
Software Defined Networking
Topology Service

August 2016

Author:
Ivan Nikolić

Supervisors:
Adam Lukasz Krajewski
Stefan Stancu

CERN openlab Summer Student Report 2016

CERN openlab Summer Student Report 2016

Project Specification
Through the openlab collaboration with Brocade, CERN is investigating the potential of Software
Defined Networking (SDN) [1] for improving the programmability and agility of its network
services. The underlying network topology (physical and logical) information is a key prerequisite
for providing flexible and resilient SDN-enabled network services.

The aim of the project is to investigate the network topology services offered by the OpenDaylight
[2] controller and to implement a software module for fetching and tracking network topology
information in real-time.

CERN openlab Summer Student Report 2016

Abstract
Traditional networks, while using stable and proven technology, don’t always provide enough
agility for modern computing environments. Software Defined Networking is a new paradigm
meant to improve this shortcoming, decoupling the control plane (the logic deciding about where
traffic is sent) from the data plane (the network devices that forward traffic to the intended
destination).

The openlab collaboration with Brocade gives CERN the opportunity to experiment and investigate
the potential of the SDN technology for improving its network services. To take the correct
decisions, the control plane logic (also denoted as SDN controller) must be aware of the paths that
are available in the network.

The outcome of the project is a good understanding of the topology services offered by the
OpenDaylight controller and their reactivity to network changes, complemented by a software
module that maintains an up to date network topology graph. This graph can then be used by higher
level SDN applications (such as Brocade’s BFO) to make optimal routing decisions.

CERN openlab Summer Student Report 2016

Table of Contents

1 Introduction .. 5

2 Technologies .. 9

2.1 OpenDaylight ... 9

2.2 Mininet .. 10

3 Development process .. 11

3.1 Environment setup ... 11

3.2 Module class design .. 11

3.2.1 Primitives ... 11

3.2.2 Clients .. 12

3.2.3 Sdn ... 13

3.3 Performance measurements .. 14

3.3.1 Possible improvements .. 15

4 Usage .. 16

5 Conclusion ... 16

6 References ... 17

CERN openlab Summer Student Report 2016

5 | P a g e

1 Introduction
One of the shortcomings of networks today is vertical integration. That means that software and
hardware are coupled together. Because of that, today’s networks are very complex and very hard
to manage. Also they are not flexible for adding new network services. The SDN paradigm breaks
vertical integration which means that it separates network control logic from network devices.
Separated control logic allows centralized network management and programmability.

The SDN architecture is characterized by the following features:

1) Control and data planes are decoupled.
2) Forwarding decisions are flow-based, instead of destination-based. A flow is a sequence of

packets between a given source and destination.
3) The network is programmable through software applications running on top of a controller

that interacts with network devices.

These features offer multiple benefits:

• it is much simpler to modify network policies through high level languages compared to
performing low level device specific configurations,

• the control program can automatically react to network state changes and lastly,
• the control logic centralization simplifies the development of more sophisticated

networking functions and services.

The typical SDN architecture can be divided in 5 parts, as illustrated in Figure 1:

1) Network devices - network devices in SDN have a well-defined instruction set used to
take actions on the incoming packets (e.g., forward to specific ports, drop, forward to the
controller). Instructions are defined by southbound interfaces.

2) Southbound interface – the southbound interface defines the communication protocol
between forwarding devices and control plane elements. This protocol formalizes the way
the control and data plane elements interact.

3) SDN controller – platform used to control the network
4) Northbound interface - the northbound interface abstracts the low level instruction set

used by southbound interfaces to program forwarding devices.
5) Network applications – applications written in high level language. Network applications

can be used to monitor network traffic, optimize flow paths in the network, etc.

CERN openlab Summer Student Report 2016

6 | P a g e

Figure 1 SDN architecture

The strong coupling between control and data plane in traditional networks makes adding new
features in the network difficult. If there is a need for change in the network, devices must be
reconfigured or their software needs to be upgraded. With the decoupling of control and data plane,
SDN brings various advantages. Examples of this advantages are: all applications can benefit of
the global network view leading to more effective policy decisions and these applications can take
actions from any part of the network.

CERN openlab Summer Student Report 2016

7 | P a g e

The difference between traditional networks and SDN is depicted in Figure 2.

a) Traditional network b) SDN network

Figure 2 Difference between traditional networks and SDN

The goal of this project was to develop a software module to fetch and track network topology
information in real-time. Mapping this onto the SDN architecture (Figure 1), this translates to
developing a network application in Java programming language, which will fetch topology via
northbound API (in this case REST). Experiments and tests were done with both the Mininet
network emulator [3] and real network hardware consisting of Brocade ICX switches. The project
design is shown in Figure 3.

CERN openlab Summer Student Report 2016

8 | P a g e

Figure 3 Project design

CERN openlab Summer Student Report 2016

9 | P a g e

2 Technologies
The project software module was developed in the Java programming language using Eclipse IDE
and Maven project builder. OpenDaylight was used as the SDN network controller. Testing was
initially done using the Mininet network emulator and then the functionality was validated on a
physical network testbed composed of three Brocade ICX 7450-24 switches. Both OpenDaylight
and Mininet are further described in this chapter.

2.1 OpenDaylight
OpenDaylight is an open-source controller written in Java supported by the OpenDaylight
foundation. It is currently the most widely used open-source SDN controller. It supports network
programmability via multiple southbound protocols and offers a collection of northbound APIs.

OpenDaylight architecture consists of three layers:

1) Southbound plugins and protocols
2) Service adaptations and network functions
3) Northbound APIs and applications

Figure 4 OpenDaylight architecture [4]

The controller allows the applications to be agnostic about the network device specifications,
thereby allowing developers to concentrate on the application functionality rather than writing
device- specific commands. The architecture of OpenDaylight controller is illustrated in Figure
4.

In this project the OpenDaylight OpenFlow plugin was used for interacting with network
devices, be them real or emulated in Mininet. For the northbound API we chose the well
documented REST API. The installation process of the OpenDaylight controller and its
OpenFlow plugin, as well as the access to API are further described in section 3.

CERN openlab Summer Student Report 2016

10 | P a g e

2.2 Mininet
Mininet is a network emulator. It uses lightweight virtualization to make a single system look like
a complete network. Mininet’s virtual hosts, switches and links behave like real devices, they are
just created using software rather than hardware.

Mininet is designed to easily create virtual software-defined networks consisting primarily of
multiple OpenFlow-enabled Ethernet switches and hosts connected to those switches.

Managing networks in Mininet is straightforward. The subsequent example shows how to create
simple network, connect it to a remote controller and manipulate diverse nodes and links within the
network. For using Mininet, super user privileges are required.

/* Creates simple network topology (see Figure 5)and connects it to a remote
controller */

$ sudo mn --topo linear,4 --mac –controller=remote,
ip=188.184.19.247, port=6633 –-switch ovs, protocols=OpenFlow13

Figure 5 Linear network topology

// Stops node
mininet> switch s1 stop

// Starts node
mininet> switch s1 start

// Puts link in state DOWN
mininet> link s1 s2 down

// Puts link in state UP
mininet> link s1 s2 up

CERN openlab Summer Student Report 2016

11 | P a g e

3 Development process
This chapter describes how to set up the development environment, what were the problems
encountered during the development of the software module, and what were the proposed solutions.

3.1 Environment setup
The development environment consisted of two remote VM’s: one used for the Mininet network
emulator, the other one used for running the OpenDaylight controller. The software module
development was done on a local machine using Eclipse IDE and Maven.

OpenDaylight installation

The OpenDaylight controller installation is fairly straightforward. In this project the latest stable
version of OpenDaylight was used (Beryllium, downloaded from [5]). After downloading and
unzipping the release the next step is to navigate to package directory and run the following
command:

$./bin/karaf

After this process, OpenDaylight is up and ready for use. The next step is to install OpenDaylight’s
OpenFlow plugin by entering the following command:

opendaylight-user@root> feature:install odl-openflowplugin-all

3.2 Module class design
All the classes in this module are divided into 3 packages. Those three packages are called
primitives, clients and sdn. The first package consists of primitive data types which are specific for
this module. The clients package consists of various clients which are required for fetching data
from the controller. The sdn package contains the main module class and various classes that can
be represented as module services. All packages and related classes are further described below.

3.2.1 Primitives
The class diagram of the primitives package is depicted in Figure 6. The package contains the
following classes:

• Link – used to describe the link data type. Attributes of this class are ID, destination node
and source node.

• Node – used to describe the node data type. Attributes are ID, IP address and connectors.
• Connector – used to describe the connector data type. Connectors are ports on switches.

Attributes of this class are ID, MAC address, name and port number.
• Event – used to describe event data type. Attributes are timestamp (the time when the event

occurred), event message (describes which element of network is affected by this event)
and event type (for the time being it can be “created” or “deleted”).

CERN openlab Summer Student Report 2016

12 | P a g e

Figure 6 Package primitives - class diagram

3.2.2 Clients
The class diagram of the clients package is shown in Figure 7. The package contains the following
classes:

• WebSocketClient – used to connect to web sockets.
• WebSocketClientHandler – used to handle connection with web sockets.
• OdlClient – used to communicate with OpenDaylight. Input arguments for constructor are

the controller IP address and port number as well as the user name and password. The class
is used to query information about nodes and links, to update the connectors of a given
node and to receive notifications about network changes. All received responses are in
JSON format.

CERN openlab Summer Student Report 2016

13 | P a g e

Figure 7 Package clients - class diagram

3.2.3 Sdn
The class diagram of the sdn package is illustrated in Figure 8. The package contains the following
classes:

• GraphCreator – used to create a graph data structure. The createGraph method requires
as input a lists of nodes and a list of links.

• TopologyFetcher – used to parse responses from OdlClient and to create lists of nodes
and links.

• MininetLauncher – used to measure the time between running commands that alter the
network state and the reception of topology changes notifications. The constructor input
arguments are the controller IP address and port, as well as the super user password. There
are methods to delete one node, half of the nodes of the network and also to simulate link
flapping.

• GraphUpdater – used to start updating a graph.
• ClientMessageCallback – used to parse events form notifications. These events are used

to update the graph.
• Main – main method. Input arguments are controller IP address and port, and username

and password for controller login. It first creates a graph based on the information retrieved
by the TopologyFetcher and then it runs GraphUpdater in order to maintain the graph up
to date. It also has the option for calling the runMininet method for testing purposes.

CERN openlab Summer Student Report 2016

14 | P a g e

Figure 8 Package sdn - class diagram

3.3 Performance measurements
The most important performance metric for the topology tracking service is the delay between the
moment when changes in the network occur and the time when the module receives a notification
about the change from the controller. Tests were performed for measuring this delay using both
Mininet (using the MininetLauncher class) and the lab network made of real devices (triggering
changes via the devices CLI) The results are summarized in Table 1.

CERN openlab Summer Student Report 2016

15 | P a g e

Type of event
Time between event and notification

Mininet Real network

Node created 1 s 1 s

Node deleted 1 s 1 s

Link created 5 s 5 s

Link deleted 15 s 15 s

Table 1 Test results - time between event and notification

The time to detect that a link was deleted can be explained by OpenDaylight’s topology discovery
engine. OpenDaylight sends LLDP (Link Layer Discovery protocol) packets every 5 seconds to
detect network topology. After a link goes down it takes 15 seconds to detect the link was
deleted, because the controller topology discovery mechanism has an aging time of 15 seconds
(corresponding to 3 consecutive LLDP probes). The LLDP probe sending interval and ageing
timers are configurable in OpenDaylight’s topopology-discover-lldp.xml parameters [6].

The 5 seconds link creation detection delay also influences the reactivity of the GraphUpdater class
for nodes creation. OpenDaylight first notifies a node creation with only basic information (i.e.
node IP and name) and only after 5 seconds it provides full information about the node’s
connectors.

3.3.1 Possible improvements
While OpenDaylight’s link deletion mechanism is functional, OpenFlow has support for faster
detection of link deletions via the asynchronous Port Status messages [7]. The Port Status
asynchronous message generation was tested on Brocade switches1. The results summarized in
Table 2 show that OpenDaylight could leverage OpenFlow’s Port Status asynchronous message
to significantly decrease the link deletion time for cases when the devices ports link status goes
down.

Type of event Time between event and Port Status packet
received

Link deleted 1 s

Link created 4 s

Table 2 Test results - time between event and Port Status packet

1 Wireshark [8] 2.0, featuring a built-in OpenFlow dissector, was used to sniff the communication between
the switches and the controller.

CERN openlab Summer Student Report 2016

16 | P a g e

4 Usage
The module requires as input parameters the controller IP address and port, and the user name and
password for authenticating to the controller. The module fetches the current topology status, builds
the corresponding graph and displays the current number of nodes and links. Subsequently, the
module listens for notifications and upon receiving a notification it displays the ID of the network
element that has been affected and the event type (created/deleted). After that it updates the
topology graph according to the changes and displays the new number of nodes and links.

5 Conclusion
Throughout this project OpenDaylight proved to be a mature SDN controller platform. Setting up
the environment and working with all these technologies were reasonably straightforward. Still, the
performance tests done during development, showed there is room for improving OpenDaylight’s
reactivity for detecting network topology changes, notably link deletions caused by switch ports
going down.

The module developed in this project can easily be leveraged by Brocade’s SDN applications for
improving network topology awareness. A possible use case is to integrate it with sFlow network
traffic monitoring in order to provide efficient traffic flow path detection.

CERN openlab Summer Student Report 2016

17 | P a g e

6 References
[1] Software-Defined Networking (SDN)

https://en.wikipedia.org/wiki/Software-defined_networking

[2] OpenDaylight: Open Source SDN Platform
https://www.opendaylight.org/

[3] Mininet An Instant Virtual Network on your Laptop (or other PC)
http://mininet.org/

[4] SDN Series Part Six: OpenDaylight, the Most Documented Controller
http://thenewstack.io/sdn-series-part-vi-opendaylight/

[5] https://www.opendaylight.org/downloads

[6] https://github.com/opendaylight/openflowplugin/blob/master/applications/topology-lldp-
discovery/src/main/resources/org/opendaylight/blueprint/topology-lldp-discovery.xml

[7] ONF - OpenFlow Switch Specification v1.3.3, section 7.4.3 – Port Status Message
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-
specifications/openflow/openflow-spec-v1.3.3.pdf

[8] Wireshark - network protocol analyser
https://www.wireshark.org/

https://en.wikipedia.org/wiki/Software-defined_networking
https://www.opendaylight.org/
http://mininet.org/
http://thenewstack.io/sdn-series-part-vi-opendaylight/
https://www.opendaylight.org/downloads
https://github.com/opendaylight/openflowplugin/blob/master/applications/topology-lldp-discovery/src/main/resources/org/opendaylight/blueprint/topology-lldp-discovery.xml
https://github.com/opendaylight/openflowplugin/blob/master/applications/topology-lldp-discovery/src/main/resources/org/opendaylight/blueprint/topology-lldp-discovery.xml
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.3.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.3.pdf
https://www.wireshark.org/

	Software Defined Networking Topology Service
	August 2016
	Author:
	Ivan Nikolić
	Supervisors:
	Adam Lukasz Krajewski
	Stefan Stancu
	CERN openlab Summer Student Report 2016

	Project Specification
	Table of Contents
	1 Introduction
	2 Technologies
	2.1 OpenDaylight
	2.2 Mininet

	3 Development process
	3.1 Environment setup
	3.2 Module class design
	3.2.1 Primitives
	3.2.2 Clients
	3.2.3 Sdn

	3.3 Performance measurements
	3.3.1 Possible improvements

	4 Usage
	5 Conclusion
	6 References

