RESULTS OF MAGNETIC OBSERVATIONS MADE BY
THE UNITED STATES COAST AND GEODETIC SURVEY AT THE TIME OF THE TOTAL SOLAR ECLIPSE OF AUGUST 30, 1905.

By O. H. Tittmann, Superintendent.

In response to the request for co-operation issued by the Director of the Department of Research in Terrestrial Magnetism of the Carnegie Institution of Washington, arrangements were made by the Coast and Geodetic Survey for special declination observations at the time of the total solar eclipse of August 30 , r905, at the five magnetic observatories of the Bureau and by the various magnetic observers engaged in field work. In accordance with the instructions issued, eye-readings of the declination were made every minute from 5^{h} to 1^{h} a. m., 75th meridian mean time, and the temperature was read every fifteen minutes. The observers in charge of the various observatories were also instructed to take special care to have the self-recording instruments in good adjustment. In addition, at Cheltenham, the Eschenhagen magnetograph was run on the "two hour" rate from $4^{\mathrm{h}} 30^{\mathrm{m}}$ to $6^{\mathrm{h}} 30^{\mathrm{ma}} \mathrm{a} . \mathrm{m}$.

The geographic positions of the places where observations were made and the approximate values of the magnetic elements are given in the following table:

Station	State	Latitude North	Longitude West of Greenw.	Approximate Maguetic Elements		Remarks
				$\begin{gathered} \text { Dectina- } \\ \text { tion } \end{gathered}$		
		- /	- '	- 1	-	
Vieques	Porto Rico	18 o9	6526	I 26 W	4942.2898	Observatory
Colebrook	New Hampshire	4453	7 r 35	1600 W	$75 \quad 15.1563$	Field Sta.
Cheltenham	Maryland	3844	7650	518 W	7026.2007	Observatory
Wausau	Wisconsin	4457	8938	559 E	$75 \quad 22.1618$	Field Sta.
Bald win	Kansas	3847	9510	828 E	6843.2184	Observatory
Pembina	North Dakota	4858	9715	II 29 E	7717.1395	Field Sta.
Sitka	Alaska	5703	13520	3000 E	74 43 1548	Observatory
Honolulu	Territory Hawaii	21 19	15804	921 E	$\|$40 05 1.2922	Observatory

More detailed information is given in the following paragraphs:
Vieques, Porto Rico. - J. W. Green, observer-in-charge. The eyereadings were made in the absolute observatory, a small wooden building about half way up the hill to the east of old Fort Isabel, using a Cooke magnetometer, the regular observatory absolute instrument. One division of the scale $=r^{\prime} \cdot 38$. The magnetograph was mounted in a room of the old fort. It had been remounted on June ist, and had not reached a stable condition at the time of the eclipse observations.

The magnetograph is of the Eschenhagen type. One millimeter on the trace equalled $\mathrm{r}^{\prime} .0$ in declination, 2.0γ in H (horizontal intensity) and 4.0γ in Z (vertical intensity). The temperature coefficients have not yet been computed. Although there was no special insulation of the magnetograph room, the thick stone walls of the fort kept the diurnal range of temperature down to about i°.o Centigrade, and the change during the period of discussion was only o.'2.

Colebrook, New Hampshire.-G. B. Pegram, observer. Observations were made in a tent, which was set up on top of a small hill, consisting of a bed rock of calcareous mica schist, thinly overlaid with sandy soil. The instrument used was a Cooke magnetometer; one division of scale $=1.38$. Magnetic disturbance was noticed during observations made on the 2gth and 3 ist.

Cheltenham, Maryland. - W. F. Wamıss. observer-in-charge. The eye-readings were made in the west wing of the absolute observatory by S. G. Townshend, Jr., using an old style (Weber model) magnetometer. One division of scale of declination magnet $=2 \mathbf{\prime}^{\prime} 32$. The magnetograph from which the accompanying results were obtained is of the Eschenhagen type. One millimeter on the trace corresponded to r.o in D, 1.67γ in H, and 1.5γ in Z. The diurnal variation in temperature was so nearly zero that it was not necessary to apply any correction for change of temperature.

Wausau, Wisconsin-C. C. Craft, observer. The observations were made in a tent, with a magnetometer of Coast and Geodetic Survey type. One division of scale of declination magnet $=2$.'or. Owing to the difficulty of setting up the instrument in the dark, the observations did not begin until $5^{\mathrm{h}} 20^{\mathrm{m}}$.

Baldwin, Kansas. - W. B. Keeling, observer-in-charge. The eyereadings were made in the absolute observatory, using a Cooke magnetometer, the regular observatory instrument. One division of scale $=$ r.' 37 . The magnetograph was of the Eschenhagen type, mounted in a partly underground room. One millimeter on the trace corresponded to 1 .'o in $D, 3.18 \gamma$ in H, and 3.5γ in Z. The temperature coefficient of the H variometer is 4.5γ per degree Centigrade. That for Z has not been computed. As there is no especial provision for insulation, the diurnal range of temperature in the magnetograph room amounts to 2° or 3°, and sometimes more, but for the period under discussion the change was only about $0 .{ }^{\circ} 4$.

Pembina, North Dakota.-H. W. Fisk, observer. Observations were made in a tent, with a magnetometer of the Coast and Geodetic Survey type. One division of scale of declination magnet $=2 . \prime 00$. During the entire morning the "Northern Lights" were unusually brilliant and active, and the regular observations, on the 29th, showed magnetic disturbance.

Sitka, Alaska.-Dr. II. M. W. Edmonds, observer-in-charge. Observations were made in the absolute observatory; using the regular observatory instrument, an Eschenhagen-Tesdorpf magnetometer. This instrument has no scale, so the horizontal circle had to be read for each setting on the magnet. Diffuse auroras were seen for several nights previous to the joth, deep, dull red in the north and fading ont to the south. There were auroral streamers on the evening of August 29th, and minor displays on the morning of the 3 oth. [The magnetograph results are not at present available for publication.]

Honolulu, Tervitor-1 Haz'aii.-S. A. Deel, observer-in-charge. Observations were made in the absolute observatory with the regular observatory magnetometer, a Wild-Edelmann combination instrument. designed for field use. One division of scale $=$ r.'99. The magnetograph is of the Iischenhagen type. One millimeter on the trace corresponded to 1. 'o in $/$), 2.56γ in H, and 2.70γ in Z. The diurnal range in temperature in the magnctograph room was so near zero that no correction for change in temperature was required for these observations.

Tables of Results.
In Table I are given the five-minute means of the results of the declination eye-readings for the various stations, together with the values for the corresponding times derived from the photographic traces at the magnetic observatories. A five-minute mean is the mean of five readings, arranged symmetrically with reference to the tabular minute. [For the observatories, both the eye (X) readings and the magnetograph trace (T) readings are given.]

Table II contains the corresponding values of horizontal and vertical intensity derived from the photographic traces. The variations in temperature were so small during the period in question that 110 correction for temperature was made.

Table III gives approximately the normal diurnal variation in D. H, and Z, at the magnetic observatories for the end of August, 1905, derived from the monthly tabulations for August and September. In order that this table might be directly comparable with the one preceding it, the H and Z results have not been corrected for temperature change. The times in this table are local mean hours, counting from midnight to midnight.

Table IV shows the variation in temperature during the eyereadings at the various stations.

The photographic traces from the observatories show a considerable magnetic disturbance from the 29th to the 3 Ist of August, and it was noticed during the special observations by most of the observers.

TAble I

Risults of magnetic declination observations made on August 30，1905，

$\begin{gathered} \text { Honolulu, T. H. (T) } \\ 9^{\circ} \text { East plus } \end{gathered}$		우N NㅜN	品NㅜN우N우N
$\begin{aligned} & - \text { Honolulu, T. H. (I) } \\ & \Xi \\ & 9^{\circ} \text { East pius } \end{aligned}$		$\bigcirc 0000000$ 	$\infty \infty \times \infty \quad 0$
$\begin{aligned} & \bar{o} \text { Sitka, Alaska (I) } \\ & 29^{\circ} \text { East plus } \end{aligned}$		$\begin{aligned} & \text { NTGMN } \\ & \text { Bingig } \end{aligned}$	＋obornu
玉 Pembina, N. N.	－\quad－ 	N サanNN から我我我	－ص がぁ心がぶ
$\stackrel{\text { Baldwin, }}{8^{\circ}} \underset{\text { Kant. (T) }}{\text { East plus }}$		 	
$\begin{aligned} & \approx \text { Baldwin, Kan. (I) } \\ & 8^{\prime} \text { East plus } \end{aligned}$	－moーNmo N゚		Om No＋
－Wausau，Wis． 5° East plus	－cocosis 	rormop以	
的 Cheltenliam，Md．（T）	－O「がロール 		
$\begin{array}{r} \text { Cheltenham, Md. iL } \\ 5^{\circ} \text { WEst plus } \end{array}$	－0才才ォrn 		1－7以
$\underset{\sim}{\sim} \text { Colebrook, N. H. }$	- GEONGN	 	
$\underset{\mathrm{N}}{ } \quad \text { Vieques, P. R. (T) }$	－－ 00007 		
$\approx \quad \text { Vieques, } \underset{\text { R. R. (I) }}{\text { West plus }}$	$-\quad \dot{N} \dot{\sim} \dot{\sim} \dot{\sim} \dot{N} \underset{N}{N} \underset{N}{N}$	 	nom or एo in
75th Mer．Mean Time a．m．）		$8 \text { wion }$	
$\begin{array}{r} \text { Honolulu, } T \text { H. F. } T \text {) } \\ 9^{\circ} \text { East plus } \end{array}$		 	Nのかロmm
$\begin{array}{cc} \dot{E} & \text { Honolulu, T. H. (I } \\ 9^{\circ} \text { East plus } \end{array}$		－Nrarmm 	
$\begin{aligned} & O \text { Sitka, Alaska I) } \\ & 20 \text { Hast plus } \end{aligned}$	－BN天品安它	 	
a Pembina, N. D.	－か Mのにの 	$\begin{aligned} & \text { ㅇ№nto } \\ & \text { Soxyigir } \end{aligned}$	
$\therefore \begin{array}{r} \text { Baldwin, Kan. (T.) } \\ \text { \& } \end{array}$	-	$0 \infty+0$ かo 쏘NNNN	
\therefore Baldwin，Kau．II so Eisast plus	- io io	$\infty \times \infty$ N＂뚜웅	
© Wausau，Wis． 5^{n} East plus	- . . .	 	－守守品品为客
ir．Cheltenham，Md if： 5° West plus	ららゅが心	$\infty \operatorname{mon} \pi 0$ 	$\rightarrow 70 m 0$
$\begin{array}{r} \text { Cheltenhan, Md. (I) } \\ 5^{\circ} \text { Westplus } \end{array}$	-		1000900 －
ij Colebrook，N．H． $\therefore \quad 15^{\circ}$ West plus		N 20 O च\％m 문	∞＋ocolo囚ioncis 9
N Vieques. P. R. Ty		ONMサMM M M M	
$\because \quad \text { Vieques, PR. (I }$	- mognmo	 NルNはN	MNTM以
75th Mer．Mesn Time a．m．）	$\begin{aligned} & \text { g } 8 \text { noncin } \\ & =10 \end{aligned}$		8 40 in in

TAble I-Continued.

	158		O．H．TITTMANN
$\begin{aligned} & 5 \\ & 0 \\ & \vdots \\ & \vdots \\ & i \end{aligned}$		Honolulu，T．H． 24600 y plus	
		Baldwin，Kan． 56000γ plus	
		Cheltenham，Md． $56400 \boldsymbol{\gamma}$ plus	
		Vieques，P．R． $34100 \boldsymbol{\gamma}$ plus	
		75th Mer．Mean Time （a．m．）	
$\stackrel{\sim}{\sim}$		Honolulu，T．H． 29100 y plus	
$\begin{aligned} & \text { zin } \\ & \text { N } \end{aligned}$		Baldwin，Kan． ${ }^{21700}$ y plus	
	${ }_{2}^{2}$	Cheltenham，Md． 20000γ plus	
N N	边	Vieques，P．R． 28900γ plus	
	H	75th Mer．Mean Time （a．m．）	
		Honolulu，T．H． 24600γ plus	
.	点	Baldwin，Kan． 56000γ plus	入
$\begin{gathered} \text { む̃ } \\ . N ్ ర ~ \end{gathered}$	云	Cheltenham，Md． 56400γ plus	
		Vieques，P．R． 34100γ plus	
N్ N	＞	75th Mer．Mean Time （a．m．）	
		Honolulu，T．H． 29100γ plus	
s^{8}		Baldwin，Kan． 21700γ plus	\rightarrow ¢
	$\underset{\sim}{\underset{\sim}{2}}$	Cheltenham，Md． 20000γ plus	
	$\underset{\sim}{Z}$	Vieques，P．R． 28900γ plus	
	号	75th Mer．Mean Time （a．m．）	

Table III
Normal diurnal variation of the magnetic decfination, horizontal intensity and vertical intensity for the end of August, 2905 .
[A plus sign indicates that the magnet was to the east of its mean position for the day, or that the force was less than its mean value.]

Declination					Horizontal Intensity				Vertical intensity			
				$\begin{aligned} & \text { 总 } \\ & \text { 흘 } \\ & \hline \end{aligned}$				$\begin{aligned} & \text { B } \\ & 0 \\ & 0 \\ & E \end{aligned}$				
h	,	,			γ	γ	γ	γ	γ			
1	-0.2	+0.3	+0.3	-0.2	+1	- 6	-10	+2	+	+ 1	- 2	- I
2	-0.2	$+0.3$	- +0.2	-0.	-	- 6	-12	+1	-I	+ 3	-4	- 2
3	0.0	+0.3	+0.4	+0.1	-3	- 6	--10	+I	-3	+ 4	- 5	- 3
4	$+0.2$	+I.I	+0.6	+0.4	-5	-7	II	+r	-3	+ 3	--6	- 4
5	$+0.7$	+1.9	$+1.0$	+0.7	-3	-7	-		-3	+2	-8	-4
6	+2.0	+3.7	+2.5	+2.3	-4	-6	12	-2		-	-12	-II
7	+4.2	$+5.5$	$+4.9$	+4.4	2	$+3$	- 2	0		-	-12	-14
8	+4.2	+6.1	+5.3	+4.5	-2	+18	+15	+1	+6	+ 1	-7	-9
9	+2.6	+4.2	+3.7	+2.8	-5	+32	+24	-I	+4	$+5$	+ 5	00
10	+ 1.0	+0.5	0.0	+0.3	-9	$+36$	+26	-3	+2	$+8$	+14	+10
11	-0.5	-3.1	-2.6	-r. 9	-8	+28	+19	-5	0	± 10	+17	+15
12	-1.7	-5.3	-3.9	-3.2	-8	+14	+II		1	+ 7	+17	+17
13	-2.3	-6.1	-5.1	-3.3	-5	0	+ 2	-8	-2	+ 3	+13	+13
14	-2.4	-5.3	-4.7	-2.5	- 1	-Io	- 5	-7	-3	- 2	+9	+7
15	.	-3.5	-3.7	-1.4	+4	-14	-6	-5	-2	-6	+ 2	$+3$
16	-1.3	-1.7	-2.0	-0.6	+6	-14	- I	-3	-	- 8		$\underline{+1}$
17	-0.8	-0.3	-0.7	-0.4	+8	-9	0	+	+2	-8	0	+ 1
18	-0.8	+0.3	0.0	-0.6	+7	-6	\bigcirc	+5	+	-7	+ I	+ 2
19	--0.8	+o. 1	+0.3	-0.4	+7	-6	-	+5	+1	- 5	- 1	- 1
20	-0.8	+0.3	+0.5	-0.2	+6	- 6	- 2	$+5$	+1	-4	- 2	- 2
21	-0.6	+0.5	+0.7	I	$+6$	-8	-4	+6	+1	- 3	-4	- 3
22	-0.4	+0.4	+0.6	-0.2	+4	-8	-4	$+5$		- 2	- 4	- 4
23	-0.4	+0.5	+0.5	-0.2	+2	-8	- 5		-I	\bigcirc	- 5	- 4
24	-0.3	+0.3	+0.4	-0.3	+3	-6	-6	+3	0	$+\mathrm{I}$	-6	- 5

「abile IV
Temperature readings during special declination eyc-readings.

7th Mer. Mean Time	Vieques	Crice broosk	Chelten. ham	Wansau	saldwin	Pembita	Sitka	Monolulu
h m	-	\bigcirc	4	1	0	-	\bigcirc	-
500	25.4	1.3 .0	22.5	- ${ }^{-}$	23.5	.	16.8	26.7
15	2 6. 2	14.15	22.4	18.5	23.9	9.2	17.0	26.6
30	26.1	14.0	22.3	18.7	24.3	9.2	174	26.9
45	26.1	14.5	22.4	18.1	24.4	9.8	17.4	27.2
6 ors	26.0	14.2	22.4	17.9	24.4	10.0	17.6	27.2
15	26.1	1.3 .4	22.4	17.0	24.5	10. 5	17.6	27.3
30	26.3	13.4	22.4	17.9	24.5	10.01	179	27.3
45	26.6	13.0	22.4	17.0	24.5	9.8	17.8	27.3
700	27 J	13.1	22.2	17.0)	246		17.9	27.3
15	27.5	134	22.2	17.1	24.5	9.5	$1{ }^{10.0}$	27.3
30	27.9	13.5	22.4	17.0	24.5	10.3	18.0	27.3
45	28.1	14.3	22.1	17.1	24.5	10.7	18.1	27.2
800	29.6	14.6	22.5	18.1	24.9	11.3	18.2	27.2
15	29.0	146	22.9	17.2	25.2	11.9	18.2	27.2
3)	29.18	14.8	23.10	18.0	25.4	12.5	18.3	27.2
45	24.0	14.6	2.3 .1	17.1	25.7	12.8	18.2	27.2
9 crs	28.9	150	23.2	17.8	2.5 .4	12.8	:8.1	27.2
15	29.0)	1.5 .6	236	18.1	25.4	1.3 .8	17.9	27.1
30	28.9	14.7	23.8	18.9	25.7	13.4	17.7	27.1
45	29.0	14.6	24.8	19.9	26.0	14.8	17.6	27.1
1000	29.4	15.4	24.1	19.3	26.6	14.6	17.7	27.1
J5	30.0	15.2	2.18	19.9	27.1	1.5 .6	18.1	27.0
30	30.1	15.0	25.0	20.1	279	1.5 .4	18.2	27.0
45	30.5	15.9	25.3	20.8	28.4	1.5 .4	18.0	26.9
11 ∞	30.8	14.9	25.9	21.9	29.0	I. 52	18.2	26.8

