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Abstract. In this paper, a comparative study between a hybrid tech-
nique that combines a Genetic Algorithm with a Cross Entropy method
to optimize Fuzzy Rule-Based Systems, and literature techniques is pre-
sented. These techniques are applied to traffic congestion datasets in
order to determine their performance in this area. Different types of
datasets have been chosen. The used time horizons are 5, 15 and 30
minutes. Results show that the hybrid technique improves those results
obtained by the techniques of the state of the art. In this way, the per-
formed experimentation shows the competitiveness of the proposal in
this area of application.
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1 Introduction

According to the Eurobarometer [2], road congestions are one of the problems
that citizenship are more worried about regarding road transport. Therefore,
traffic congestion prediction is a fundamental issue in the field of Intelligent
Transportation Systems (ITSs). If congestion is predicted successfully, it could
help to take decisions can result in noise reduction and energy savings. Also, it
could increase the effectiveness and the performance of transport systems, and
lead to savings in public infrastructure.

While two of the most frequently used methods for this task in the last
decade are the Kalman Filter and the Autoregressive Integrated Moving Aver-
age (ARIMA), other alternatives have been developed in recent years. Among
them, Soft Computing techniques as Support Vector Machines (SVM), Neural
Networks (NN), Genetic Algorithms (GA) or Fuzzy Rule-Based Systems (FRBS)
have been used in traffic forecasting tasks in particular [22], and in ITS field in
general [17,18].



The research developed in this paper aim at extending the analysis done in
[13] by comparing the method presented in that paper with state of the art
classification algorithms in order to evaluate the competitiveness of our proposal
versus high-performance methods for traffic congestion prediction over different
scenarios in terms of data available. In this way, we intend to offer an analysis
about the advantages of our method depending on the characteristics of the data
at hand. For this purpose, a hybrid algorithm which combines a Genetic Algo-
rithm and a Cross Entropy, called GACE, is used with the aim of optimizing the
different parts of a hierarchy of Fuzzy Rule-Based Systems (FRBS). This hier-
archy was applied for predicting the congestion in several points and sectors of a
road. The article is structured as follows. In Section 2, we give some background
information about GA, cross entropy and hybrid metaheuristics. The definition
of the proposed algorithm is detailed in Section 3. Then, the experimentation,
the datasets used, and the comparative study are described in Section 4. Finally,
conclusions are pointed out in Section 5.

2 Background

In this section, a brief summary about recent literature related to the different
algorithms that compose the proposal is done, i.e. GA (Section 2.1) and Cross
Entropy (CE) (Section 2.2). Besides, some examples about hybrid algorithms
are shown in Section 2.3.

2.1 Genetic Algorithm

GA is a well-known metaheuristic introduced by Holland in [8]. Their objective
is to mimic some of the processes observed in natural evolution. They have
widely used since their proposal. For example, in [23], GA optimizes a fuzzy
controller in order to improve the regenerative braking energy recovery rate
of an electric vehicle. In that study, several road conditions are simulated and
analysed. Results indicated that the use of a fuzzy logic control strategy based on
the GA could improve the energy recovery and prolong the endurance mileage
of the electric vehicle. Another example can be found in [6], where a GA is
introduced to optimize the signal cycle length, split ratio, and phase difference
for a traffic signal control in a district of Shangai. Interested readers are referred
to [11] and [10] for extensive reviews of GAs in the literature.

2.2 Cross Entropy

CE method is an adaptive method proposed by Rubinstein [20] for rare-event
probabilities and combinatorial optimization. The technique is divided in three
phases:

1. Generate random samples from a normal distribution with given mean and
standard deviation.



2. Select the best individuals from the previous samples.
3. Update mean and standard deviation according to the best individuals.

The aim of this algorithm is to focus the search in the area that contains the
best samples found. CE has been used in the last years in different fields.

In the field of ITS, CE has been used in [19] to solve a Vehicle Routing Prob-
lem with weight coefficients and stochastic demands. In [16], CE is applied to
optimize fuzzy logic controllers. These controllers are designed to command the
orientation of an unmanned aerial vehicle to modify its trajectory for avoiding
collisions.

2.3 Hybrid Algorithms

The hybridization of different metaheuristics is an important topic in the litera-
ture [7]. In hybridization, two or more techniques are combined in order to create
synergies among them and cover the lacks that they can have separately. The
combination is made with the aim of obtaining a good performance, improving
the results obtained by the techniques for its own. Metaheuristics and their hy-
bridizations have been widely used in the literature for different problems. In
[1], a GA with a restricted search is hybridized with Extreme Learning Machine
for reducing traffic noise and improve ITS. A method to design an intelligent
suspension system with the objective of overcoming the trade-off barrier using
the smallest actuator is presented in [9]. A hybrid genetic algorithm is used to
tune the system, and performed good scenarios previously used in literature.

3 GACE: Genetic Algorithm with Cross Entropy

The method used in this study is an hybridization of the two methods described
in Section 2, and it has been called GACE (Genetic Algorithm with Cross En-
tropy). The lack of exploitation ability in population-based algorithms as GA
and the high probability of CE to become stuck in local optima, especially when
a high learning rate is assigned, motivated the creation of this hybridization. The
proposed technique tries to cover the lack of exploitation of GA using CE, fo-
cusing the search in the promising areas. On the other hand, the low exploration
balance of CE is compensated by GA. Therefore, GACE is created with the aim
of taking advantage of the exploration ability of GA and the exploitation ability
of the CE. GACE works as follows: first of all, the initial population is cre-
ated randomly with a given number of individuals SizePOP . The population is
divided into two sub-populations in each generation. These sub-populations are
POPGA with SizeGA individuals and POPCE with a size of SizeCE individuals.

In this application of the algorithm, SizeGA and SizePOP are established by
the user, while SizeCE is calculated as SizeCE = SizePOP −SizeGA. While the
individuals that form POPGA are chosen by the given selection method, POPCE

individuals are the best individuals in the current population POPt. After the
creation of both sub-populations, each one is used in a different way:



– In POPGA, GA operators are applied in order to create SizeGA new indi-
viduals with pc and pm as crossover and mutation probability respectively.

– In case of POPCE , a total of SizeCE individuals are randomly generated
applying a normal distribution N (M,S), where M is the mean and S the
standard deviation. Both parameters, M and S, are updated employing the
CE method with the nup best individuals of POPCE , and a parameter called
Learning Rate Lr, used to update M and S during the execution of the
algorithm with the means and deviations of the new selected samples.

After both algorithms are applied to its sub-population, POPt+1 is created
using the offsprings generated in the last two steps, i.e. POPt+1 is formed by the
GAsize individuals generated with POPGA and the SizeCE individuals created
using CE method. Therefore, the total population size is the sum of the number
of individuals in each sub-populations, i.e. POPsize = SizeGA + SizeCE . In
addition, elitism is applied, i.e. if the best individual found so far is not part of
the actual population, it is inserted on it, replacing the worst individual. The
whole process is presented in Algorithm 1.

Data: SizePOP , SizeGA, pc, pm, Lr, nup, Tmax

Result: Best individual found
1 SizeCE ← SizePOP − SizeGA

2 t← 0
3 POP0 ← Initialize(SizePOP )

4 M ← Initialize Means vector
5 S ← Initialize Standard Deviation vector
6 Evaluate POP0

7 while t < Tmax do
8 POPGA ← SelectionOperator(POPt, SizeGA)
9 POPCE ← SelectBestSamples(POPt, SizeCE)

10 OffspringGA ← Crossover(POPGA, pc)
11 OffspringGA ← Mutation(OffspringGA,pm)

12 OffspringCE ← Generate(POPCE , SizeCE ,M, S)

13 M ← UpdateMeans(Lr,M,OffspringCE , nup)
14 S ← UpdateDeviation(Lr, S,OffspringCE , nup)
15 POPt+1 ← OffspringGA

⋃
OffspringCE

16 Evaluate POPt+1

17 Add the best individual found to POPt+1 if it is not in the population
18 t← t + 1

19 end
Algorithm 1: Pseudocode of the workflow followed by the proposed method
GACE

Focusing on congestion forecasting, the algorithm was used to optimize the
different parts of a hierarchical FRBS. In this work, we extend the experimenta-
tion done in [13] by comparing our proposal with state of the art classification
algorithms for traffic congestion prediction over different scenarios in terms of



data available. In this way, we intend to offer an analysis about the advantages
of our method depending on the characteristics of the data at hand.

3.1 Application of the proposal to optimize FRBS hierarchy

In this section, we explain the structure and the parts used for optimizing the Hi-
erarchical Fuzzy Rule-Based Systems (HFRBS). First of all, the HFRBS counts
with three parts:

1. Hierarchy (Chierarchy): the subset of variables selected to be used by the
HFRBS and the order in which they are included in the system. An ending
character is included in this part. After this point, no more variables are
used.

2. Membership Functions (Clabel): codification of the location of the labels used
to encode each variable for each FRBS in the hierarchy.

3. Rules (Crules): positions of the singletons used as consequence of the rule
bases of the FRBSs in the hierarchy.

These three parts are optimized by the proposed algorithm. These variables
are used by the HFRBS as showed in Figure 1. As it can be seen in this figure,
systems are structured in a parallel way. The reason to use this organization is
to consider each variable at the same time and with similar relevance. Also, a
constraint is imposed: each FRBS has only two inputs. For more details, the
interested reader is referred to [13].

4 Experimentation and Results

In this section, information about the datasets used in the experimentation is
showed in Section 4.1, which also includes the configuration used by the algo-
rithm in this experimentation. Besides, the results of the performend tests are
showed in Section 4.2.

4.1 Datasets and Configuration

With the aim of forecasting traffic congestion in a road, different types of datasets
are considered in the present experimentation. These datasets represent a 9-km
sector from the I5 highway in California, and they can be downloaded from
the link 4. The data is taken from the platform PeMS5. There are a total of 13
sensors in the road which take three values: flow (number of vehicles), occupancy
(percentage of time during which the sensor was switched on) and speed (in miles
per hour). Besides these values, a congestion variable is added using the intervals
applied in the previous work and showed in Table 1. Density is also calculated
using the values of the flow and the speed: density = flow/speed. In addition,

4https://www.researchgate.net/publication/287771448 I5 Congestion Datasets GACE2015
5http://pems.dot.ca.gov/



Fig. 1. Example of a hierarchy with six variables. The variables after the ending char-
acter (remarked as 0) have not count for its use in the hierarchy.

there are a total of 8 ramps (4 in-ramps and 4 out-ramps) in the section of the
road. These ramps provide flow values, which is the number of vehicles that
get in (or out) the road. Following the levels showed in the table, congestion
can take Free, Slight, Moderate or Severe values. These values are presented as
universal units of the metric system (km). The different types of congestion are
replaced by numbers in order to provide proper forecasting measures. Therefore,
congestion states will be changed to use them for the calculation of the error:
{Free = 1, Slight = 2, Moderate = 3 and Severe = 4}.

Table 1. Values of congestion and their calculus.

Level of Congestion Traffic Density (ve/km/ln) Vehicle Speed (km/h)

Slight [29–37] [48–80]
Moderate [37–50] [24–64]

Severe > 50 < 40
Free Other cases

Figure 2 shows a schema with the section of road used as well as the sensors
located on it. Two types of datasets have been used: Point (PD) and Sector
(SD) datasets. In the first one, the point of interest (S7), that is, the point in
which the congestion is predicted, is found in the middle of the road, while in
the second one, the point of interest is the complete road segment. A total of 49



variables are contained in PD and SD datasets (39 variables for the sensors in
the road, 8 variables in ramps, and one congestion variable). The time-horizons
used are 5, 15, and 30 minutes, and they are indicated as a subscript in each
dataset.

Fig. 2. Sector of the I5 highway used in this work. Sensors are denoted by S. Off and
On Ramps are denoted by OR and IR respectively

For the GA part of the proposal, binary tournament is used as the selection
operator. In case of crossover operator, BLX-α has been applied to Clabels and
Crules parts, while a variant of the order crossover has been chosen for Chierarchy.
In case of mutation operators, BGA has been used for Clabels and Crules and a
swap mutation operator has been applied to Chierarchy.

About the configuration used by GACE, the values are summarized in Table
2. The number of labels and rules of each system of the hierarchy are defined
as six (three per input variable) and nine respectively. Besides, a 10-fold cross
validation method for testing the model is used.

Parameter Value

Tmax 500
Sizepop 50
SizeGA {35,40,45}

pc 0.8
pm 0.2
Lr 0.7
nup SizeCE

Table 2. Values of the parameters used in the experimentation

4.2 Comparative and Results

In this experimentation, we compare the combination of GACE and HFRBSs
for congestion prediction, with six other state-of-the-art data mining techniques
in order to get more insights about the performance and competitiveness of this



method. KEEL software 6 has been used for the execution of the algorithms with
their default values:

– Adaboost [3] is a boosting algorithm, which repeatedly invokes a learning
algorithm to successively generate a committee of simple, low-quality fuzzy
classifiers. Each time these classifiers are added to the compound one, the
weights of the examples in training set are changed, and a voting strength,
which depends on its accuracy, is given to the classifier. In this algorithm,
each of the weak hypothesis is a fuzzy rule extracted from data.

– Grammar-based Genetic Programming algorithm (GP) [21] is used
to learn a fuzzy classifier by means of learning fuzzy rules throught Genetic
Programming algorithms.

– INNER [14] tries to extract a small set of suitable rules to represent the
training set, achieving an aceptable accuracy.

– PART [4] is a classification model by covering rules based on decision trees.
The aim is to determine a decision list of rules that predicts correctly the
value of the target attribute. PART is based on C4.5 algorithm, due to in
each iteration, a partial C4.5 Tree is generated and its best rule is extracted.
The method ends when all the examples are covered.

– Real Encoding - Particle Swarm Optimization (REPSO) [12] is a
PSO-based classifier that perform a classification task by means of a PSO
algorithm. It uses a real encoding approach.

– Tree Analysis with Randomly Generated and Evolved Trees (Tar-
get) [5] is a hybrid decision tree with the aim of obtain a forest of rules that
better suits the training data by means of a GA search.

The error used for the comparative is the symmetric mean absolute percent-
age error (sMAPE) [15]. The calculation of sMAPE is showed in Eq. 1, where Ȳ
is the expected value, Y the predicted one, and n is the number of examples. The
aim of using SMAPE is to take into account that the error between two close
types of congestion is smaller than the error between two values of congestion .
For example, the error between Y = Free and Ȳ = Severe is greater than the
error between Y = Free and Ȳ = Slight.

sMAPE =
1

n

n∑
i=1

|Yi − Yi|
(|Yi|+ |Yi|)/2

(1)

Experimentation is made with these techniques and the best configurations
obtained in [13], i.e. GACE45−5, GACE40−10 and GACE35−15. Subscript indi-
cates the size of both subpopulations, i.e. GACE45−5 means that SizeGA = 45
while SizeCE = 5. The results obtained and the comparison between them are
showed in Table 3. Bold values indicate the two best techniques in each dataset.

Results show that GACE obtains one of the two best values in all the datasets,
and the two best values so far in 4 out 6. The best configuration, GACE45−5,
achieves one of the best sMAPE value in all datasets. INNER and Target,
together with GP are the techniques that obtain an error closer to the proposal.

6http://sci2s.ugr.es/keel/



GACE GACE GACE
Dataset 45− 5 40− 10 35− 15 AdaBoost GP INNER PART REPSO Target

PD5 0.009 0.009 0.010 0.042 0.014 0.028 0.032 0.013 0.016
PD15 0.013 0.013 0.013 0.042 0.017 0.027 0.042 0.020 0.016
PD30 0.017 0.016 0.016 0.042 0.020 0.036 0.043 0.022 0.021
SD5 0.149 0.184 0.195 0.433 0.333 0.169 0.409 0.386 0.176
SD15 0.130 0.182 0.169 0.386 0.2539 0.227 0.392 0.386 0.397
SD30 0.123 0.140 0.169 0.392 0.409 0.205 0.394 0.387 0.404

Table 3. Average errors of the different techniques in each dataset

5 Conclusions

In this paper, we aimed at studying more in depth the performance of Fuzzy
Rule-Based Systems evolved by GACE to predict traffic congestion. The goal
of this study is to check the competitiveness of this approach when it is used
for this purpose. To this end, we compared this method versus other six liter-
ature techniques with data obtained in a 9-km stretch of highway. In this new
comparative, the best configurations obtained previously have been used. The
results confirm the good performance of GACE and HFRBS against well-known
techniques of the state of the art in this kind of problems. In future works, other
datasets are planned to be used. Besides, new time horizons can be interesting to
use. Also, a exhaustive study about computational time of the proposal and the
literature methods would be interesting to make. Finally, congestion datasets
from other sources could be created, or found, in order to prove the performance
of different metaheuristics in this theme.
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