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1. A great deal has been written about the singular points of particular
classes of functions defined by Taylor's series in a single variable. Of the
very numerous interesting results which have been obtained a large
proportion have come from a development of an idea originally suggested
by Hadamard. Hadamard first pointed out how, if we know the singular
points of the function V(tA _ „ , n . 2 .

we can discuss those of the function

= [ 4>(QV(tx)dt.

His original enunciation of the results thus obtained perhaps lacked
something in precision, but all that was lacking has been amply supplied
by later writers, and notably by Le Roy.* The result of the work in
this and other directions of Hadamard and other writers has been that
the theory of the singular points of Taylor's series in one variable may be
said to be tolerably complete. Such general results as are likely to be
proved by the methods at present at our disposal have been proved: and
(what is almost equally important) large classes of particular functions
have been discussed in detail; so that we are well supplied with interesting
examples of all the theoretical possibilities, and can hope actually to
determine, without serious difficulty, the nature of any special function
which presents special points of interest.

The corresponding theory for functions of several variables is in
a very different state. There are, of course, a number of general results
which have been proved for functions of one variable and which can
obviously be extended to those of several variables, and writers on the
simpler theory have generally been content to point these out. Of tangible
results which help us in the actual discussion of particular functions
there are practically none.

* Some discussion of these results and some indications of further extensions will be found in
two previous papers in these P>-.r*. 'in-: < (? T. 2, Vol. 3, p. 381. and Vol. 5, p. 197).
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Nothing is easier, on the other hand, than to write down any numher
of interesting special series which seem to invite discussion. Such series

y

y M+yi &y y
M ! v\ (a+fxco+Vco')a f

T(a+b+fjLw+voo') V

at once suggest themselves, with more general classes of functions of
similar types.

2. The methods which I have employed in my former papers lend
themselves naturally enough to the discussion of a large variety of
classes of series in any number of variables of which those written above
are, as particular examples, fairly typical. This I have indicated briefly
in one of the papers referred to.*

I shall now consider the question in greater detail, beginning with
some generalities.

3. Let us suppose that V(xv x2, ..., xn)

is any function of x1} ..., xn that can be expanded in a Taylor's series

convergent for | xx | < rlt ..., | xn | < rn.

The associated radii rlf i\, ..., rn are in general connected by a single
functional relation, which may be obtained (theoretically, at any rate) by
a method devised by Lemaire.t

Now suppose that wlt w2, ..., wn are quantities whose real parts are
positive, and that

a n , Ms, . . . ,Mn

is an analytic function of certain parameters a, /3, y, capable, when the
real parts of y and a-f-/3—1 are positive, of being expressed in the form

an „„ = f (log
JO \ U

* Proc. London Math. Soc., Ser. 2, Vol. 3, pp. 387-9. I shall refer to this paper as I,
and to the second paper as II .

t For a detailed discussion of the nature of the region of convergence of the power series,
I may refer to two memoirs by F. Hartogs {Inaugural Dissertation, published by Teubner, 1904,
and Math. Annalen, Bd. LXH.).
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where Q

1
 = e(a-l)l0gl0gl/«?

and ul*t"> = g*»-«»l0B«t

the logarithms being real. Let us, as in I (§ 1), consider the integral

f (logw)a-1(tt-l)'J-1w*-1+n cj>{u)diL

where now (u— I)""1 = gW-i) **(«-», (logw)*-1 = e(a-1)l0Rl0*w,

the logarithms being real when % is real and greater than 1 and rendered
uniform by a cut from 1 to — oo along the real axis, and where G is a
loop from 0 enclosing the line (0, 1). Then, for sufficiently small values of

(1) F(xv x2, ..., xn)
— Yn

provided jR(y) > 0, and a+/3 is not integral,* and G does not include
any singular points of <j>{u) or of

The condition concerning <f>(u) can certainly be satisfied if, as we shall
assume, <p(u) is regular in a domain which includes the line (0, 1) in its
interior. The last condition is certainly satisfied for sufficiently small
values of xv ..., xn- In these circumstances the equation (1) provides
a representation of F(x, ..., xn) certainly valid for sufficiently small values
of the variables.

4. This representation of F(xlt ...,xn) is, of course, often valid for
a range of values of the variables far wider than that for which the power
series converges. In order to discuss for what range of values the
equation (1) holds, I shall begin by considering the simplest case, that
i n w h i c h cW l M .„= 1,

V(xv x2, ..., xn) = 1/(1—x1)(l—x2) ... ' - ,,J,

• If a + /i iR an integer k, the formula may be replaced by
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The loop C may be taken so as to enclose the line (0, 1) as closely as
we please. We must therefore consider first for what values of the
variables (x) the part of the subject of integration which depends on {x)
will have a singular point on the line (0, 1).

Let us suppose therefore

Xlu?1 = 1 (0 < iii < 1)

or l/aji = e'-i10^'.

As ux varies from 0 to 1 the value of x1 given by this equation varies
from QO to 1. Its path is a certain equiangular spiral 8l which, in the
particular «.ase in which â  is real, reduces to the straight line (1, -f~°°)-
Similarly, we obtain spirals S2, ..., Sn in the planes of x2, ..., xn. By
drawing barriers along these spirals we define a certain domain T for
the variables (x).

Let T'\ be any finite domain in the plane of xlt all of whose points
lie at a distance from Si greater than some arbitrarily small fixed positive
quantity Sv Similarly we define T'z, ..., Tn. Let T' be the domain
formed by the composition of T[, T'2, ..., T'n.

Then F(x±, x2, ..., xn) is regular in T'. For let x\, x°v ..., x°n be
a system of values inside the domain of convergence of the original
power series ; and x[, x'2, ..., x'n any other system inside T\ We can
suppose that (x) vary from {x°) to (x') along a " path " which lies inside
T'. If we suppose the loop G taken initially so closely surrounding
(0, 1) that no root of

xvv?v= 1 (i/ = 1, % ..., n)

falls inside or on G for any set of values of (x) in T', it is plain that
the integral (2) gives the analytical continuation of F(xlf x2, ...,xn) over
a region which includes the path from (x°) to («')> and so over the whole
region T'.

We may say shortly that F(xv ...,xn) is regular within T'.
It is equally easy to define different, though similar, domains within

which P{xlt ..., xn) is regular. We have only to take as fundamental
a form of G enclosing, not the line (0, 1), but some other path (such as
an arc of a circle) from 0 to 1 in the ?t-plane. We then obtain a modified
domain T within which F(xlf ...,xn) is regular, bounded by a cut from
1 to co in the plane of every x along a certain curve. To give a simple
example, let us suppose every w = 1. Then it is easy to see that, if we
take G to always include a fixed arc of a circle from 0 to 1, the cut in
every aj-plane must be along a straight line from 1 to co, these lines
making in each plane the same angle with the real axis.
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For example, the function

(x-y)-1 log {(l-x)/(l-y)},

which, as we shall see, falls under the class of functions here considered,
is regular in any domain T formed by cutting the planes of x and y
along straight lines from 1 to oo making the same angle with the real
axis.

The last condition is essential ; otherwise we could find a pair of
values x, y lying inside T, and for which

x ~ V, tog {(l—x)IO—y)\ = ± 2?ri,
and the function would no longer be regular inside T.

Let us return to the function F(xlt ..., xn). It will in general be
many-valued, and the system of branches of F will be far more complex
than that of the branches of a many-valued function of a single variable.
The branch which is regular in T, i.e., the branch represented near
(0, 0, ..., 0) by the original power series, we call the principal branch
and denote by F.

We can now form some general conclusions with regard to the
singularities of F, or rather the possible singularities, since our method
does not at present enable us actually to assert that any system of values
does, in point of fact, correspond to a singularity.

(1) We can in no case form a domain within which F is regular and
which includes any system of values for which any xv = 1 or oo. Hence

correspond to possible singularities of the principal branch of F. In
other words, possible singularities are given by xv = 1, oo for any values
of the other variables.

(2) No value of xv other than 1, oo can give a singularity of F for all
possible values of the other variables. For, if we take any set of values
of (x) of which none is 1 or oo, we can define a domain which includes
the domain of convergence of the original power series, and this point,
and throughout which our contour integral gives the analytical continu-
ation of F.

(3) Let us consider the domain T bounded by a definite set of barriers
Sv. It is possible that when xv tends to a certain value £, on the barrier
Sv (other than 1, oo) F may tend to a singularity when the other variables
have or tend to some particular values or system of values in some
particular way. This is the case, for example, with the function

(x-y)-l\og\(l-x)ia-y)}
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when x and y tend simultaneously and from opposite sides to equal values
on the barriers in their respective planes.

Let us suppose, e.g., that xx tends to a value & upon Sv There is
one, and only one, value ux (0 < ux < 1) such that

= o,
and it is obvious that as xx approaches £x our representation of F ceases
to be valid.

When x1 is nearly, but not quite, equal to £x the subject of integration
has a singularity ux (see the figure, Fig. a) lying a little off (0, 1).
We can deform C slightly (Fig. 6c) so as to leave ux, ux on one
side of it. And the modified integral gives us the continuation of F
over a region slightly passing the limits of T, in that its constituent
part Tx contains a small region which includes £x.

(c)

(d)

FIG. 1.

It follows that, if xx tends to £x, the other variables remaining off
the barriers in their planes, F does not tend to a singularity. The same
conclusion generally holds even if some or all of the other variables tend
at the same time to points on their barriers, as appears from a reference
to Fig. 1, (d), where is shown the modification necessary in C to meet
the case in which two variables xx, x2 tend to values £x, £2 such that

l-i1uT = 0, l-£2u?= 0.

But there is an exception : If % = u2, the suggested modification is
impossible ; in other words, if xx, x2 vary in such a way that the contour
C is nipped between two singularities of the subject of integration. In
fact, the existence of singularities of F is indicated either (1) by the
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approach of a singularity of the subject of integration to an end of the
contour or (2) by the nipping of the contour as described above.*

5. We are thus led to discriminate two kinds of singularities of F
from among those which appear as singularities of F, viz., the singularities

xv = 1, oo

which we shall describe as primary, and the singularities given by

1-fX' = 0, 1-fcC = 0
where fx, v are any two of 1, 2, ..., n. These we shall describe as
secondary. The distinction between these two classes is not precisely
the same as that which I made in my earlier paper (I) between principal
and subsidiary singularities in the case of functions of a single variable,
since the secondary singularities here considered do, in fact, appear as
singular when the variables (x) move in a prescribed manner towards
special places on the boundary of T. . Still, qua singularities of F, they
depend on the region adopted as fundamental in the definition of F, and,
from the point of view of the Taylor's series, there is a genuine distinction
to be drawn between them and the primary singularities.

When we come to consider the function F as a whole these secondary
singularities (as might be expected) also appear as a connected whole,
viz., as the systems of values given by

x£ = x«» fa, i/ = 1, 2, . . . ,n).

Besides these two classes of singularities there remains the possibility
of a third, viz., a class of singularities of other branches of F which do
not appear at all as singularities of F. Thus we shall find that often
xv = 0 defines a singularity of all branches of F other than the principal
branch, just as x = 0 is a singularity of all branches of

Ju ' | JO * JO I

iT sF "3*

other than the principal branch. Such singularities may more appro-
priately be called subsidiary.

6. The preceding arguments are merely an adaptation of those used
by Hadamard and Le Roy for functions of a single variable. They
use line instead of loop integrals; but, so far as these generalities are

* For the analogue of (1) for functions of one variable, 6ee I and II', passim. For that of
(2), see II, § 6. The phenomenon of nipping occurs also in Hadamard's proof of the " multi-
plication theorem " for singularities or ordinary Taylor' B series.
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concerned, one form of integral has little advantage over.; the other.* It is
in the further development of the theory, especially in the obtaining
of more precise information as to the nature of the singularities, that the
great advantage of the loop integral declares itself.

7. The arguments which we have used for a special form of
V(xlf ..., xn) may obviously be extended, mutatis mutandis, to the
general case. But, in general, the statement is somewhat less simple.
Let us therefore consider the case perhaps next in simplicity.

so that V(xlf x 2 , ..., xn) = 1 / ( 1 — x x — x 2 — . . . — xn)

a n d F i x x x ) ~ 1

and *[&, x* .... xn) - ^ 8 i n { a

Then the argument used above shows how we may define a branch of
F(xlf ..., xn) regular within any domain which excludes all sets of values
of (x) for which l - a ^ - 1 - . . . - a f c t t - = 0

for a real u < 1. We cannot, however, draw fixed cuts in the planes
of (x) in such a way as to secure this. Hence there is a difficulty in
giving a precise definition of a branch of F analogous to F above.

Let ic°, x\ x°n be any system of values of the variables such that

(1) \l—x°1u
u> — ...—xlur*\^ S > 0

for 0 < u < 1. And let xv = â A""

where 0 ^ X ̂  1 and XWv, like u™", has its principal value. As X varies
from 0 to 1 each xv varies from 0 to xQ

v along a certain path Cv. The
aggregate of corresponding points of every Gv we shall call the path
C of the variables (x) from (0) to (a;0).

For all points of the path G

| l-x1u»>-...-xnu'n\ = | l-x°1(\u)^-...-x°n(Xiir>\ > S.

Let Pj, ..., Pn be a set of corresponding points on the paths Cv.
Round each Pv describe a small circle of radius e. The domain of the
x's formed by all systems of values of which each corresponds to a point

• Using the loop enables us to avoid the annoying and irrelevant condition £(a+0)> 1.
When a = 1 the restriction on y could be removed by the use of a double-circuit integral.

t The region of convergence of the original power series is in this case defined by
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within a circle Cp we denote by Ct{\). As X varies from 0 to 1, Gt{\)
varies from a small region enclosing the origin to a small region enclosing
{x\, ..., x°n). At any point in C<(X)

where | £v | < e, and so

Choose e so that ne <

Then, for every point in Ct(\),

for 0 < u < 1.
It follows that, as X varies from 0 to 1, Ce(X) defines a series of

domains through each of which in succession we may analytically con-
tinue F until we have passed from the neighbourhood of the origin to
the neighbourhood of x\, x\, ..., x°n. Hence this system of values does
not correspond to a primary singularity of F.

We have thus excluded from the possible primary singularities of F
all systems of values which satisfy the condition (1).

8. Now let us give xlt #2, ..., aj«_i fixed values x°v x\, ..., as°_1. The
values of xn for which

. 1-X\U^- ...-xl^lf-'-XnU* = 0

for some value of u between 0 and 1 form a continuous curve stretching
from 1—z° —...— x°_j to infinity. The values of xn for which

form a continuous domain, which includes this curve. By choosing
S sufficiently small, we can exclude from this domain any point in the
finite part of the «n-plane which does not actually lie upon the curve.

Hence the possible primary singularities of F can only be sought
among the systems given by

a* x\, ..., a»_lt xn = (l-*!y1-..._4_1*r»-l)K\
for 0 < u < 1.

But, as before, we are at liberty to vary our fundamental w-path from
0 to 1. And the only systems which arise, however we choose this path,
are evidently

V 2> • • • > X>i-\> x x i X 2 " • x « - l » x l » 1 * '2 ' • * * ' ^n-l) w *
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Hence the primary singularities of F(xlf x2, ..., xn) are given by

x1+x2-\-...-\-xn = 1

or xv = oo.

As in the previous case, these are the values for which a pole of

1/1— xxu
u>l—...—xnu'n

approaches an end of C.
Secondary or subsidiary singularities will clearly be given by those

values of (a;) for which two roots of l—x1u
mi—...—xnu

Un = 0 become
equal. In oarticular, when â , w2, ... are real and rational (in which case
we may, wilhout loss of generality, suppose them integral), they will
be given by the discriminant of this equation.

9. The arguments of the preceding sections may evidently be applied
whatever be the function V{xlt x2, ..., xn). The cases of most interest
to us at present are those in which V is a rational function P/Q regular
at the origin. The primary singularities of the associated functions
F are in this case given by

Q(xlfx2, ..., xn) = 0.

If V is a many-valued function such as

1/(1 -X^a-XiP ••• U-*n)S", lHX-Xx-X2-...-Xn)\

some additional complications are introduced, but the general principle
of the method is none the less applicable.

10. We are thus able to define, by means of a contour integral,
a family of functions associated with each given function V. Each of
these functions is generally many-valued, but possesses a branch whose
properties bear a considerable resemblance to those of V.

The other branches of F will, however (as can be seen clearly enough
from the case of one variable), have properties differing widely from those
of V. In order to obtain a more accurate idea of the nature of these
branches, as well as to obtain more precise information as to the nature
of the primary singularities of F, further analysis is necessary. It is
natural to attempt to use the method which I adopted in my first paper.
That method (in its simplest form) was based on a change from the
contour C to another contour C, between which and C lay a pole of the
subject of integration. It is therefore best adapted to the case in which
V is rational, and I shall, for the present, confine myself to that case.
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10. Let, then, V = P/Q be rational. And let

be a set of values of the variables for which Q{xx, x2, ..., xn) = 0, and let

Xv = ^,,i~fcV

where £, is small.
By carrying out the process of continuation described in § 7, we arrive

at an equation

r {xlf x2, ..., xn)

/ f (logtir-'iu-Dt-hiy-1 <p(u) ffi*?' '"\ du.
Jc & r Q{xu^\ )

In general, there will be just one pole of P/Q (considered as a function
of u) which tends to u = 1 as £lf ..., £v tend to zero.

For, let u = l-\-t, and consider the equation

In general, this can be expanded in the form

0 = a1g1+a2g2+...+angH+\t + higher powers of £,, t (X f̂c 0);

and it follows from the general implicit function theorem that this
equation has just one solution of the type

t = &i£i + »-- + &n£n + higher powers of £,.

But, of course, in special cases there may be several solutions of different
forms. H,. . , . , Q = a_Xi)a_xj ... {1_Xn)i

each of the equations 1—x̂ i™* = 0

or l - ( l + £ ) ( l + ov*+...) = 0

has one root which vanishes with the £'s.
Considering the general case, let

u = u°(xv ..., xn)

be the pole in question. Then

f = f
Jc Jc

where B is the residue for ti = u°. The second integral (cf. I, § 1) is
regular near x°v ..., x\. We can thus isolate the irregular part of F.
In order to throw light on the results thus obtained (as well as for the
sake of the interest of the actual results), I shall consider some particular
cases in detail.
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11. The simplest case is that in which

V(xlt ..., xn) = 1 /d-aa) ( l -z 2 ) ... (l-xn).

In this case there are n poles between C and C", viz.,

u = x;11*" {v = 1, 2, . . . ,») .
The residue at this pole is

(M)

where the dash denotes that the product applies to values of fx. different
from v, and the values of the many-valued functions have been already
specified. Let this quantity be denoted by Qv. Then

W(x r- T)= * VQ I I f

We thus isolate what we may call the part of F(xlt ..., xn) irregular near
(1, 1, ..., 1). The form of Qv exhibits explicitly the singularities of F
other than the primary singularities. It will be noticed that besides the
secondary singularities already noted, which correspond to the factors

there are fixed subsidiary singularities given, e.g., by xv = 0.

12. Let us specialise further by supposing n = 2 and write x, y, w, w'
for xv x2, &>!, w2 to avoid suffixes. There are two particularly interesting
special cases:

(i.) Let <p(u) = 1, a = 1, so that

The primary singularities are given by x = 1, y = 1 ; the function

' sin j8«r \ «(1 — //*--'-) u> (I — xy""') )

is regular near (1, 1); secondary or subsidiary singularities are given by

x = 0, y = 0, 1-a:1/- = 0, 1— y'>' = 0, l—yx—"- = 0, l-xij-"' = 0.

Thus, e.g., x = «2"'x, where A = k + k'u, and k and k' are any integers, gives a subsidiary
singularity.

These results are easily verifie 1 by supposing w = u' •=• 1, when the irregular part reduces to

sin /8w x— / '

for a function of the form

F(x, y) = 2 ^ - - = 2 -4-.r 2 * T

8ER. 2. VOL. 5. NO. 966. 2 A
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may be expressed in the form {*/(*)—K/"(y)}/(*—y),

where f(x) = 2xk/p (k);

and so we can use the known results for functions of a single variable.
In calculating the form of ft,, it should be observed, we have assumed that the poles between

0 and C are all distinct. If some of them coincide, the form of the residues corresponding to
them becomes illusory, and must be calculated afresh, ab initio or by a passage to the limit.

A particularly interesting case is that in which 3 = 1 . In this case the preceding formulae
fail. The proper formulae can be easily constructed by (a) a passage to the limit, or (b) by an
independent investigation, starting from the integral

(w-1) «*-»<*«

The result is that the irregular part of 2 2 ^
y + fua + mt

iB _ 1_ *->•» log ( * - ! ' - - l ) _ j _ y-r/-^l
eo \ — yx-*'la «' \—xy'"'"'

It ia instructive to consider the special case in which w = »' = 1, 7 = 1. We then obtain the
function ^^ ST- 1

l + /i + v x — y \\—x

The irregular part turns out to be log 1 -* ^ ^ t ,
x-y \y(\-*)>

while the term due to the contour integral round C, which is regular near 1 , 1 , must therefore be
_ l o g a : - l o g y

x—y
We thus obtain the formula

(u-l)du _ log a;—logy
i— xtt)(l—yu) x—y

the path of integration being a loop from 0 round I, l/x, and 1/y. This may be verified in-
dependently. The decomposition

iog ) iog I I iog(
x-y ^ V l - a : / x-y S (y(l-x)i x-y e \ y

gives a very simple and tangible illustration of the relations between the functions defined by the
two contour integrals and the terms arising from the residues.

(ii.) An even more interesting special case is that in which o = 1, <p(u) = I. We find then
the corresponding results for the function

(y + fxa> + t

The irregular part of the principal branch is

r(i-a) {a-»(log^B'^'T)%
\—xy- -'«'

13. The formulte which we have obtained can of course be applied to find asymptotic formulae
of a simpler kind valid near x = 1, y — 1. Let us suppose (to take the simplest and most
interesting case) that u, &>', and a are real and positive and a < 1, and that x and y tend
simultaneously to 1 by real quantities in such a way that the ratios

1— x : 1 — y : w(l— y) -<»'(l— x)

remain between certain positive constants H, K. Let 1 — x = { and 1 — y = ij. Then
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and 2 »*' £(!--) ( ) (
(7 + ̂ w + vo»')a o>(l—y)-(i>'(\—x)(\l—x/ W—y

which is the analogue for two variables of Appell'e well known formula

X" r ( l - a )
( + ) - ~ ( l * ) ! - '

and may be proved independently by methods which do not involve complex variables.

14. Let us pass now to the function

We have already seen that, if

we can continue F from (0) to (x), and that in the neighbourhood of (x)
the branch F which we are considering will be given by an equation of
the above form.

If now we suppose that 1,xv is nearly, though not quite, equal to 1,
we can apply the argument of §§9, 10. This is a case in which there is
only one pole between C and C".

In order to obtain tangible results let us again take n = 2 and use the
notation of § 12, and consider some cases in which the part of F irregular
near x0, yo= l—x0 can be actually calculated in finite terms, which
requires that we should be able to solve the equation

1—xua—yu"' = 0

explicitly. The simplest cases are given by (i.) « = «', (ii.) w (or w') = 0,
(iii.) w = 1, «' = 2.

If (i.) a = »' or (ii.) moroi' = 0, the results are of interest only for purposes of verification,

(i.) If « = «', Pis a function of x + y only.

(ii.) If u' = 0 (in which case the expression of F as a contour integral requires a little recon-
sideration, as in obtaining it we supposed the real parts of co and &>' positive), Pis a function of
the form . . . , , / _

• — 2 '

(iii.) Let » = 1, »' = 2. Then l—xu—yu2 = 0 gives

the sign of the radical being such that u reduces to 1 when y = 1 — z. And the irregular part is

An example is given by 2 £——

of which the simplest case is

_n + vl x*y 1 , f — ̂ /(x* + 4y) + x + 2y -^/(a;2 + 4y) + x \
\ l l 2 Vfe W l-V/(ar2 + 4y)-a;-2y ' _y/(** + 4y)-* J

2 A 2
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where ^/(a* + 4y) is negative for small real values of x and y, and tends to x — 2 as y
approaches l — x.

15. In the general case we cannot solve the equation

1—xua—yua> = 0

explicitly, but we can investigate the character of the root

(where xo+yo = 1) as a function of xQ and y0, and so determine the
general character of the irregular part of F. Thus, if w and a>' are positive
and rational, UQ is an algebraic function of x and y, and the research of
the further singular points of F (x, y), beyond its primary singularities, is
reduced to that of finding those of a finite expression involving this
algebraic function.

This last remark obviously applies to the general case in which V(x, y)
(here 1/1— x—y) is any rational function P(x, y)IQ(x, y): the root UQ of

Q(xu»,yu») = 0

being an algebraical function of x and y.

To give a definite example, consider the function

2<
\ v\ (y + MJU tnv)'

We are led to recognise as singular, besides the primary singularities a; + y = 1, x = » , y = oo :

(a) Values of x and y which make a root of 1— xu"1 — yun = 0 equal to 0, 1, or oo ; the only

additional value thus given is y = 0 (if n > m), x = 0 (if m> n), or x + y = 0 (if m = w).

(5) Values of x and y which make two roots equal; these are given by

J)(l-xuut—yun) = 0

where B denotes the discriminant.

16. (i.) Whatever values a and &>' may have, we can obtain a simple asymptotic formula for
F(x, y) valid near x0, l — x0. For let

5 = I—x—y =— f—v,
and M0 — 1 +1. We find

* - ? - r - + -Ps(«,i

OIXQ + at ;/o

from which we can at once deduce the formula

If, in particular, <p = 1, $ = 1, we find

_ fi + v! artr ^ r II— a)
;U!J/! (7 + wfx + 0,'v)'
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Similarly we have

+ M.J r" ' -•xn' r 1-a). 1

as a?j, ...,*„ approach values a;J, ..., a*> such that 2z° = 1.

(ii.) I t will be found instructive to verify all these conclusions on such functions as

Jo l^rir —!/!*"-:i*yJo
where o, $, y are any of 0, 1, 2.

17. The functions which we have considered in §§ 11-16 are all
derived from the base series

Any other base series will give rise to a corresponding set of functions.
The following are some of the simplest and most interesting forms :—

(i.) V(x,y) = 2F(-n, -v, 1, X)x»y = l / j ( l - a j ) ( l - y ) - \ x y ) ;

(ii.) V(x, y) = 2 *' " ' . x*yv = —7-= log - =-- \ ;
v ' "" fi+v+ll y x+y—xy 6 1(1—x)(l— y))

(iii.) V(x, y) =

-x)(l-y) (z+y-xy){l-xHl-y)

+ S K b e /

where j , o ( s ) = r(6) S

In case (1) the finite primary singularities of all the derived functions are

given by a-«)a-»)

in the other cases by x = 1, y = 1,

the factor x-\-y—xy = 0 not yielding primary singularities, as is inde-
pendently obvious.

Any number of other base series may be constructed without difficulty.
Of course, when the base series itself does not behave like a rational
function in the neighbourhood of its primary singularities, we cannot
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investigate the precise nature of the corresponding singularities of the
derived functions with the simplicity of §§ 10-16.

It is natural to attempt to construct series whose primary singularities
are given by n _

& J l—xy = 0.
If, however, we take 1/(1—xy) as our base series, our method fails, all
the derived series turning out to be mere functions of 1—xy.

It is, however, easy to prove that

and any series of this kind may be taken as a base series and will give
results of the kind desired.

For example, let 0 be an even function, such that

&(x)
is an integral function of x, and let

*(x, y) { (

alao let F(x, y) = . ._—- _ f (logM)""1 ( « - \)<>-lw-* <p («)

Then (i.) we can infer that the only primary singularities of F are given by

xy = 1,

and (ii.) we can write down the part of Firregular near (x0, y0), where x^y0 = 1. Thus, e.g., if

« = «' = 1, 3 = 1, ^ = 1 ,

we find that 2 , 6^~v)
 X">/»

(y + H + i>)°

is a function of this type, and that the irregular part is

If 0 is not integral, we get other primary singularities : thus those of

2 —
| « 2 + (/* — v)2 \s (y + fi.ai + pu')a

are x = 1, y = 1, and xy = 1.

Similarly with 2 - ^""-"'- xrtf
r(a + o + fi — v)

(in this case 0 is not an even function).

18. A ready method of constructing interesting base series is the following :—Consider the
integral

e ' ' R{u)du
l-xS{u)}{l-y T(u)\

where R, S, Tare rational. Suppose that the contour C includes the poles u = \x AP) and
excludes the poles u — nlt ..., pq. Then (generally under certain restrictions as to which poles
lie inside C) the integral can be expanded as a power series 2 «,,, „ x*yv, where

„ = J_ [liSTdu,
* 2iri J
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which can often be calculated in a simple form. The singularities are easily assigned: the
primary ones come from making

A.,- = fij, A,- = oo ,

the rest from making two A's or two /t's equal or a /x infinite.
We are thus able to construct base series whose singularities have a prescribed form. Thus

the integral x rf|<

gives rise to 1/(1 — xy).
Sometimes we can use integrals containing irrational functions. Thus the integrals

2 sin air T {b) J (1— xu)(u — y) ' 4 sinajrsinArr J {\—xu)i l—y (1 _M)t '

taken round appropriate contours, give rise to the functions

?r(«+M)r(» + ,Q

considered above.

19. I conclude with three remarks of a general character :—

(1) Various generalisations of the procedure here adopted at once
suggest themselves. It is sufficient to refer to §§4-7 of the paper II.
My object has been to consider only a few of the very simplest
cases with a view to making some sort of a beginning. The general
problem of attempting to classify such simple types of power series in two
or more variables as naturally suggest themselves, according to the nature
of their singular points, seems to me an extremely attractive, but an
extremely difficult, one.

(2) There is one particularly interesting type of series which does not
seem to be amenable to analysis of so simple a character. I refer to the
series obtained by replacing such a factor as (y-\-co/j.-\-(t)v)~a—which has
frequently occurred in this paper—by a factor such as

Even the simplest case, in which the factor is (juP+v2)'*, defies us, owing
to the non-existence of any simple expression of this quantity as a definite
integral of the type required. Even if a = 1, it only appears to lend
itself to analysis of an awkward and unsymmetrical type.

In order to deal with such a series as

it seems necessary to have recourse to entirely different methods. There
is no difficulty in establishing asymptotic formulae analogous to those of
§§13 and 16 (i.). Thus, if

lim<c = l, \imy=l, lim(l—y)/(l—x) = tan £ {x, y real and < 1),
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we find

= r {2(1 - s ) } j
(aCO82X_j_2i8cosX sinX+y sin2X)8

and in particular

lim [-log j ( l -

These results I have proved by methods depending on real variables only ;
and I have not yet been completely successful in finding a method which
furnishes, with regard to these functions, results analogous to those obtained
in this paper. I have, however, made sufficient progress to shew, for
example, that singularities of

are given by x = 1, y = 1, and y (log a)2—2/3 logo; log y+a (log yf = 0.

(8) It might be thought that a great deal might be learnt by means of
Hadamard's "multiplication of singularities" theorem, which holds for
functions of any number of variables. But (as Hadamard has himself
pointed out) this is not the case. Thus

x = 1 {any y), y = 1 {any x)

are singular points for

2—j—-j—, 2

Multiplying, we obtain any x, any y

as possible singularities of

2

and our knowledge is in no way advanced.


