inc., Alameda CA 
 

Relevant Products 
1. Piwowar, Chapman (2008)  Identifying data sharing in biomedical literature.  AMIA Annual 

Symposium. (28 citations) 
2. Piwowar, Chapman (2008)  Linking database submissions to primary citations with PubMed Central. 

BioLINK 2008 
3. Garnett, Piwowar, Rasmussen, Illes (2010)  Formulating MEDLINE queries for article retrieval based 

on PubMed exemplars. Nature Precedings.  
4. Harkema, Piwowar, Amizadeh, Dowling, Ferraro, Haug, Chapman (2008) A Baseline System for the 

i2b2 Obesity Challenge   In: The Second i2b2 Workshop on Challenges in Natural Language 
Processing for Clinical Data November 7-8 2008, Washington DC   

5. Piwowar, Day, Fridsma (2007)  Sharing Detailed Research Data Is Associated with Increased Citation 
Rate.  PLOS ONE 2: 3. e308 (418 citations) 

6. Priem and Piwowar.  Depsy (2015) web application and open source software. http://depsy.org and 
https://github.com/impactstory/depsy.  

7. Priem and Piwowar. Impactstory (2013) web application and open source software. 
http://impactstory.org and https://github.com/impactstory/impactstory-tng.   

 

Other Significant Products 
1. Piwowar (2013) Value all research products.  Nature 493,159.  (181 citations) 
2. Priem, Piwowar, Hemminger (2012) Altmetrics in the wild: Using social media to explore scholarly 

impact.  arXiv:1203.4745 (178 citations) 
3. Piwowar and Vision. (2013) Data reuse and the open data citation advantage.  

PeerJ  (88 citations) 
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Biosketch for Heather A. Piwowar, continued. 

Synergistic Activities 

1. Committed to open research products: open datasets are highly viewed, downloaded, and have been 
reused in research papers; open source has been reused: pypub (reused by a researcher), Impactstory 
(reused by commercial company); open APIs used by many. 

2. Given more than 30 invited talks on research data, textmining, and altmetrics since Jan 2011.  Co-
organized a AAAS panel on Open Research Data at AAAS; also a speaker. 

3. Active online research presence: research blog at http://researchremix.wordpress.com is frequently 
highlighted in OA News and has been referenced in Nature News; research twitter account has more 
than 5000 followers.  

4. Research (data sharing and reuse; altmetrics) and advocacy (open science policies; negotiating 
groundbreaking textmining access with Elsevier) have been covered by Nature News, The Guardian, 
The Chronicle of Higher Education, CBC radio, Peter Suber’s OA newsletter, the New Yorker blog, 
and other venues.   

5. Recently featured in a metrics-driven list of “100 Awesome Women in the Open-Source Community 
You Should Know”  http://bit.ly/1XUDLu2  

 
Collaborators and Co-Editors 

Allard, Suzie (University of Tennessee, Knoxville); Asper, Vernon (University of Southern Mississippi); 
Becich, Michael J. (University of Pittsburgh); Bilofsky, Howard (University of Pennsylvania); Carlson, 
Jonathan D. (University of Wisconsin–Madison); Chapman, Wendy W. (University of San Diego); Cook, 
Robert B. (Oak Ridge National Laboratory); Crowley, Rebecca S. (University of Pittsburgh); Enriquez, 
Valerie (Simmons College); Garnett, Alex (University of British Columbia); Guralnick, Robert 
(University of Colorado at Boulder); Hemminger, Bradley (University of North Carolina at Chapel Hill); 
Herendeen, Patrick S. (Chicago Botanic Garden); Helgen, Kristofer M. (National Museum of Natural 
History); Hill, Andrew (University of Colorado at Boulder); Holmberg, Kim (Åbo Akademi University); 
Illes, Judy (University of British Columbia); Jameson, Mary Liz (Wichita State University); Judson, 
Sarah W (Brigham Young University); Lapinski, Scott (Harvard); McDade, Lucinda A. (Rancho Santa 
Ana Botanic Garden); Maddison, David R. (Oregon State University); Pikas, Christina K (University of 
Maryland); Priem, Jason (University of North Carolina at Chapel Hill); Rasmussen, Edie (University of 
British Columbia); Sandusky, Robert J. (University of Illionois at Chicago); Vickers, Andrew (Memorial 
Sloan-Kettering Cancer Center); Vis, Morgan L. (Ohio University); Vision, Todd J. (University of North 
Carolina – Chapel Hill); Weber, Nicholas (University of Illinois, U-C); Whiteley, Louise (University of 
British Columbia); Whitlock, Michael J. (University of British Columbia); Wilson, Bruce E. (Oak Ridge 
National Laboratory) 
 

Graduate and Postdoctoral Advisors: 

Chapman, Wendy W. (was University of Pittsburgh, now University of San Diego) 
Vision, Todd J. (University of North Carolina – Chapel Hill) 
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Jason Priem 

jason@Impactstory.org 

 
Professional Preparation 
University of Florida History     B.A.   2001 
University of Florida Social Studies Education M.Ed.   2002 
University of North  
Carolina-Chapel Hill  Information Science  PhD (unfinished) 2009- 
 

Appointments  

2012- Co-founder of Impactstory, Carrboro NC 

2009- PhD student, UNC-Chapel Hill School of Information and Library Science 

2008-2009  Project manager and Instructional Designer, University of Florida 

2007-2008  Web designer, freelance 

2002-2007  Teacher, Union Grove Middle School, McDonough GA 
 

Relevant Products 
1. Priem and Piwowar (2012) Impactstory web application. http://impactstory.org and open source at 

https://github.com/total-impact  (184k unique visitors, >15k registered users, API users include PeerJ, 
eLife, DataCite, PMC Europe) 

2. Priem and Piwowar (Nov 2015) Depsy web application. http://depsy.org and open source at 
https://github.com/impactstory/depsy  (>20k unique visitors) 

3. Priem (2013) Beyond the paper.  Nature 495:7442 (99 citations) 
4. Priem, J., & Hemminger, B. H. (2010). Scientometrics 2.0: Toward new metrics of scholarly impact 

on the social Web. First Monday, 15(7). (238 citations) 
5. Priem, J., Taraborelli, D., Groth, P., & Neylon, C. (2010). alt-metrics: a manifesto. Retrieved August 

15, 2011, from http://altmetrics.org/manifesto/ (336 citations) 
 

Other Significant Products 
1. Bar-Ilan, Haustein, Peters, Priem, Shema, Terliesner (2012). Beyond citations: Scholars’ visibility on 

the social Web. 17th International Conference on Science and Technology Indicators. Montreal, 
Canada, 5-8 Sept. 2012.  (109 citations) 

2. Priem, Piwowar, Hemminger (2012) Altmetrics in the wild: Using social media to explore scholarly 
impact.  arXiv:1203.4745 (178 citations) 

3. Priem and Costello (2010)  How and why scholars cite on Twitter.  Proceedings of the 73rd ASIS&T 
Annual Meeting. Pittsburgh, PA, USA. doi:10.1002/meet.14504701201 (152 citations) 

4. Priem (2014) Altmetrics. Book chapter in Beyond bibliometrics: Harnessing multidimensional 
indicators of scholarly performance, Sugimoto and Cronin, Eds. MIT Press. (46 citations) 

5. Priem and Hemminger. (2012). Decoupling the scholarly journal. Frontiers in Computational 
Neuroscience 6:19. (42 citations) 
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Biosketch for Jason Priem, continued. 

Synergistic Activities 

1. 15 years of experience and coursework in visual design and web usability. 
2. Wrote 50% of Depsy code and Impactstory code, including Angular.js UI and Python backend. 
3. Early leader in altmetrics community: coined the term, organized first two workshops, wrote key 

manifesto. 
4. Engaged in outreach via blog and Twitter feed (4.5k followers).  
5. Work profiled by BBC Radio, Forbes blog, Wired blog, and the Chronicle of Higher Education. 
6. Has given more than 30 talks and interviews on alternative scholarly products (including software) 

and the future of scholarly communication since 2011. These have addressed diverse audiences, 
including at the NSF, NIH SMRB, SXSW, BBC Radio, the NIH Library, AAAS, DataCite, ORCID 
and others. 

 

Collaborators and Co-Editors 

Bar-Ilan, Judit (Bar-Ilan University); Black, Erik (University of Florida); Costello, Kaitlin (UNC-Chepel 
Hill); Dawson, Kara (University of Florida); Dzuba, Tyler (UNC-Chapel Hill); Garnett, Alex (University 
of British Columbia); Groth, Paul (VU Univ, Amsterdam); Haustein, Stefanie (Universite de Montreal); 
Hemminger, Bradley (UNC-Chapel Hill); Holmberg, Kim (Åbo Akademi University); Neylon, Cameron 
(UK Science and Technology Facilities Council); Parra, Cristhian (University of Trento); Peters, Isabella 
(Heinrich-Heine-University); Pikas, Christina K (University of Maryland); Piwowar, Heather (NESCent); 
Shema, Hadas (Bar-Ilan University); Taraborelli, Dario (Wikimedia Foundation); Terliesner, Jens 
(Heinrich-Heine-University); Waagmeester, Andra (Maastricht University); Weber, Nicholas (University 
of Illinois, Urbana-Champaign) 
 

Graduate Advisor: 

Bradley M. Hemminger (University of North Carolina at Chapel Hill) 
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Appendix B: Conflicts and Interest/Sources of Bias 

Howison, Piwowar, and Priem do not have conflicts of interest or sources of bias related to this 

project. UT Austin and Impactstory Inc. do not have conflicts of interest or sources of bias 

related to this project. 

Students employed on the project will undergo UT Austin’s responsible conduct of research and 

conflict of interest training and make appropriate declarations required by UT Austin. 
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Appendix C: Attention to Diversity 

Traditionally underrepresented groups will play key roles in several components of this grant.  

Minority students will form a vital part of the team pursuing the grant. To create the gold-

standard set of tagged software literature mentions, we will recruit undergraduates from Huston-

Tillotson, an historically black university in Austin. Howison has taught and advised Autumn 

Caviness, a UT Austin doctoral student, who is an adjunct instructor there and who has 

organized hackathons at Huston-Tillotson; we will work with her to recruit content analysis 

students from Huston-Tillotson. This is important since a key to graduate student recruitment is 

to provide opportunities for legitimate peripheral participation (Wenger, 1998), which is well 

served by providing apprenticeship opportunities in research projects.  

Although women are currently underrepresented in software development, and particularly in 

open-source software, half our two-person development team (Heather Piwowar) will be female. 

Heather has been recognized as one of the top 100 women in open-source software. 

(http://blog.sourced.tech/post/100-awesome-women-in-the-open-source-community-you-should-

know/). Moreover, the UT Austin Information School, despite being the smallest school at UT 

Austin, graduates the highest number of women trained in technology, and our doctoral program 

is over 60% female. We have identified Johanna Cohoon, an incoming doctoral student at UT 

Austin, as likely funded under this award. 
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Appendix E: Information Products Appendix 

This grant will generate four types of Information Products, each with their own dissemination 
needs: 

Manually-derived dataset of Software Mentions (gold standard) 

Description: Here is an example of a possible csv formatted serialization of our dataset. Note the 
connection of in-text citation with the details from the reference list. 

(10.234/1111, astropy, software_reuse, "We used astropy to do this", "") 

(10.234/1111, FooCountr3k, software_create, “We have made FooCountr3k available for 
download at”, "Brown et al, ‘FooCountr3k: a novel software for the counting of foo.’ 
2008,  Foomatics, Volume 1 Number 1") 

(10.234/1111, astropy, software_reuse, "We the standard software package[1] to do this", 
"Brown et al, 'Astropy: its Debut. 2008,  Astroinformatics Volume 1 Number 1") 

(10.234/2222, astropy,  software_idle_mention, "There is such a thing as astropy", "") 

Management, Dissemination, Archiving & Stewardship: We will publish our gold standard 
dataset on Zenodo using a CC-0 license. We will also explore donation to machine learning 
repositories such as the UCI repository (https://archive.ics.uci.edu/ml/datasets.html). 
Automatically-derived dataset of Software Mentions 

Description: The machine learning system will be trained and tuned on the manually-derived 
gold standard software mentions dataset described above.  Once trained, we will run the machine 
learning system on millions of papers spanning three fields: biomedicine, economics, and 
astronomy (see Table below).  The results of this automatic curation form an additional valuable 
information product: a huge dataset of automatically-identified software mentions, much larger 
than could ever be developed manually, and with higher precision and recall than any previous 
automatically-derived dataset of software mentions. 
 

field corpus name 
approx number of 
documents notes 

Biomedicine PubMed Central Open 
Access subset 400k ~2% of PubMed 

Economics Research Papers in 
Economics (RePEc) 2M  

Economics SSRN 
unpublished We are have an existing relationship with CEO 

Gregg Gordon and are in discussions now 

Astronomy SAO/NASA Astronomy 
Data System (ADS) 11M Includes non-astronomy papers we will need to 

remove 
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Management, Dissemination, Archiving & Stewardship: We will publish the automatically-
derived dataset of Software Mentions on Zenodo using a CC-0 license.  Although we expect the 
dataset to be well over 10 million rows, this is well within Zenodo's data size limits (2GB). 
Prototype Services 

Description: Three prototype software services will be developed to address the research 
questions: the CiteMeAs service (which automatically submits pull requests to GitHub 
repositories, as well as exposing a web service), the CiteSuggest web service, and a software 
mention module for Impactstory.  All code will be written in Python. 

Management and Dissemination: All software will be openly developed on GitHub under an 
MIT open source license.  Each prototype software service will be made available for use on the 
open internet for the duration of the grant, as a proof-of-concept.  

Archiving & Stewardship: The prototypes have no funding beyond the end of the grant, and so 
will cease to be available as operating web services on the internet once the grant funding ends. 
The fact these are limited-duration prototypes only will be clearly indicated on the web services 
themselves.  However, the source code will be remain openly available on GitHub and the final 
release of each prototype will be permanently archived at Zenodo under an MIT open source 
license. 

Scholarly publications 

Description: A key output of the project will be scholarly publications summarizing our machine 
learning and socio-technical evaluation findings.  These publications are subject to organization-
wide OA policies at Impactstory (no related policies at the University of Texas). 

Management: We will write our manuscripts as executable, reproducible papers, thereby linking 
text and results with supporting code and data.  These knitr manuscripts will be openly available 
on GitHub throughout the writing process. 

Dissemination, Archiving & Stewardship: All publications will be made open access 
immediately upon publication, either through publishing in an Open Access journal or through 
self-archiving in Zenodo, using a CC-BY license.  All supporting statistical scripts, software, and 
datasets will be archived and made available in Dryad and Zenodo, through a CC-0 license (for 
data) and an MIT open source license (for scripts and software).  We have included a budget line 
for open access fees. 
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Appendix F: Howison and Bullard software citation article. 
 



Software in the Scientific Literature: Problems with
Seeing, Finding, and Using Software Mentioned in the
Biology Literature

James Howison
School of Information, University of Texas at Austin, 1616 Guadalupe Street, Austin, TX 78701, USA. E-mail:
jhowison@ischool.utexas.edu

Julia Bullard
School of Information, University of Texas at Austin, 1616 Guadalupe Street, Austin, TX 78701, USA. E-mail:
julia.a.bullard@gmail.com

Software is increasingly crucial to scholarship, yet the
visibility and usefulness of software in the scientific
record are in question. Just as with data, the visibility of
software in publications is related to incentives to share
software in reusable ways, and so promote efficient
science. In this article, we examine software in publica-
tions through content analysis of a random sample of 90
biology articles. We develop a coding scheme to identify
software “mentions” and classify them according to
their characteristics and ability to realize the functions
of citations. Overall, we find diverse and problematic
practices: Only between 31% and 43% of mentions
involve formal citations; informal mentions are very
common, even in high impact factor journals and across
different kinds of software. Software is frequently inac-
cessible (15%–29% of packages in any form; between
90% and 98% of specific versions; only between 24%–
40% provide source code). Cites to publications are par-
ticularly poor at providing version information, whereas
informal mentions are particularly poor at providing
crediting information. We provide recommendations to
improve the practice of software citation, highlighting
recent nascent efforts. Software plays an increasingly
great role in scientific practice; it deserves a clear and
useful place in scholarly communication.

Introduction

Software is increasingly crucial to scholarship; it is a key
component of our knowledge infrastructure (Edwards et al.,
2013). Software underlies many scientific workflows and

incorporates key scientific methods; increasingly, software
is also key to work in humanities and the arts, indeed to work
with data of all kinds (Borgman, Wallis, & Mayernik, 2012).
Yet, the visibility of software in the scientific record is in
question, leading to concerns, expressed in a series of
National Science Foundation (NSF)- and National Institutes
of Health–funded workshops, about the extent that scientists
can understand and build upon existing scholarship (e.g.,
Katz et al., 2014; Stewart, Almes, & Wheeler, 2010). In
particular, the questionable visibility of software is linked to
concerns that the software underlying science is of question-
able quality. These quality concerns are not just technical,
but extend to the appropriateness of software for wide
sharing, and its ability to facilitate the codevelopment that
would make efficient use of limited scholarly funding
(Howison & Herbsleb, 2013; Katz et al., 2014).

The link is two-fold: First, when software is not visible, it
is often excluded from peer review; second, its lack of
visibility, or the particular form of visibility, means that
incentives to produce high-quality, widely shared, and code-
veloped software may be lacking. A well-functioning system
would assist not only the goals of understanding and trans-
parency, but also the goals of aiding replication (Stodden
et al., 2010), complementing the availability of publications
such that “the second researcher will receive all the benefits
of the first researcher’s hard work” (King, 1995, p. 445).

The situation with software is broadly analogous (but not
identical) to that of data in publications; indeed, all data are
processed by software in some form (Borgman et al., 2012).
Nonetheless, there are relevant differences. Accordingly, our
inquiry into the visibility of software in scholarly commu-
nication is complementary to recent interest in data citation.
In sum, then, the relationship of software to the scholarly
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publication ought to be of key concern to those interested in
scholarly communication, data in scholarship, and, indeed,
the overall functioning of scholarship, knowledge infrastruc-
tures, and innovation.

In this article, we ask how software is currently visible
in the literature and the extent to which this visibility con-
tributes to achieving the normative ideals of scientific prac-
tice. Citations to a formal bibliography are important, yet
formal citations are not the only form of visibility: Soft-
ware is also visible in less-formal ways, including foot-
noted URLs to web pages maintained by software projects,
parenthetical notes akin to those used for purchased scien-
tific consumables, and simply discussed in the text in
passing. Therefore, we write of software “mentions,” inten-
tionally choosing a word with casual and wide-ranging
connotations, including the full spectrum of formal to
informal visibility. While we were interested in cases
where it was apparent that software was used, but not men-
tioned at all, such as statistical analyses, indeed some soft-
ware authors claim this to be a very common problem
(Howison & Herbsleb, 2011); but, for this study, we
focused only on explicit mentions.

Specifically, we undertake a content analysis of a random
sample of 90 journal articles from Biology, stratified by
journal impact factor. We develop a reliable content analytic
scheme to identify mentions of software in the literature and
to understand how well these mentions achieve desirable
functions, such as identification of an artifact, providing
credit to its creators, and assisting others to build on the
scholarship. We use this scheme to examine each identified
software mention for its ability to realize these functions.
Overall, we aim to provide a systematic motivation and basis
for the pressing task of designing improved systems of vis-
ibility for software in the scientific literature.

Literature Review

Much of the foundational literature on scholarly citation
examines the practice of citing, particularly the relationship
indicated between scholarly publications (Cano, 1989;
Lipetz, 1965; Moravcsik & Murugesan, 1975). Studies in
the meaning of citation have attempted to clarify the pos-
sible relationships between citations and the works cited,
providing typologies of credit giving (Moravcsik &
Murugesan, 1975), associating the location of the citation
with the type of credit given (Cano, 1989), and identifying
the relevant element of the cited work (Lipetz, 1965). These
have been used for automatic classification to identify rel-
evant works (Pham & Hoffmann, 2003) and augment impact
factor calculations (Teufel, Siddharthan, & Tidhar, 2006). In
general, this scholarship is a practice literature that examines
the nuances of an established practice to interpret these acts
and improve our understanding of how science works or our
information retrieval systems for science.

More recently, though, changes in publication technology
have returned the discussion to other basic functions, such
as identification and assistance in finding cited objects.

Achieving these functions, long since addressed in standard-
ized citation formats for print publications, require new
methods for digital works. A familiar example of this trend
is the citation of online works and the phenomenon of “link
rot” (Klein et al., 2014; Koehler, 1999). To the extent that
the location of online works is not fixed, citations cannot
reliably facilitate access to cited works (Lawrence, 2001;
Sellitto, 2005), undermining the verifiability and repeatabil-
ity integral to the scientific method (Goh & Ng, 2007). As
publication technology changed, the literature shifted back
from studying the meaning of citations to addressing
questions of design: How ought scholars reference other
scholarly works?

This article thus continues the traditions of citation schol-
arship, seeking to contribute to both a literature of practice
(“How do scientists mention software?”) and a literature of
design through assessment (“How well do the current prac-
tices do their job”) leading to proposals for improvement
(“How ought scientists mention software?”). Finally, we
seek to raise, even if we cannot yet answer them, questions
of change (“How best can the practices relevant to software
visibility be altered?” and “How might proposed citation
practices influence other areas of scientific conduct”?).

Data Citation

Design questions are at the heart of the literature on data
citation, including how citations can provide identification
of, location of, and access to, data, including data sharing,
verification, and replicability (Mooney & Newton, 2012).
Recently, the discussion has gained more urgency given the
possibilities of data sharing online, the present “data deluge”
of available data sets (Borgman et al., 2012), the possibili-
ties of the linked data movement (Mayernik, 2012), and the
adoption of data-sharing policies by granting agencies and
journals (Borgman et al., 2012, p. 1060).

The practices of data citation and data sharing are inter-
twined; data sharing is motivated by the credit-giving appa-
ratus of data citation, but data citation practices can only
develop in a scholarly culture of data sharing (Mooney &
Newton, 2012). The practice literature of data citation has
examined how this dilemma is playing out in contemporary
publications, finding that data citation is still an emergent
practice, neither pervasive nor consistently applied (Simons,
Visser, & Searle, 2013). Findings such as these have led
scholars to call for cultural change in scholarly communi-
cation (Mayernik, 2012) and institutional mandates for data
sharing (Simons et al., 2013).

Even if the need for citation of shared data was clear, the
mechanisms are not yet so clear. Studies of the technical
apparatus of data citation seek to identify the necessary
criteria of adequate citation, such as specificity regarding the
version and granularity of what is being cited (Borgman
et al., 2012; Simons et al., 2013). In particular, scholars are
concerned that data citation include the elements necessary
to provide adequate identification and access to the data set
(Altman & King, 2007; Konkiel, 2013).
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From these discussions of the necessary criteria for func-
tional data citations, a design literature emerges that seeks to
identify the criteria necessary to data citations, assesses to
what extent these are used in contemporary practice, and
proposes design improvements. Criteria include specificity
regarding versions and granularity (Borgman et al., 2012;
Simons et al., 2013) and findability supported by stable
locators (Konkiel, 2013). Empirical studies of data citation
in contemporary scholarship find that data citations tend to
be minimal and incomplete when present at all (Mooney &
Newton, 2012).

Suggestions to improve current practice include both cul-
tural and technological changes. For example, technical pro-
posals, such as digital object identifiers (DOIs) for data sets
(Simons et al., 2013), as well as new citation standards
(Altman & King, 2007; CODATA, 2013), will allow authors
to cite in a way that supports the findability of data sets.
Design improvements include integrating data citation
counts into altmetrics to motivate data sharing (Konkiel,
2013).

Software Citation

Software citation requires both a practice and a design
literature of its own. Software use and reuse are important
for contemporary scientific methods and scholarly commu-
nication, and verifying, replicating, and building upon these
studies requires adequate, consistently adopted modes of
software citation. The small existing practice literature of
software citation enumerates a number of challenges for
meeting the criteria for credit and location. The barriers to
software citation include all of those identified for data
citation—such as difficulty with versioning and lack of cita-
tion standards—along with complications specific to this
form. For example, Howison and Herbsleb (2013) report
that the constant incremental improvements typical to soft-
ware development are incongruent with structures of recog-
nition and credit in academia. As with the chicken and egg
dilemma in data citation identified by Mooney and Newton
(2012), software citation suffers from a mismatch between
the incentives for software development and sharing and
science outcomes (Howison & Herbsleb, 2011). To the
extent that software development is often proprietary rather
than open, distribution models often run counter to the ideals
of the “Republic of Science,” endangering the verification
and replication functions of citation (Gambardella & Hall,
2006; Ince, Hatton, & Graham-Cumming, 2012).

Some design improvements have been proposed. As with
data citation, proposed solutions are both cultural and tech-
nological in nature; an example of a cultural change is the
push toward adoption of permissive, open licenses for sci-
entific software (Gambardella & Hall, 2006; Ince et al.,
2012), whereas technological solutions include infrastruc-
ture for code sharing and metrics for software contributions
(e.g., Goble, Roure, & Bechhofer, 2013; Katz, 2014;
Stodden, Hurlin, & Perignon, 2012). We will return to sug-
gestions for improvement in our discussion.

One mode of assessing both current practice and proposed
solutions is to compare them against the criteria for citation
identified earlier. Extending the criteria for data citation to
software citation is appropriate given that the practices share
technological challenges and relative novelty in scholarly
communication. The practices are also intertwined: A full
reference to data reuse requires mention of the software
transformations applied to the set (Borgman et al., 2012, p.
1073). From these similarities and the foundational criteria
from traditional citations, we identify the functions of cred-
iting, identification (including versioning), and access (the
ability to obtain the software). The requirement for identifi-
cation, in the case of scientific software, also involves the
configuration settings applied to the program—answering
the question of which elements of the program were used.

Software also introduces some novel requirements for
citations in order to support verification, replication, and
building on others’ work. Verification and replication, in the
case of scientific software, requires not only the ability to
locate the referenced material, but also access and permis-
sion to run the program. In particular, even special purpose
descriptions of algorithms in articles have been found to be
insufficient to replicate analyses; direct access to source
code is vastly preferred (Ince et al., 2012; Stodden et al.,
2010). Further, to build on others’ work requires not just
access to the source code, but also permission to extend the
work, particularly to modify the program or combine it with
other code in particular ways. As we will show, we develop
these characteristics into a specific coding scheme.

Method

We identified a balanced and representative sample of the
biology literature and undertook classic content analysis
based on our development of two reliable content analytic
schemes.

We chose to confine our analysis to a single domain,
trading off broad scientific coverage against achieving a
larger sample size. Biology is a leading domain for the
importance of software in science, given the importance of
computerized data analysis and the rise of bioinformatics.
Some of the most well-cited papers of any kind in any
science are biology software related (Science Watch, 2003).
Because we are interested in contemporary practices, we
confined our sample frame to articles published between
2000 and 2010 (the last complete year when we took the
sample). Scientific attention is concentrated toward certain
journals, albeit different journals in different fields and sub-
fields; overall, the hierarchy of scientific journals forms a
non-normal, exponential-like distribution, such as in Brad-
ford’s law (Bradford, 1934; Brookes, 1985). Such distribu-
tions are difficult to sample from: There is no “typical” item
in such a distribution. It would be problematic to only study
widely read (“top”) journals, but equally problematic to
study only less-well-read journals. Accordingly, we sought
to study a sample balanced for overall coverage and likely
influence.
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We identified a set of 18 biology-related subject headings
in biology using the 2010 Institute for Scientific Information
(ISI) Web of Science (WoS). We took all of the 1,455 jour-
nals included in these headings and sorted them by their
journal impact factor. Previous research has found differ-
ences in practices between higher and lower impact factors
(e.g., Stodden, Guo, & Ma, 2013), and journal impact factor
seemed an appropriate proxy for overall influence or breadth
of readership. Though there are many criticisms of journal
impact factor, particularly for assessing influence of specific
articles or authors, the journal unit of analysis is well suited
for our study given that the policies of journals seem likely
to affect the form of articles. Thus, we divided our journal
list into three groups: The first group of journals included
those ranked 1 through 10 (10 journals), the second had
those ranked 11–110 (100 journals), and the third had the
rest of those ranked 111–1,455 (1,345 journals). We com-
bined the journals with strings for the years (2000–2010)
and weeks (1–52) to yield a sampling frame that covered
each of the journals across the whole time period. We then
randomly selected 90 journal-year-week tuples for each
strata. We worked through this list taking the first 30 issues
listed that appeared to be from journals that publish original
research, as opposed to review journals.

We manually retrieved the issue from the journal website
that was current in the year and week number. When an issue
was dated during or after the chosen week, we chose the
issue that came out before that week. We found two journals
in the sample that we did not have library access to and
discarded these, taking the next journal-year-week tuple. We
also found 12 tuples that were before the first published
volume of the journal (e.g., we sought a 2001 article from a
journal that began publishing in 2006); in those cases, we
discarded that tuple and used the next from the list of 90,
rather than taking the first issue of the journal on the basis
that first issues might be systematically different.

We assessed the content of the chosen issue, identifying
research articles (as opposed to letters, editorials, perspec-
tives, review/survey articles, and other publications, such as
“plant registrations”). In two cases, where our chosen issue
did not have any research articles, we went to the issue
immediately following. From the research articles in the
selected issue, we used a random number generator to
choose one article. We continued this process until we had
30 research articles from each strata, a total data set of 90
biology research articles, as shown in Table 1.

We obtained portable document formats (PDFs) of the
articles and of any supplemental materials (these were often

“methods and materials” online supplements with their own
text and references lists). During coding, we found one
article that was not a biology article (it was a pure math-
ematics article) and we replaced it with an article derived
from the next tuple in the original random selection for that
strata. Appendix A includes a full list of categories in our
sample frame and journals in our sample; Table 2 shows a
distribution of articles from well-known journals in the top
strata by impact factor (we did not intend to only choose
articles from 5 of the top 10; that was simply a result of the
method of randomization).

Our random selection of articles enables us to use our
sample to make estimates about software mentions in the
overall biology literature, because undertaking random sam-
pling means it is reasonable to believe that sampling errors
resulting from our specific sample are normally distributed.
Accordingly, we are able to present 95% confidence inter-
vals (CIs), for the population around the characteristics of
the sample we report, providing upper and lower bounds for
the results we report in the population of biology articles.
These estimates treat each mention as independent, not
adjusting for the reality that ways of mentioning software
may be influenced by authors and journals (i.e., within
articles). This is not ideal, but given that authors are not
necessarily consistent (even within articles) and, more
importantly, readers read widely across journals and articles
by different authors, readers are going to encounter many
varying ways of mentioning software, even if there is some
consistency within specific journals or authors. We con-
ducted the statistics with the R functions, prop.test and
chisq.test (based on Hope, 1968; Newcombe, 1998). The
data set and full analysis scripts are available at http://
github.com/jameshowison/softcite/.

In the analysis to follow, we present results both in aggre-
gate and, in some cases, broken out by journal impact factor
strata. In many cases, our statistical analysis shows no sta-
tistically significant differences between strata, but we do
not rely on those results for our main conclusions. Indeed,
the contribution of this article is toward informing policy
making and prompting the emergence of a design literature
for software mentions in scientific articles; in that context, it
is unclear that any specific size of difference (effect size)
between strata would matter, and without that, it is hard to
estimate the statistical power needed for reliable between-
strata comparisons.

TABLE 1. Summary of sample and sample frame.

Strata 1 Strata 2 Strata 3

Journals in sample frame 10 100 1,345
Articles in sample 30 30 30
Journals in sample 5 23 30

TABLE 2. Numbers of articles included from strata 1 journals

Journal name Article count

Science 7
Nature 5
Cell 7
Nature Biotechnology 5
Nature Genetics 5
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Coding Scheme Development

Our coding scheme development proceeded in three
rounds: identifying software mentions; coding their charac-
teristics; and coding their functions. In each case, we devel-
oped our coding scheme by iterating between reading the
text of the articles and the existing literature described
earlier.

Identifying software mentions. In round 1, we analyzed the
full text of the articles to identify mentions of software
within an article. We were exhaustive in seeking locations of
possible mentions, including not only the main text of the
article, but also table and figure captions, reference list, and
supplemental materials. We considered coding for situations
where it was apparent that software was used, but not men-
tioned at all, such as when an article presents statistics or
figures, but with no mention of the software almost defi-
nitely used to create them. Unfortunately, whereas this
would be very interesting, we concluded that this would be
too speculative and difficult to achieve reliability in coding;
accordingly, we confined our coding to identifying explicit
mentions of software.

We tested reliability of our ability to recognize software
mentions by having two coders independently code subsets
of articles and then comparing their coding. Reporting
agreement is complicated in this case because the coding
units are not predefined; rather, the coders are picking them
out from the text of the articles; these are thematic coding
units that may be whole paragraphs, sentences, or phrases.
Coders are thus only identifying units they think mention
software, not identifying units they think do not. Further,
software mentions are sparse in the data set. In this sense,
using agreement statistics on, say, a sentence level would
substantially inflate agreement owing to the many sentences
coded as not mentioning software. Given the sparseness of
the thematic units, it is also not necessary to adjust for the
very unlikely case of chance agreement, and therefore we
report straight percentage agreement (and not, say, Cohen’s
kappa), calculated using the “irr” package for the R statistics
program (Gamer, Lemon, Singh, & Fellows, 2012). We
tested the reliability in this way twice: once at the beginning
of coding and once when we trained a new coder.

The first test included 12 articles in the subsample. Both
coders agreed that there were no software mentions in 7 of
the 12 articles. In the remaining five articles, coders
achieved percentage agreement of 68.2%. We identified the
reasons for disagreement in discussion and resolved them
with coding rules (e.g., sentences with two citations for one
software package should be coded as two mentions). The
most complex source of disagreement revolved around
whether a sentence referred to a piece of software or the
abstract scientific model; we discussed rubric to determine
the difference, including brief online searching.

The second test occurred when we trained a third coder,
using a new subsample of eight articles. There was agree-
ment by both coders that six articles contained no software

mentions. Agreement in the two remaining articles was
83.3%, with a single instance where one coder failed to
identify a mention; on inspection, we ascribed this to coder
fatigue and not conceptual disagreement. The high agree-
ment in this second round of training provides confidence
that the issues discussed in the first round were adequately
resolved.

Software mention characteristics. Our second coding
scheme identified characteristics of software mentions.
These codes are shown in Table 3. We tested the reliability
of this scheme by applying them to the mentions coded in
the 12-article subsample discussed earlier; this set included
32 mentions drawn from the five articles that mentioned
software. Because this coding involved applying codes to a
preagreed set of mentions, we report intercoder reliability
using Cohen’s kappa. Specifically, we use “Byrt’s kappa”
because it adjusts for unbalanced prevalence (i.e., when one
value, negative or positive, is rarely used) (Byrt, Bishop, &
Carlin, 1993).

Owing to the fact that many mentions come as in-text
citations with references in the bibliography, we linked the
in-text citation and the reference in the data set. We then
applied codes to each element separately. For references, we
used the additional codes shown in Table 4, but, for com-
parison in reporting purposes, we treat a citation + reference
pair as a single mention, which has all of the codes applied
to either element. For example, if one mention included a
creator name in text, whereas another included the creator
name in the reference, this distinction is retained in the data

TABLE 3. Coding scheme for mentions of software.

Code Definition Agreement (kappa)

Software name The name of the software
package

k = 1

URL A web address for the software
or project

k = 1

Version
number

A version number (or source
code label) identifying a
specific version of the
software

k = 1

Date A date used to indicate a version
of the software (not date of
article or reference)

k = 1

Configuration
details

Any mention of configuration of
the software

k = 0.75

Software used For mentions of software that
was used in the research

k = 0.875

Software not
used

For mentions of software that
the authors did not use (e.g.,
they discuss why they did not
use particular software, or the
method realized in the
software)

k = 1

Creator A mention of the creator of the
software (could be applied to
in text mention or reference)

k = 1
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set, but, in the analysis reported on in this article, both would
be reported as a single mention that included a creator name.

We standardized the software names by clustering the
raw names using Jaro-Winkler distance, as implemented by
the R stringdist package (Van der Loo, 2014), and manually
inspecting the clusters (e.g., standardizing “Image J” and
“ImageJ” and components of a single package, such as
BLAST, BLASTP, BLASTN, and so on).

Functions of software mentions. In the third round, we
coded to assess the extent to which the mention performed
the functions of citation identified earlier (e.g., location,
credit-giving; see Table 5 for full set of codes and explana-
tions). We were generous in seeking relevant information
across the full article when assessing the functions of cita-
tions. That is, we combined all the information supplied
across all mentions of a piece of software in the article in
order to find the software. Once we had sufficient identify-
ing information, we went outside the article text and used
web searching to attempt to locate the software and assess
the possibility of access (for reproducibility), access type
(free or for purchase), source code availability (for

transparency), and ability to modify the code (for building
on the work of others).

Examples of software mentions with codes. From the
article “The seasonal phenology of Bactrocera tryoni (Frog-
gatt) (Diptera: Tephritidae) in Queensland” in the Australian
Journal of Entomology, we identified this sentence:

The DYMEX model we used was as described and parameter-
ised by Yonow et al. (2004).

Which we coded as follows:

An in-text mention to software used by the authors, with a
reference. The software name was “DYMEX”; there were no
configuration details (in the focal text) and no version number,
date, or URL given. The reference was coded as a domain
publication that cited a creator (the authors of the reference).
The software was identifiable and a web search showed it to be
findable. It is accessible in that it is available for purchase. The
source code is not available and there is no permission to
modify the code. The project does not make a request for a
specific citation.

From the article “Insights into assembly from structural
analysis of bacteriophage PRD1” in Nature, we identified
this mention:

Data were analysed with DENZO [41] and the resolution limit
was determined with TRIM_DENZO (D.I.S., unpublished
program).

Which was coded as follows:

Two software mentions, one for “DENZO” (with a reference)
and one for “TRIM_DENZO.” Both were coded as software
used by the authors; neither included version numbers,
configuration details, dates, or URLs. Both were coded as pro-
viding creator information (For TRIM_DENZO, the initials
D.I.S. match the author’s initials, the reference provides
creator information for DENZO). DENZO was found to be
identifiable and findable, but there was no access to the soft-
ware (which also implies no source code or permission to
modify). TRIM_DENZO was coded as identifiable but unfind-
able (implying no source access or permission to modify).

From the article “Yeast Cbk1 and Mob2 activate
daughter-specific genetic programs to induce asymmetric
cell fates” in Cell, we identified this sentence as mention-
ing software:

We captured and analyzed images using a SPOT2e CCD
camera (Diagnostic Instruments, Inc., Sterling Heights, MI)
coupled to MetaMorph imaging software (Universal Imaging
Corporation, Downingtown, PA).

Which was coded as follows:

This was coded as a software mention of software used by the
authors. The software name was “MetaMorph.” There were no

TABLE 4. Additional codes for references in software mentions.

Software publication Formal publication primarily describing
software

Domain publication Formal publication primarily describing
mainline domain science

Users guide/manual Project documentation, typically online but
not published in a journal/conference
proceeding or similar

Project name Reference with just project name
Project page Reference to URL of project

TABLE 5. Codes for functions.

Code Explanation

Identifiable Can we identify which software has been mentioned
(e.g., Is there a name used at all, beyond “a
program we wrote?” Can we find references to
that software, even if we cannot find the software
itself?)?

Findable Given an identifiable piece of software, can we find
an online source that details the software (not
necessarily the software itself, but any official
presence) (e.g., a project page or online manual)?

Findable version Can we find the specific version listed in the article,
if there was one?

Access Can we access the software now? Can take three
values: No Access, Purchase Access, Free Access.

Source available Can we access the source code in any way?
Permission to

modify
Do the creators give permission to modify the

program (if no mention of modification, assume
no)?; if permission only by contact, then no.

Matches preferred
citation

If the project page lists a preferred citation, does the
mention match it?
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configuration details and no URL, version_number, or date, but
the mention included a creator (“Universal Imaging Corpora-
tion, Downingtown, PA”). The software to be identifiable and
findable. Access was possible through purchase, but the source
was unavailable and modifications were prohibited.

Results

Overview

From the 90 articles total, we identified 59 that men-
tioned software and 31 that did not (65% of articles men-
tioned software). In our sample, articles in higher impact
factor strata were more likely to mention software (77% in
strata 1, 63% in strata 2, and only 57% in strata 3). In total,
we found 286 distinct mentions in the 59 articles that men-
tioned software. The distribution of mentions across articles
is shown in Figure 1; most articles that mentioned software
had relatively few mentions. The two articles with the
highest number of software mentions have over 20 men-
tions. We retained these within our data set.

Classification of mentions. We classified references
according to the scheme previously described. In our
sample, the mentions range in form quite widely. Only

44% of software mentions involve an entry in a references
list, with only 37% being a citation to a formal publication
(another 7% are informal entries in a reference list, includ-
ing either the name or website of the project). Of the 56%
of mentions that do not include references, 31% mention
only the name of the project. Another 18% mention soft-
ware in a manner similar to scientific instruments or mate-
rials, typically mentioning the name in text followed by the
author or company and a location in parentheses. Finally,
some 5% of mentions provide a URL in the text or in a
footnote and 1% mention using some software, but provide
no additional details. Our categorizations, with examples,
are shown in Table 6 and Figure 2, where we provide 95%
CIs for the likely proportion of these types of mentions in
the population of biology articles.

These categories of mentions are useful for understand-
ing the overall diversity of practice, but somewhat fine-
grained for further analysis. Accordingly, we collapsed
these categories into three: Cite to publication (including
cite to user manual); Like instrument; and Other (including
Cite to name or website, URL in text, Name only, or Not
even name). These categories correspond well to two for-
malized forms of mentioning in the literature and a collec-
tion of informal techniques that scientists are using. The
results are shown in Figure 3.
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FIG. 1. Counts of mentions in articles, broken down by impact factor strata.

TABLE 6. Types of software mentions in publications.

Mention type Count (n = 286) Proportion (95% CI) Example

Cite to publication 105 0.37 (0.31–0.43) . . . was calculated using biosys (Swofford & Selander 1981).
Cite to users manual 6 0.02 (0.01–0.05) . . . as analyzed by the BIAevaluation software (Biacore, 1997).

Reference List has: Biacore, I. (1997). BIAevaluation Software Handbook,
version 3.0 (Uppsala, Sweden: Biacore, Inc)

Cite to project name
or website

15 0.05 (0.03–0.09) . . . using the program Autodecay version 4.0.29 PPC (Eriksson 1998).
Reference List has: ERIKSSON, T. 1998. Autodecay, vers. 4.0.29 Stockholm:

Department of Botany.
Instrument-like 53 0.19 (0.14–0.24) . . . calculated by t-test using the Prism 3.0 software (GraphPad Software, San

Diego, CA, USA).
URL in text 13 0.05 (0.03–0.08) . . . freely available from http://www.cibiv.at/software/pda/.
In-text name mention only 90 0.31 (0.26–0.37) . . . were analyzed using MapQTL (4.0) software.
Not even name mentioned 4 0.01 (0.00–0.04) . . . was carried out using software implemented in the Java programming

language.
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Using these categories, 39% (95% CI: 0.33–0.45) of
mentions cite a publication, 19% (95% CI: 0.14–0.24)
refer to software following the guidelines for instruments,
and 43% (95% CI: 0.37–0.49) use some form of other,
informal way of mentioning software.

Figure 4 shows these categories of mentions broken out
by strata. Whereas there are no differences in the use of
cites to publications, we can see that there are significantly
fewer mentions that look like instruments in the low
journal impact strata. The data tend to show higher use of
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FIG. 2. Types of software mentions. Errorbars show 95% CIs.
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FIG. 3. Classification of software mentions (collapsed categories).
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informal citations in lower journal impact strata, but the
95% CIs overlap. These results are consistent with the idea
that journals in higher strata have more formalized mention
styles; nonetheless, even in the top strata alone, 36% (95%
CI: 0.29–0.44) of mentions were informal (categorized as
“Other”).

Characteristics of software mentioned. The mentions we
found were to 146 distinct pieces of software. The majority
of pieces were only mentioned in a single article, with the
most mentioned software being mentioned in only four
articles. We provide the full list of software mentioned in
articles in Appendix B, but given the broad distribution of
software in the literature, our sample size does not allow us
to claim representativeness sufficient to create a “league
table” of software use in science; we include the Appendices
to help readers assess the face validity of our content analy-
sis results.

We classified the type of software using the codes
described earlier (the result of seeking the software online,
using data provided with any mention within an article):
whether the software was accessible; whether one has to pay
money for a license; whether the source code is available;
and whether the software provides explicit permission to
modify and extend the source code (i.e., a free software or
open source license). As illustrated in Figure 5, we were able
to access only 79% (95% CI: 0.71–0.85) of the software
mentioned. Forty-seven percent of the software mentioned
was available without payment (95% CI: 0.39–0.56),
whereas only 32% had source code available (95% CI: 0.24–
0.40) and only 20% gave explicit permission for others to
modify or extend the source code (95% CI: 0.14–0.27).

The characteristics of software are important results
because they reflect the usefulness of software to other sci-
entists, but they do not provide intuitive labels to discuss
types of software. Accordingly, we combine these categories
to produce intuitive labels. The first is “Not accessible.” The
second is for software that must be paid for and for which
the source code is held as a proprietary secret; these we call
“Proprietary” (rather than “Commercial,” emphasizing the
unavailability of source code). At the other end, we place
“Open source” software that is available without payment,
provides access to the source code, and provides explicit
permission to modify the code. Falling between is the “Non-
commercial” software category for software available
without payment, but that does not provide explicit permis-
sion to modify the code; most, but not all, provide access to
source code. This includes many packages written by scien-
tists and made available for other scientists, but either
without specifying license conditions or specifying licenses
that restrict modification. As illustrated in Figure 6, we
found 21% of software to be Not accessible (95% CI: 0.15–
0.29), 32% to be Proprietary (95% CI: 0.24–0.40), 27% to
be Noncommercial (95% CI: 0.21–0.36), and 20% to be
Open source (95% CI: 0.14–0.27).

Our classification of software and mention types enables
us to explore whether particular types of software are
referred to in different ways. For example, it seems reason-
able that Proprietary software would be more likely to be
mentioned using the Like instrument style, given that it is
less likely to have a publication associated with it and was
purchased perhaps from the same budgets as equipment.
Figure 7 shows the relationship between types of software
and types of mentions, which is statistically significant
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(χ2(6, N = 274) = 49.248, p < .05). Indeed, Proprietary soft-
ware is far more likely to be mentioned using the Like
instrument style than other kinds of software; 35% of men-
tions of proprietary software use the Like instrument style
(95% CI: 0.26–0.46), whereas the Like instrument style was
used for less than 10% of mentions of Noncommercial and

Open source software. Similarly, there is greater use of the
Cite to publication style in our Noncommercial and Open
source categories, understandable given that many of these
packages are written by scientists for scientists and include
a citable article. Yet, the clearest takeaway from this analysis
is that there is still considerable diversity in styles; even for
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Proprietary software, use of informal Other style is statisti-
cally indistinguishable from the use of Like instrument style
and for the other categories of software the Other style is
statistically indistinguishable from the use of the Cite to
publication style.

Citation Functions

Identifying and finding software. We assessed our data set
to see whether the mentions gave sufficient information for
identifying and finding software. We also assessed how well
authors do in providing credit to the authors of software.
Owing to the fact that pieces of software are mentioned in
multiple articles, our data set for this section is larger than
the overall number of pieces of software; a single piece of
software could be mentioned in a functional way in one
article, but without the same functionality in another.
Accordingly, there are 182 unique combinations of software
and articles. As shown in Figure 8, overall, 93% of the
software was identifiable (95% CI: 0.88–0.96) and 86%
provided enough information for us to find the software
online (95% CI: 0.80–0.90), however, this means that at
least 1 in 10 software packages mentioned in articles are
simply not providing sufficient information to find the soft-
ware package. Some 77% (95% CI: 0.70–0.83) provided
some information about the creators of the packages,
meaning that one in five did not.

Information on specific versions was much less fre-
quently provided. Overall, only 28% provided version infor-
mation (95% CI: 0.22–0.35). Yet, many of those projects did
not provide access to earlier versions, meaning that only in
5% of cases (10 actual combinations of articles and soft-

ware) were we able to find the specific versions of software
mentioned in articles (95% CI: 0.03–0.10).

As shown in Figure 9, there were essentially no signifi-
cant differences in these functions across strata.

We sought to understand our findings in more detail by
examining whether different ways of mentioning software
were more likely to perform each function of citation. We
illustrate this in Figure 10. For the basic functions of iden-
tification and providing the ability to find the software, our
data show no statistically significant differences. This analy-
sis, however, does show that mentions that are cites to pub-
lications are much less likely to include version data (only
11% do; 95% CI: 0.06–0.20). Similarly, the issues with not
providing any credit information appear to be almost
entirely driven by informal mentions: Only 43% do (95%
CI: 0.31–0.56), whereas both the Like instrument and Cite
to publication categories all provide at least some credit
information.

Discussion

The evidence presented in this article clearly shows that
the practices of mentioning software are diverse, with sub-
stantial problems in achieving the functions of citation. It
seems that scientists are addressing software primarily by
analogy with other elements that appear in publications,
sometimes treating software as though it were an instrument
or material commercially purchased, sometimes as akin to a
scientific protocol, sometimes treating software as a pair
with a published article, and sometimes simply including
whatever is at hand, from user manuals to URLs and the
names of projects.

Not accessible Proprietary Non−commercial Open source
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These diverse ways of mentioning software are, from a
scholarly communications perspective, certainly better than
nothing, but often fail to accomplish many of the functions
of citation.

Whereas almost all mentions allow for identification of
the software discussed, only between 80% and 90%
provide sufficient information to find that software

(meaning 1 in 10 software packages could not be found).
Yet, software, unlike almost all articles, typically changes
over time, the ability to find a particular version is more
important, and only between 22% and 35% of software
mentions provide that information; moreover, in only
between 2% and 10% of cases can that specific version be
found.
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Turning to the second, but no less important, function of
providing credit for scientific contribution, and thus reward-
ing the effort required to build reusable software, we find
that between 70% and 83% of mentions attempt to give
credit in some form, primarily through reference to accom-
panying publications or parenthetical mentions of authors or
companies.

As we move further up the list of attributes necessary for
reproducibility and for efficient innovation through building
on the work of others, the situation worsens even further.
Only between 71% and 85% of software is available,
whereas only between 24% and 40% of the software men-
tioned is available in source form, facilitating inspection by
those interested in replicating the research. Finally, only
between 14% and 27% of the software mentioned provides
the most basic condition for extension: permission to reuse
and/or modify the software provided.

What Is to Be Done?

Improving the situation presented in this article requires
action across a number of domains of scientific practice,
both in design and then in driving change. Certainly, one
area is to design and standardize improved forms for
describing software use in scientific articles, reducing the
acceptability of using the variety of informal forms of men-
tioning software. Improved standards should tackle the func-
tions of identification and findability (including at the level
of specific versions) as well as giving credit in a manner that
motivates excellent software work. Yet, moving beyond
those basic functions requires change not in how articles are

written, but in how software is made available, changes that
have to occur outside the process of writing articles, at the
projects that build software.

In this section, we move code by code, considering the
causes of the issues, potential solutions, techniques to
encourage uptake of the solutions, and describing “green
shoots” indicating progress in these areas.

Improving identification and findability. The most basic
function of mentioning software in an article is to allow
readers, including reviewers, to identify and locate the soft-
ware used. This function is directly analogous to the ability
to identify and find a specific publication, or the ability to
identify and find a specific material or instrument. In the
case of software, which, unlike a typical publication, con-
tinues to change after its initial release, this also involves
specific version numbers. Whereas we do not have specific
data on authors’ intentions, the fact that they mentioned the
software at all indicates that the problem in this area appears
not to be motivation, but a lack of clear standards and norms
for mentioning software. The way forward, then, seems
fairly straightforward: First, we need clear and consistent
practices for citing software, and second, we need to dis-
seminate, encourage, and enforce their use.

We are, of course, not the first to make this point. Indeed,
many citation style guides offer forms for citing software,
including the American Psychological Association (APA).
Recent efforts in this space include work analogous to data
citation, such as that undertaken by DataOne (Mayernik,
2012) and the ESIP organization (Earth Sciences
Information Partner, 2012). For software, a promising way
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to incorporate version information is to link directly to the
source code repositories that development teams use to
track their development, as well as automating the creation
of a DOI or other Handles. Systems with this approach
have been developed at CERN (Purcell, 2014) and by
the Mozilla Science Project, Github, and Figshare
(http://mozillascience.github.io/code-research-object/).

The way forward here clearly involves journals and
conferences adopting specific forms of citation and enforc-
ing them as a condition of publication. We examined the
“instructions to authors” for the journals in our sample,
and found that only 24% had specific policies on citing
software. Unsurprisingly, journals in higher stratas seemed
more likely to have such policies (three of five journals in
the first strata (60%), 10 of 23 in the second strata (43%),
and 1 of 30 in the third strata (3%), with strata 3 showing
statistically significant differences from strata 1 and strata
2 (p = .005). It may be that with clearer standards that
are more broadly expected by authors, reviewers, editors,
and readers that journals’ provision of relevant policies
will improve. On the other hand, it may be appropriate to
build systems that automatically check the form of soft-
ware citations, ensuring that they follow the required styles
and that they correctly resolve to a specific version in a
repository.

Improving crediting. Authors appear committed to pro-
viding information about the origins of software. As
discussed, for authors seeking to make scientific contribu-
tions, credit is vital; it may be less so for those selling their
software. Yet, some forms of mentions offer more potential
than others; as we saw, the absence of crediting informa-
tion is driven almost entirely by the incidence of informal
mentions. Ironically, the Like instrument citation form
preferentially used with commercial software (see
Figure 7) (and thus less likely to be driven by a need for
credit) is relatively effective in ascribing credit, at least to
the level of the company selling the software.

Similarly, the Cite to publication form definitely
encourages the inclusion of crediting information; yet the
reuse of publication style citations may undermine the
usefulness of these mentions or actually produce undesir-
able results. At first, cites to publications would seem to
most directly enable contributors to demonstrate their sci-
entific impact, reusing existing bibliographic analysis
systems. Yet, using citations to articles can run counter to
the need to identify and find the software itself, particu-
larly because the publication citations remain static while
software changes, including changing name. Further,
however, these citations can “fix” the contributor list at a
particular time, creating a disincentive for later potential
participants to contribute their changes to a project and
contributing to the tendency for scientific software to
“fork” (Howison & Herbsleb, 2013). Finally, because
software is typically constructed by integrating code of
others, it is not clear that simply citing the authors of the
package used actually credits those who have provided the

functionality; indeed, a desire to be recognized might
encourage authors of software to avoid having their code
integrated.

Thus, there is a need for a form of crediting that iden-
tifies and rewards contributors in a manner most useful to
them and least likely to undermine desirable collaboration
and integration. The proposals discussed, linking to soft-
ware repositories, offer advantages in this area, potentially
facilitating tracing contribution to specific versions by
post-hoc examination of commits and their authorship in
the source code repository. Katz (2014) addresses the ques-
tion of integration by suggesting a system of indirect
credit, dividing citation credit accruing to top-level
projects between their developers and the developers
of the components they draw on. Other approaches take an
altmetrics approach and focus not on the appearance of
code in publications, but on metrics such as downloads or
use, including analysis of traces, such as downloads and
analysis of workflow repositories (e.g., McConahy,
Eisenbraun, Howison, Herbsleb, & Sliz, 2012; McLennan
& Kennell, 2010; Piwowar & Priem, 2013; Stodden et al.,
2012).

One approach achievable in the short term is for projects
themselves to specify the manner in which they would like
to be mentioned; with journals or styles providing “fall-
back” guidelines to be used when the software does not.
Some of the projects in our sample indeed did this, provid-
ing “preferred citations,” which were themselves a mix of
citations to domain and software articles and forms with
corporate authorships (e.g., “The R project Team”). Most of
these requests were contained on the home page of the
project or, in a few cases, in a “splash screen” or other part
of the software interface. We recorded whether a project
made such a request and coded, at the article level, whether
authors appeared to follow the request. We found that only
27 of our 146 software packages (18%; 95% CI: 0.13–0.30)
made a specific request to be mentioned in some way. These
packages were mentioned in 15 articles, resulting in 31
combinations of these packages and articles. We found 21
cases where the requested citation was used (68%, across 11
articles; 95% CI: 0.49–0.83), leaving 10 cases where the
request was not followed (32%, occurring across eight
articles; 95% CI: 0.17–0.51). We can only speculate, but this
may be a combination of not being aware of the request,
publishers’ style guides, or simple inattention on the
author’s behalf. Certainly, the paucity of specific requests
for citation, combined with their inconsistent usage, sug-
gests that measuring the research impact of software solely
by searching for specific citations has serious validity
concerns.

One possibility to improve the situation is for authors to
make correct acknowledgment a requirement of permission
to use the software; all but one of the examples we
observed were phrased as requests and not as require-
ments. In our interviews and discussions with producers of
scientific software (Howison & Herbsleb, 2011, 2013),
authors hesitate to make such requirements, both in fear of
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losing users and in the belief that such requirements
violate principles of scientific sharing. There is precedent
for using licenses (and thus contract law) to require spe-
cific acknowledgments within the domain of open source
software and open cultural production, although such
requirements are controversial. The GNU GPL and the
Apache license requires software users to retain all attri-
bution notices in the code, and the original Berkeley Soft-
ware Distribution (BSD) license required acknowledgment
of the University of California; the Open Source Initiative
approves licenses requiring attribution, such as the
“Common Public Attribution License” used for the code
behind Reddit (Wilson, 2008). All Creative Commons
licenses require attribution (other than the Public Domain
Dedication, CC0) as a condition of use, and the project
provides guidelines on appropriate forms of attribution,
including tools to automate attributions (see Creative
Commons, 2014). Nonetheless, as with any system, end
users may not follow the license; indeed, in our data set,
one package used a license that required users to cite a
specific article, but the mention of that software in our data
set did not.

Finally, it seems likely that any standards should
address the question of whether to handle commercial soft-
ware differently from software written for academic credit.
The prevalence of Instrument like citations suggests that
authors see software as similar to other equipment; this
may be appropriate, especially if those writing the software
are merely interested in selling software and not in earning
academic reputation. However, a standard that differenti-
ated in this way would need to help authors know when to
use which form, and our suggestion of packages them-
selves providing this information seems pertinent.

Improving accessibility. We found that 21% of software
packages in our sample simply could not be accessed; at
95% CI, this suggests that between 16% and 28% of soft-
ware mentioned in publications is unavailable. One
approach for improving the availability of software asso-
ciated with an article is to require that it be deposited with
the publication itself. This approach often combines a
requirement for depositing data and analysis code, some-
times in the form of “workflows” (e.g., Goble et al., 2013;
Roure et al., 2009; Stodden et al., 2012) or perhaps “virtual
machines” replicating the entire analysis execution envi-
ronment. An extension of this approach is the “executable
article” (Strijkers et al., 2011), which calls for bundling all
the data and software needed to produce the results and the
article, right through to plots and, ultimately, the article
PDF. These are promising approaches, which avoid the
reproducibility issue from incomplete software and work-
flow descriptions demonstrated by failed attempts at repli-
cation by Ince et al. (2012), and they have been quite
successful in some fields; an increasing number of journals
and conferences have these requirements. Yet, as with
citation standards, such repositories have compliance,

monitoring, and maintenance issues, as described in
Econometrics by McCullough, McGeary, and Harrison
(2006). The Journal of Money, Banking, and Finance has
had a data and software repository for many years; yet, an
attempt to use the contents of the repository for replication
showed that only 69 of the 193 articles that should have
had entries actually did, and the authors were only able to
use code to successfully replicate the analysis in 14 cases.
Clearly, a policy is only as good as its enforcement.

In fact, much of the question of accessibility depends
not on the actions of authors of articles that use the soft-
ware, but on the behavior of a much larger group, includ-
ing software component producers and intermediaries,
such as software publishers and repositories. This is par-
ticularly true when one seeks to access source code and
integrate or modify it. Accordingly, a series of workshops
and publications have argued that nothing less than soft-
ware that is developed and made available as fully open
source software is sufficient for the aims of science policy
(Ince et al., 2012; Katz et al., 2014). This means choosing
and using a specific open source software license and com-
mitting to continually making software available through
public repositories. Just as in data advocates for openness
have reasoned “public money, public data,” so, too, comes
advocacy for “public money, public code.” The arguments
for openness, however, need to interact with requirements
for software sustainability over time. In some cases, open-
ness and sustainability are well aligned, as with well-
executed open source projects. If, however, the project
chooses to pursue sustainability through commercial sales,
then the situation is more complex. For example, some
code of great usefulness to scientists is supported by sales
to the commercial market, in effect cross-subsidizing sci-
entific use and making greater resources available to
science. Blanket policies, such as “public money, public
code,” preclude models like this. Nonetheless, hybrid
models are possible, such as is common with MATLAB
code: a for-profit, closed source engine, but a great deal of
open sharing of analysis code.

Conclusion and Future Research

We have examined the manner in which software is
mentioned in scientific articles, and we conclude that the
practices are varied and appear relatively ad hoc. It is not
too surprising, then, that we also find that the way that
software is mentioned, and the way that it is made acces-
sible to users of the scientific literature, fails to accomplish
many of the intended functions of citations in scholarly
communication. Certainly, it is clear that studies of soft-
ware in publications, or efforts to assess the impact of soft-
ware through bibliometrics, must look beyond formal
citations or reference lists given that the data in this article
provide evidence that these, at least in the biology litera-
ture, constitute only between 31% and 43% of software
mentions.
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There are a great number of interesting research ques-
tions that ought to be pursued. Certainly, efforts are needed
in the design and testing of improved software citation
approaches and standards. These efforts need to assess
potential influence on collaboration. For example, how does
the reuse of the publication system through “software
articles” as requested citations influence the willingness of
future developers to cooperate? How might a software cita-
tion system acknowledge the many contributors to software
dependencies on which user-facing components are built
(providing indirect credit)? Can scholarly articles bear the
sheer amount of citations that such a system would call for?
Further, we know little about how scientists reason about
what ought to be cited and how they make these decisions; in
particular, we know almost nothing about when scientists
choose not to mention software they have used at all and we
know little about how to influence scientists toward new
practices.

Software is both similar and different to other elements
mentioned in scientific papers: It is at once an artifact,
an instrument, a protocol, sometimes a publication, and
the focus of ongoing activity. In short, software is both
an artifact and a practice. This varied nature renders
the question of how software ought to be mentioned in
publications surprisingly complex. Yet, it also provides
an opportunity: Addressing the issues reported in this
article would go a great distance to improving the efficacy
of both scholarly communications and scientific
practice.
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Appendix A: Details of Sampling Frame and Journals in Sample

The sampling frame included all journals in the 2010 edition of the ISI WoS, using the Journal Citation Reports tool. We
included these categories:

TABLE 7. All categories in sample.

Biochemistry & Molecular Biology Biology
Biotechnology & Applied Microbiology Cell Biology
Developmental Biology Entomology
Evolutionary Biology Genetics & Heredity
Marine & Freshwater Biology Mathematical & Computational Biology
Microbiology Multidisciplinary Sciences
Mycology Ornithology
Parasitology Plant Sciences
Reproductive Biology Zoology

TABLE 8. All journals in sample.

1–10 11–110 111–1,455

Nature Genetics Nucleic Acids Research Applied Biochemistry and Biotechnology
Science Nature Cell Biology BMC Plant Biology
Nature Biotechnology Molecular Systems Biology Academie des Sciences. Comptes Rendus. Biologies
Cell Molecular Ecology American Journal of Botany
Nature The FASEB Journal Israel Journal of Plant Sciences

Genome Research Advances in Complex Systems
Molecular Therapy Biochimica et Biophysica Acta. Proteins and Proteomics
Nature Structural and Molecular Biology Journal of Molecular Neuroscience
Developmental Cell BMC Molecular Biology
Cladistics Turkish Journal of Biochemistry
The Plant Journal Phytomedicine
Systematic Biology Molecular Diagnosis and Therapy
Acta Crystallographica. Section D: Biological Crystallography Zoological Studies
Human Molecular Genetics Journal of Molecular Catalysis B: Enzymatic
Stem Cells Australian Journal of Entomology
Nanomedicine Journal of Computer—Aided Molecular Design
New Phytologist Waterbirds
Cell Research The Journal of Parasitology
PLoS Biology Acta Parasitologica
National Academy of Sciences. Proceedings Biochimica et Biophysica Acta. General Subjects
The Journal of Infectious Diseases Journal of Thermal Biology
The Journal of Cell Biology Protoplasma
Molecular Psychiatry Aquatic Ecosystem Health & Management

Turkish Journal of Zoology
Arthropod Structure & Development
Cytotechnology
Undersea & Hyperbaric Medicine
Systematic Botany
Nucleosides, Nucleotides and Nucleic Acids
Journal of Integrative Plant Biology
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Appendix B: Software Packages Mentioned in Articles

TABLE 9. Software packages mentioned in sample.

CCP4 4
ClustalW 4
Excel 4
PAUP 4
Adobe Photoshop 3
BLAST 3
HKL 3
ImageJ 3
MetaMorph 3
NIH Image 3
O 3
SPSS 3
CNS 2
ModelTest 2
R 2
REFMAC 2
SAS 2
SOLVE 2
Stereo Investigator 2
Treeview 2
Adobe INDesign CS 1
Agilent 2100 Expert Software 1
AMoRe 1
AMOVA 1
Autodecay 1
BeadStudio 1
BIAevaluation 1
BioDataFit 1
BioEdit 1
BioNJ 1
BIOSYS 1
BLAT 1
BOXSHADE 1
cactus online smiles translator 1
CAD 1
Calcusyn 1
CALPHA 1
Chart 5 1
CHIMERA 1
ChipViewer 1
Cluster 1
COLLAPSE 1
COOT 1
DatLab 1
DENZO 1
DYMEX® 1
EIGENSTRAT 1
Ensembl 1
EnzFitter 1
EPMR 1
ESCET 1
GAP 1
GDE 1
Gelworks 1D Advanced 1
GenePix 1
GENESPRING 1
Genome Analyser II 1
geNorm 1
GoMiner 1
Grafit 1
Graph Pad Prizm 1
GraphPad Prism 1
GRASP 1
GRID 1
GRIN 1
IDEG6 1
Jalview 1
JAZZ 1
JMP(R) 1
jMRUI 1
Kodak Digital Science 1D 1
KS300 1
limma R package 1

LSM510 1
LSQKAB 1
MacClade 1
MapMaker 1
MapQTL 1
MATLAB 1
Mfold 1
Minitab 1
MitoProt 1
MOLREP 1
MOLSCRIPT 1
MorphoCode 1
MrBayes 1
NeuroZoom 1
NormFinder 1
NTSYS-pc 1
Opticon Monitor 2 1
OPUS 1
PC-ORD 1
PHASE 1
PHASER 1
Phred/Phrap/Consed 1
PHYLIP 1
PHYML 1
PONDR 1
POST 1
PREDATOR 1
Prism 1
PROCHECK 1
PSORT 1
qBasePlus 1
QUANTA 1
Quantity One 1
RACE 1
RASTER3D 1
RESOLVE 1
RIBBONS 1
SCALEPACK 1
SCAMP 1
Sedfit 1
Sednterp 1
Sequence Navigator 1
SHELLSCALE 1
SHP 1
SIGMAA 1
Sigmaplot 1
Software for Zeiss LSM 510 1
software-Unknown-a2003-22-CR_BIOL-C01-mention 1
software-Unknown-a2003-44-SCIENCE-C09-mention 1
software-Unknown-a2003-44-SCIENCE-C10-mention 1
software-Unknown-a2006-05-SYST_BIOL-C05-mention 1
software-Unknown-a2006-05-SYST_BIOL-C08-mention 1
software-Unknown-a2006-47-SYST_BIOL-C02-mention 1
software-Unknown-a2007-11-GENOME_RES-C09-mention 1
software-Unknown-a2008-06-NAT_GENET-C04-mention 1
Staden 1
STATA 1
Statistica 1
Statview 1
Swiss-Model 1
SYSTAT 1
TargetP 1
TIMAT2 1
TMHMM 1
TRIM_DENZO 1
tRNAScan-SE 1
TRUNCATE 1
Useq 1
WinNONLIN 1
X-PLOR 1
X-Score 1
XPREP 1
Zeiss LSM Image Browser 1
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