COMPUTATIONAL INFRASTRUCTURE FOR GEODYNAMICS (CIG)

ASPECT

Advanced Solver for Problems in Earth’s ConvecTion

User Manual
Version 1.4.0

(generated May 13, 2016)

Wolfgang Bangerth

Timo Heister

with contributions by:

Jacqueline Austermann, Markus Biirg, Juliane Dannberg, William Durkin,

Grant Euen, René GaBmoller, Thomas Geenen, Anne Glerum, Ryan Grove, Eric Heien,
Scott King, Martin Kronbichler, Shangxin Liu, Elvira Mulyukova, Jonathan Perry-Houts,
Tahiry Rajaonarison, lan Rose, D. Sarah Stamps, Cedric Thieulot, Iris van Zelst, Siqi Zhang

geodynamics.org

https://geodynamics.org

Contents

1 Introduction

1.1 Referencing ASPECT
1.2 Acknowledgments e
Equations, models, coefficients
2.1 Basicequations L e e e e e
2.1.1 A comment on adiabatic heating L oL oL
2.1.2 Boundary conditions Lo
2.1.3 Comments on the final set of equations
2.2 Coefficients oL e
2.3 Dimensional or non-dimensionalized equations? oL
2.4 Static or dynamic pressure? e e e e e e
2.5 Pressure normalization Lo e
2.6 Initial conditions and the adiabatic pressure/temperature
2.7 Compositional fields L
2.8 Constitutive lawso e e
2.9 Numerical methods e
2.10 Simplifications of the basic equations
2.10.1 The Boussinesq approximation: Incompressibility
2.10.2 Almost linear models L
2.10.3 Compressible models
2.11 Free surface calculations L
2.11.1 Arbitrary Lagrangian-Eulerian implementation
2.11.2 Free surface stabilization
2.12 Nullspace removal
Installation
3.1 System prerequisites e
3.2 Software prerequisites L e
3.3 Obtaining ASPECT and initial configuration
3.4 Compiling ASPECT and generating documentation
3.5 Compiling a static ASPECT executable
3.6 Installing and running ASPECT on Mac OS X
Running ASPECT
4.1 OVErVIEW e e
4.2 Selecting between 2d and 3d runs oL oL
4.3 Debug or optimized mode oL L
4.4 Visualizing results oL e
4.4.1 Visualization the graphical output using Visit L.
4.4.2 Visualizing statistical data. L Lo
4.4.3 Large data issues for parallel computations
4.5 Checkpoint /restart support
4.6 Making ASPECT run faster
4.6.1 Debug vs. optimized mode Lo
4.6.2 Adjusting solver tolerances
4.6.3 Adjusting solver preconditioner tolerances
4.6.4 Using lower order elements for the temperature/compositional discretization
4.6.5 Limiting postprocessing Lo
4.6.6 Switching off pressure normalization L.

~

© oo o

Ne)

10
12
14
15
15
16
17
18
19
19
20
21
21
21
22
22

23
23
24
25
25
26
26

4.6.7 Regularizing models with large coefficient variation 42

5 Run-time input parameters 42
5.1 OVEIrVIEW . . . oL e 42
5.1.1 The structure of parameter files L L L 42
5.1.2 Categories of parameters 43
5.1.3 A note on the syntax of formulas in input files 44
5.2 Global parameters L e 45
5.3 Parameters in section Adiabatic conditions model 50
5.4 Parameters in section Boundary composition model 50
5.5 Parameters in section Boundary composition model/Ascii data model 51
5.6 Parameters in section Boundary composition model/Box 52
5.7 Parameters in section Boundary composition model/Box with lithosphere boundary indicators 53
5.8 Parameters in section Boundary composition model/Initial composition o4
5.9 Parameters in section Boundary composition model/Spherical constant 95
5.10 Parameters in section Boundary temperature model 55
5.11 Parameters in section Boundary temperature model/Ascii data model 56
5.12 Parameters in section Boundary temperature model/Box 57
5.13 Parameters in section Boundary temperature model/Box with lithosphere boundary indicators 58
5.14 Parameters in section Boundary temperature model/Constant 99
5.15 Parameters in section Boundary temperature model/Function 59
5.16 Parameters in section Boundary temperature model/Initial temperature 60
5.17 Parameters in section Boundary temperature model/Spherical comnstant 60
5.18 Parameters in section Boundary traction model. 61
5.19 Parameters in section Boundary traction model/Function 61
5.20 Parameters in section Boundary velocity model. 62
5.21 Parameters in section Boundary velocity model/Ascii data model 62
5.22 Parameters in section Boundary velocity model/Function 63
5.23 Parameters in section Boundary velocity model/GPlates model 64
5.24 Parameters in section Checkpointingo 66
5.25 Parameters in section Compositional fields. 66
5.26 Parameters in section Compositional initial conditions 67
5.27 Parameters in section Compositional initial conditions/Ascii data model 67
5.28 Parameters in section Compositional initial conditions/Function 68
5.29 Parameters in section Discretizationo L oL 69
5.30 Parameters in section Discretization/Stabilization parameters 70
5.31 Parameters in section Free surface oL 71
5.32 Parameters in section Geometry model Lo 72
5.33 Parameters in section Geometry model/Box 73
5.34 Parameters in section Geometry model/Box with lithosphere boundary indicators ... 75
5.35 Parameters in section Geometry model/Chunk 7
5.36 Parameters in section Geometry model/Ellipsoidal chunk 78
5.37 Parameters in section Geometry model/Sphere L. 80
5.38 Parameters in section Geometry model/Spherical shell 80
5.39 Parameters in section Gravity model Lo 81
5.40 Parameters in section Gravity model/Function 82
5.41 Parameters in section Gravity model/Radial comstant 82
5.42 Parameters in section Gravity model/Radial linear 83
5.43 Parameters in section Gravity model/Vertical 83
5.44 Parameters in section Heating model 83
5.45 Parameters in section Heating model/Adiabatic heating 84
5.46 Parameters in section Heating model/Constant heating 84

5.47
5.48
5.49
5.50
5.51
5.52
5.53
5.54
5.55
5.56
5.57
5.58
5.59
5.60
5.61
5.62
5.63
5.64
5.65
5.66
5.67
5.68
5.69
5.70
5.71
5.72
5.73
5.74
5.75
5.76
5.77
5.78
5.79
5.80
5.81
5.82
5.83
5.84
5.85
5.86
5.87
5.88
5.89
5.90
5.91
5.92
5.93
5.94
5.95
5.96
5.97

Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters

in section Heating
in section Heating
in section Heating
in section Heating
in section Initial
in section Initial
in section Initial
in section Initial
in section Initial
in section Initial
in section Initial
in section Initial
in section Initial
in section Initial
in section Initial
in section Initial
in section Initial
in section Initial
in section Initial
in section Material
in section Material
in section Material
in section Material
in section Material
in section Material
in section Material
in section Material
in section Material
in section Material
in section Material
in section Material
in section Material
in section Material
in section Material
in section Material
in section Mesh ref
in section Mesh ref
in section Mesh ref
in section Mesh ref
in section Mesh ref
in section Model se
in section Postproc
in section Postproc
in section Postproc
in section Postproc
in section Postproc
in section Postproc
in section Postproc
in section Postproc
in section Postproc
in section Postproc

model/Function 85
model/Latent heat 85
model/Radioactive decay 85
model/Shear heating 87
conditionso 87
conditions/Adiabatic 88
conditions/Adiabatic/Function 90
conditions/Adiabatic boundary 90
conditions/Ascii data model 91
conditions/Function 92
conditions/Harmonic perturbation 93
conditions/Inclusion shape perturbation 93
conditions/S40RTS perturbation 95
conditions/SAVANI perturbation 96
conditions/Solidus 98
conditions/Solidus/Data 98
conditions/Solidus/Perturbation 99
conditions/Spherical gaussian perturbation 99
conditions/Spherical hexagonal perturbation. 100
model 101
model/Averaging 106
model/Composition reaction model 106
model/Depth dependent model 108

model/Depth dependent model/Viscosity depth functionl09

model/Diffusion dislocation 110
model/Drucker Prager 114
model/Drucker Prager/Viscosity 115
model/Latent heat 115
model/Latent heat melt 119
model/Morency and Doin 124
model/Multicomponent 126
model/Simple compressible model 127
model/Simple model L. 128
model/Simpler model 130
model/Steinberger model 131
inement 133
inement/Boundary 137
inement/Composition 137
inement/Maximum refinement function 138
inement/Minimum refinement function 139
ttings L 140
€55 .t vt e e e e e e 143
ess/Command 146
ess/Depth average 146
ess/Dynamic Topography 147
ess/Point values 147
esSs/Tracers« . . o i 147
ess/Tracers/Function 151
ess/Tracers/Generator 152
ess/Tracers/Generator/Ascii file 152
ess/Tracers/Generator/Probability density function . 152

5.98 Parameters in section Postprocess/Tracers/Generator/Uniform box 153

5.99 Parameters in section Postprocess/Tracers/Generator/Uniform radial 154
5.100Parameters in section Postprocess/Visualization 155
5.101Parameters in section Postprocess/Visualization/Compositional fields as vectors. . 159
5.102Parameters in section Postprocess/Visualization/Dynamic Topography 160
5.103Parameters in section Postprocess/Visualization/Material properties 160
5.104Parameters in section Postprocess/Visualization/Melt fraction 160
5.105Parameters in section Prescribed Stokes solution 163
5.106Parameters in section Prescribed Stokes solution/Ascii data model 164
5.107Parameters in section Prescribed Stokes solution/Pressure function 164
5.108Parameters in section Prescribed Stokes solution/Velocity function 165
5.109Parameters in section Termination criteria. 166
5.110Parameters in section Termination criteria/Steady state velocity 167
5.111Parameters in section Termination criteria/User request 167
Cookbooks 167
6.1 How to set up computations 168
6.2 Simple setups L 169
6.2.1 Convectionina2d box L 169
6.2.2 Convection ina 3d box L 181
6.2.3 Convection in a box with prescribed, variable velocity boundary conditions 186
6.2.4 Using passive and active compositional fields 189
6.2.5 Using tracer particles L e 195
6.2.6 Using a free surface L 197
6.2.7 Using a free surface in a model with a crust 199
6.2.8 Averaging material properties Lo 200
6.2.9 Prescribed internal velocity constraints oo oo 206
6.2.10 Artificial viscosity smoothing Lo 211
6.2.11 Tracking finite strain L L 212
6.3 Geophysical setups e 214
6.3.1 Simple convection in a quarter of a 2d annuluso 216
6.3.2 Simple convection in a spherical 3d shell L. 222
6.3.3 3D convection with an Earth-like initial condition 226
6.3.4 Using reconstructed surface velocities by GPlates 228
6.3.5 Reproducing rheology of Morency and Doin, 2004 231
6.3.6 Crustal deformation 235
6.4 Benchmarks e 240
6.4.1 Running benchmarks that require code 240
6.4.2 The van Keken thermochemical composition benchmark 242
6.4.3 The SolCx Stokes benchmark oo 247
6.4.4 The SolKz Stokes benchmark L o 253
6.4.5 The “inclusion” Stokes benchmark o0 255
6.4.6 The Burstedde variable viscosity benchmark 0. 257
6.4.7 The “Stokes’ law” benchmark 0L 259
6.4.8 Latent heat benchmark o 264
6.4.9 The 2D cylindrical shell benchmarks by Davieset al. 269
6.4.10 The Crameri et al. benchmarks o 274

7 Extending ASPECT
7.1 The idea of plugins and the SimulatorAccess and Introspection classes
7.2 How to write a plugin L e
7.3 Materials, geometries, gravitation and other plugin types.
7.3.1 Material models L
7.3.2 Heating models L
7.3.3 Geometry models
7.3.4 Gravitymodels L
7.3.5 Imitial conditions L
7.3.6 Prescribed velocity boundary conditions o000
7.3.7 Temperature boundary conditions oL L oo
7.3.8 Postprocessors: Evaluating the solution after each time step
7.3.9 Visualization postprocessors e e e
7.3.10 Mesh refinement criteria Lo
7.3.11 Criteria for terminating a simulation L oL
7.4 Extending ASPECT through the signals mechanism
7.5 Extending the basic solver

8 Future plans for ASPECT

9 Finding answers to more questions
References
Index of run-time parameter entries

Index of run-time parameters with section names

279
280
284
285
285
287
287
291
291
292
293
294
297
299
299
300
303

304

305

306

309

314

1 Introduction

ASPECT — short for Advanced Solver for Problems in Earth’s ConvecTion — is a code intended to solve
the equations that describe thermally driven convection with a focus on doing so in the context of convection
in the earth mantle. It is primarily developed by computational scientists at Texas A&M University based
on the following principles:

o Usability and extensibility: Simulating mantle convection is a difficult problem characterized not only
by complicated and nonlinear material models but, more generally, by a lack of understanding which
parts of a much more complicated model are really necessary to simulate the defining features of the
problem. To name just a few examples:

— Mantle convection is often solved in a spherical shell geometry, but the earth is not a sphere —
its true shape on the longest length scales is dominated by polar oblateness, but deviations from
spherical shape relevant to convection patterns may go down to the length scales of mountain
belts, mid-ocean ridges or subduction trenches. Furthermore, processes outside the mantle like
crustal depression during glaciations can change the geometry as well.

— Rocks in the mantle flow on long time scales, but on shorter time scales they behave more like
a visco-elasto-plastic material as they break and as their crystalline structure heals again. The
mathematical models discussed in Section 2 can therefore only be approximations.

— If pressures are low and temperatures high enough, rocks melt, leading to all sorts of new and
interesting behavior.

This uncertainty in what problem one actually wants to solve requires a code that is easy to extend
by users to support the community in determining what the essential features of convection in the
earth mantle are. Achieving this goal also opens up possibilities outside the original scope, such as the
simulation of convection in exoplanets or the icy satellites of the gas giant planets in our solar system.

e Modern numerical methods: We build ASPECT on numerical methods that are at the forefront of
research in all areas — adaptive mesh refinement, linear and nonlinear solvers, stabilization of transport-
dominated processes. This implies complexity in our algorithms, but also guarantees highly accurate
solutions while remaining efficient in the number of unknowns and with CPU and memory resources.

e Parallelism: Many convection processes of interest are characterized by small features in large domains
— for example, mantle plumes of a few tens of kilometers diameter in a mantle almost 3,000 km deep.
Such problems can not be solved on a single computer but require dozens or hundreds of processors to
work together. ASPECT is designed from the start to support this level of parallelism.

e Building on others’ work: Building a code that satisfies above criteria from scratch would likely require
several 100,000 lines of code. This is outside what any one group can achieve on academic time scales.
Fortunately, most of the functionality we need is already available in the form of widely used, actively
maintained, and well tested and documented libraries, and we leverage these to make ASPECT a
much smaller and easier to understand system. Specifically, ASPECT builds immediately on top of
the DEAL.IT library (see https://www.dealii.org/) for everything that has to do with finite elements,
geometries, meshes, etc.; and, through DEAL.IT on Trilinos (see http://trilinos.org/) for parallel
linear algebra and on P4EST (see http://www.pdest.org/) for parallel mesh handling.

o Community: We believe that a large project like ASPECT can only be successful as a community
project. Every contribution is welcome and we want to help you so we can improve ASPECT together.

Combining all of these aspects into one code makes for an interesting challenge. We hope to have achieved
our goal of providing a useful tool to the geodynamics community and beyond!

https://www.dealii.org/
http://trilinos.org/
http://www.p4est.org/

Note: ASPECT is a community project. As such, we encourage contributions from the commu-
nity to improve this code over time. Natural candidates for such contributions are implementations
of new plugins as discussed in Section 7.3 since they are typically self-contained and do not require
much knowledge of the details of the remaining code. Obviously, however, we also encourage con-
tributions to the core functionality in any form! If you have something that might be of general
interest, please contact us.

Note: ASPECT will only solve problems relevant to the community if we get feedback from the
community on things that are missing or necessary for what you want to do. Let us know by
personal email to the developers, or the mantle convection or aspect-devel mailing lists hosted
at http://lists.geodynamics.org/cgi-bin/mailman/listinfo/aspect-devel!

1.1 Referencing ASPECT

As with all scientific work, funding agencies have a reasonable expectation that if we ask for continued
funding for this work, we need to demonstrate relevance. To this end, we ask that if you publish results that
were obtained to some part using ASPECT, you cite the following, canonical reference for this software:

@Article{KHB12,
author = {M. Kronbichler and T. Heister and W. Bangerth},
title = {High Accuracy Mantle Convection Simulation through Modern Numerical Methods},
journal = {Geophysics Journal Internationall,
year = 2012,
volume = 191,
pages = {12--29}}

You can refer to the website by citing the following;:

Q@MANUAL{aspectweb,
title = {ASPECT: Advanced Solver for Problems in Earth’s ConvecTion},
author = {W. Bangerth and T. Heister and others},

year = {2014},
note = {\texttt{https://aspect.dealii.org/}},
url = {https://aspect.dealii.org/}

}

The manual’s proper reference is this:

@Manual{aspectmanual,

title = {\textsc{ASPECT}: Advanced Solver for Problems in Earth’s
ConvecTion},

author = {W. Bangerth and T. Heister and others},

organization = {Computational Infrastructure for Geodynamics},

year = 2014

}

1.2 Acknowledgments

The development of ASPECT has been funded through a variety of grants to the authors. Most immediately,
it has been supported through the Computational Infrastructure in Geodynamics (CIG-II) grant (National
Science Foundation Award No. EAR-0949446, via The University of California — Davis) but the initial
portions have also been supported by the original CIG grant (National Science Foundation Award No.

http://lists.geodynamics.org/cgi-bin/mailman/listinfo/aspect-devel

EAR-0426271, via The California Institute of Technology). In addition, the libraries upon which ASPECT
builds heavily have been supported through many other grants that are equally gratefully acknowledged.
Please acknowledge CIG as follows:

ASPECT is hosted by the Computational Infrastructure for Geodynamics (CIG) which is sup-
ported by the National Science Foundation award NSF-094946.

2 Equations, models, coefficients

2.1 Basic equations

ASPECT solves a system of equations in a d = 2- or d = 3-dimensional domain 2 that describes the motion
of a highly viscous fluid driven by differences in the gravitational force due to a density that depends on the
temperature. In the following, we largely follow the exposition of this material in Schubert, Turcotte and
Olson [STOO01].

Specifically, we consider the following set of equations for velocity u, pressure p and temperature T, as
well as a set of advected quantities ¢; that we call compositional fields:

-V [217 <a(u) - %(V . u)l)} + Vp =pg in Q, (1)
V- (pu)=0 in Q, (2)

T
pCp<%t+u-VT> —V-kVT = pH

+2n (s(u) - %(V : U.)1> : <E(U-) - %(V : u)l) (3)
+aT (u-Vp)
+ pTAS (‘?;t(tu- VX) in Q,
de; o
at+u.vci:qi inQi=1...C

where e(u) = £(Vu 4 Vu®) is the symmetric gradient of the velocity (often called the strain rate).

In this set of equations, (1) and (2) represent the compressible Stokes equations in which u = u(x,t) is
the velocity field and p = p(x,t) the pressure field. Both fields depend on space x and time ¢. Fluid flow is
driven by the gravity force that acts on the fluid and that is proportional to both the density of the fluid
and the strength of the gravitational pull.

Coupled to this Stokes system is equation (3) for the temperature field T = T'(x,t) that contains heat
conduction terms as well as advection with the flow velocity u. The right hand side terms of this equation
correspond to

e internal heat production for example due to radioactive decay;
e friction heating;

e adiabatic compression of material;

e phase change.

The last term of the temperature equation corresponds to the latent heat generated or consumed in the
process of phase change of material. The latent heat release is proportional to changes in the fraction of

material X that has already undergone the phase transition (also called phase function) and the change of
entropy AS. This process applies both to solid-state phase transitions and to melting/solidification. Here,
AS is positive for exothermic phase transitions. As the phase of the material, for a given composition,
depends on the temperature and pressure, the latent heat term can be reformulated:

887);+U’VX:%78XDT X Dp 09X (5;

0X
Dl ar Di T op Dt~ aT *“'VT>+“'VP'

op

The last transformation results from the assumption that the flow field is always in equilibrium and conse-
quently Op/dt = 0 (this is the same assumption that underlies the fact that equation (1) does not have a term
du/0t). With this reformulation, we can rewrite (3) in the following way in which it is in fact implemented:

0X oT

20 () - (o) (s - T wt) @)
+aT (u-Vp)

+ pTASa—Xu -Vp in Q.
dp
The last of the equations above, equation (4), describes the evolution of additional fields that are trans-
ported along with the velocity field u and may react with each other and react to other features of the
solution, but that do not diffuse. We call these fields ¢; compositional fields, although they can also be used
for other purposes than just tracking chemical compositions. We will discuss this equation in more detail in
Section 2.7.

2.1.1 A comment on adiabatic heating

Other codes and texts sometimes make a simplification to the adiabatic heating term in the previous equation.
If you assume the vertical component of the gradient of the dynamic pressure to be small compared to the
gradient of the total pressure (in other words, the gradient is dominated by the gradient of the hydrostatic
pressure), then —pg ~ Vp, and we have the following relation (the negative sign is due to g pointing
downwards)

aT (u-Vp) = —apTu-g.

While this simplification is possible, it is not necessary if you have access to the total pressure. ASPECT
therefore implements the original term without this simplification.

2.1.2 Boundary conditions

Having discussed (3), let us come to the last one of the original set of equations, (4). It describes the
motion of a set of advected quantities ¢;(x,t),i = 1...C. We call these compositional fields because we
think of them as spatially and temporally varying concentrations of different elements, minerals, or other
constituents of the composition of the material that convects. As such, these fields participate actively in
determining the values of the various coefficients of these equations. On the other hand, ASPECT also
allows the definition of material models that are independent of these compositional fields, making them
passively advected quantities. Several of the cookbooks in Section 6 consider compositional fields in this
way, i.e., essentially as tracer quantities that only keep track of where material came from.

These equations are augmented by boundary conditions that can either be of Dirichlet-, Neumann, or

tangential type on subsets of the boundary I' = 9:

u=20 on I'g 4, (6)

U = Uprescribed on I'prescribed,us (7)

n-u=0 on I'y y, (8)

(2ne(u) —pIn=t on ltraction,us 9)
T = Tprescribed onI'p 7, (10)

n-kVIl =0 on 'y 7. (11)

¢ =0 only, ={x:u-n<0}. (12)

Here, the boundary conditions for velocity and temperature are subdivided into disjoint parts:
e I'g 4 corresponds to parts of the boundary on which the velocity is fixed to be zero.

® I'prescribed,u corresponds to parts of the boundary on which the velocity is prescribed to some value
(which could also be zero). It is possible to restrict prescribing the velocity to only certain components
of the velocity vector.

e I') , corresponds to parts of the boundary on which the velocity may be nonzero but must be parallel
to the boundary, with the tangential component undetermined.

® D'iaction,u corresponds to parts of the boundary on which the traction is prescribed to some surface force
density (a common application being t = —pn if one just wants to prescribe a pressure component).
It is possible to restrict prescribing the traction to only certain vector components.

e I'p 1 corresponds to places where the temperature is prescribed (for example at the inner and outer
boundaries of the earth mantle).

e 'y 1 corresponds to places where the temperature is unknown but the heat flux across the boundary
is zero (for example on symmetry surfaces if only a part of the shell that constitutes the domain the
Earth mantle occupies is simulated).

We require that one of these boundary conditions hold at each point for both velocity and temperature, i.e.,
[o,u U lprescribed,u U T'|j,u U Ciractionu = I'and I'p 7 UT'y 7 = I'. No boundary conditions have to be posed
for the compositional fields at those parts of the boundary where flow is either tangential to the boundary
or points outward.

2.1.3 Comments on the final set of equations

ASPECT solves these equations in essentially the form stated. In particular, the form given in (1) implies
that the pressure p we compute is in fact the total pressure, i.e., the sum of hydrostatic pressure and dynamic
pressure (however, see Section 2.4 for more information on this, as well as the extensive discussion of this
issue in [KHB12]). Consequently, it allows the direct use of this pressure when looking up pressure dependent
material parameters.

2.2 Coeflicients

The equations above contain a significant number of coefficients that we will discuss in the following. In
the most general form, many of these coefficients depend nonlinearly on the solution variables pressure p,
temperature T and, in the case of the viscosity, on the strain rate e(u). If compositional fields ¢ = {cy,...,cc}
are present (i.e., if C' > 0), coefficients may also depend on them. Alternatively, they may be parameterized
as a function of the spatial variable x. ASPECT allows both kinds of parameterizations.

10

Note: One of the next versions of ASPECT will actually iterate out nonlinearities in the material
description. However, in the current version, we simply evaluate all nonlinear dependence of
coefficients at the solution variables from the previous time step or a solution suitably extrapolated
from the previous time steps.

Note that below we will discuss examples of the dependence of coefficients on other quantities; which
dependence is actually implemented in the code is a different matter. As we will discuss in Sections 5 and 7,
some versions of these models are already implemented and can be selected from the input parameter file;
others are easy to add to ASPECT by providing self-contained descriptions of a set of coefficients that the
rest of the code can then use without a need for further modifications.

Concretely, we consider the following coefficients and dependencies:

e The viscosity n = n(p, T,e(u),¢,x): Units Pa-s = kg-L.

The viscosity is the proportionality factor that relates total forces (external gravity minus pressure
gradients) and fluid velocities u. The simplest models assume that 7 is constant, with the constant
often chosen to be on the order of 10?'Pa s.

More complex (and more realistic) models assume that the viscosity depends on pressure, temperature
and strain rate. Since this dependence is often difficult to quantify, one modeling approach is to make
71 spatially dependent.

e The density p = p(p, T, ¢,x): Units %'

In general, the density depends on pressure and temperature, both through pressure compression,
thermal expansion, and phase changes the material may undergo as it moves through the pressure-
temperature phase diagram.

The simplest parameterization for the density is to assume a linear dependence on temperature, yielding
the form p(T) = pref[l — B(T — Trer)] Where prer is the reference density at temperature Tyor and S is
the linear thermal expansion coefficient. For the earth mantle, typical values for this parameterization
would be prer = 330058, Trer = 203K, f=2-105L.

m3)

m

o The gravity vector g = g(x): Units 3.

Simple models assume a radially inward gravity vector of constant magnitude (e.g., the surface gravity
of Earth, 9.81%), or one that can be computed analytically assuming a homogeneous mantle density.

A physically self-consistent model would compute the gravity vector as g = —V¢ with a gravity
potential ¢ that satisfies —Ay = 47Gp with the density p from above and G the universal constant of
gravity. This would provide a gravity vector that changes as a function of time. Such a model is not
currently implemented.

m2

s2- K
The specific heat capacity denotes the amount of energy needed to increase the temperature of one
kilogram of material by one degree. Wikipedia lists a value of 790 kgi.K for granite! For the earth

e The specific heat capacity C,, = Cp(p, T, ¢,x): Units kg%K =

mantle, a value of 1250 kg%K is within the range suggested by the literature.

e The thermal conductivity k = k(p, T, ¢,x): Units HYV—K = I;%In(l

The thermal conductivity denotes the amount of thermal energy flowing through a unit area for a
given temperature gradient. It depends on the material and as such will from a physical perspective
depend on pressure and temperature due to phase changes of the material as well as through different
mechanisms for heat transport (see, for example, the partial transparency of perovskite, the most
abundant material in the earth mantle, at pressures above around 120 GPa [BRV'04]).

1See http://en.wikipedia.org/wiki/Specific_heat.

11

http://en.wikipedia.org/wiki/Specific_heat

As a rule of thumb for its order of magnitude, Wikipedia quotes values of 1.8372.90% for sandstone
and 1.7373.98% for granite.? The values in the mantle are almost certainly higher than this though
probably not by much. The exact value is not really all that important: heat transport through
convection is several orders of magnitude more important than through thermal conduction.

The thermal conductivity k is often expressed in terms of the thermal diffusivity x using the relation
k = pCyk.

e The intrinsic specific heat production H = H(x): Units kwg = r;‘—:
This term denotes the intrinsic heating of the material, for example due to the decay of radioactive
material. As such, it depends not on pressure or temperature, but may depend on the location due
to different chemical composition of material in the earth mantle. The literature suggests a value of

— —-12W

e The change of entropy AS at a phase transition together with the derivatives of the phase function

X = X(p, T, c,x) with regard to temperature and pressure: Units kg% (fASg—*;f) and I?g‘—;{ (AS%—;().

When material undergoes a phase transition, the entropy changes due to release or consumption of
latent heat. However, phase transitions occur gradually and for a given chemical composition it depends
on temperature and pressure which phase prevails. Thus, the latent heat release can be calculated from

the change of entropy AS and the derivatives of the phase function ‘g—éf and %. These values have

to be provided by the material model, separately for the coefficient —AS g—)T(on the left-hand side and
AS %—X on the right-hand side of the temperature equation. However, they may be either approximated
with the help of an analytic phase function, employing data from a thermodynamic database or in any

other way that seems appropriate to the user.

2.3 Dimensional or non-dimensionalized equations?

Equations (1)—(3) are stated in the physically correct form. One would usually interpret them in a way
that the various coeflicients such as the viscosity, density and thermal conductivity 7, p, k are given in their
correct physical units, typically expressed in a system such as the meter, kilogram, second (MKS) system
that is part of the SI system. This is certainly how we envision ASPECT to be used: with geometries,
material models, boundary conditions and initial values to be given in their correct physical units. As a
consequence, when ASPECT prints information about the simulation onto the screen, it typically does so
by using a postfix such as m/s to indicate a velocity or W/m~2 to indicate a heat flux.

Note: For convenience, output quantities are sometimes provided in units meters per year in-
stead of meters per second (velocities) or in years instead of seconds (the current time, the time
step size); this conversion happens at the time output is generated, and is not part of the so-
lution process. Whether this conversion should happen is determined by the flag “Use years
in output instead of seconds” in the input file, see Section 5.2. Obviously, this conversion
from seconds to years only makes sense if the model is described in physical units rather than in
non-dimensionalized form, see below.

That said, in reality, ASPECT has no preferred system of units as long as every material constant,
geometry, time, etc., are all expressed in the same system. In other words, it is entirely legitimate to
implement geometry and material models in which the dimension of the domain is one, density and viscosity
are one, and the density variation as a function of temperature is scaled by the Rayleigh number — i.e., to
use the usual non-dimensionalization of the Boussinesq equations. Some of the cookbooks in Section 6 use
this non-dimensional form; for example, the simplest cookbook in Section 6.2.1 as well as the SolCx, SolKz

2See http://en.wikipedia.org/wiki/Thermal_conductivity and http://en.wikipedia.org/wiki/List_of_thermal_
conductivities.

12

http://en.wikipedia.org/wiki/SI
http://en.wikipedia.org/wiki/Thermal_conductivity
http://en.wikipedia.org/wiki/List_of_thermal_conductivities
http://en.wikipedia.org/wiki/List_of_thermal_conductivities

and inclusion benchmarks in Sections 6.4.3, are such cases. Whenever this is the case, output showing units
m/s or W/m"~2 clearly no longer have a literal meaning. Rather, the unit postfix must in this case simply be
interpreted to mean that the number that precedes the first is a velocity and a heat flux in the second case.

In other words, whether a computation uses physical or non-dimensional units really depends on the
geometry, material, initial and boundary condition description of the particular case under consideration —
ASPECT will simply use whatever it is given. Whether one or the other is the more appropriate description
is a decision we purposefully leave to the user. There are of course good reasons to use non-dimensional
descriptions of realistic problems, rather than to use the original form in which all coefficients remain in
their physical units. On the other hand, there are also downsides:

e Non-dimensional descriptions, such as when using the Rayleigh number to indicate the relative strength
of convective to diffusive thermal transport, have the advantage that they allow to reduce a system to
its essence. For example, it is clear that we get the same behavior if one increases both the viscosity and
the thermal expansion coefficient by a factor of two because the resulting Rayleigh number; similarly,
if we were to increase the size of the domain by a factor of 2 and thermal diffusion coefficient by a
factor of 8. In both of these cases, the non-dimensional equations are exactly the same. On the other
hand, the equations in their physical unit form are different and one may not see that the result of this
variations in coefficients will be exactly the same as before. Using non-dimensional variables therefore
reduces the space of independent parameters one may have to consider when doing parameter studies.

e From a practical perspective, equations (1)—(3) are often ill-conditioned in their original form: the
two sides of each equation have physical units different from those of the other equations, and their
numerical values are often vastly different.? Of course, these values can not be compared: they have
different physical units, and the ratios between these values depends on whether we choose to measure
lengths in meters or kilometers, for example. Nevertheless, when implementing these equations in
software, at one point or another, we have to work with numbers and at this point the physical units
are lost. If one does not take care at this point, it is easy to get software in which all accuracy is
lost due to round-off errors. On the other hand, non-dimensionalization typically avoids this since it
normalizes all quantities so that values that appear in computations are typically on the order of one.

e On the downside, the numbers non-dimensionalized equations produce are not immediately comparable
to ones we know from physical experiments. This is of little concern if all we have to do is convert
every output number of our program back to physical units. On the other hand, it is more difficult
and a source of many errors if this has to be done inside the program, for example, when looking
up the viscosity as a pressure-, temperature- and strain-rate-dependent function: one first has to
convert pressure, temperature and strain rate from non-dimensional to physical units, look up the
corresponding viscosity in a table, and then convert the viscosity back to non-dimensional quantities.
Getting this right at every one of the dozens or hundreds of places inside a program and using the
correct (but distinct) conversion factors for each of these quantities is both a challenge and a possible
source of errors.

e From a mathematical viewpoint, it is typically clear how an equation needs to be non-dimensionalized
if all coefficients are constant. However, how is one to normalize the equations if, as is the case in the
earth mantle, the viscosity varies by several orders of magnitude? In cases like these, one has to choose
a reference viscosity, density, etc. While the resulting non-dimensionalization retains the universality
of parameters in the equations, as discussed above, it is not entirely clear that this would also retain
the numerical stability if the reference values are poorly chosen.

As a consequence of such considerations, most codes in the past have used non-dimensionalized models.
This was aided by the fact that until recently and with notable exceptions, many models had constant

3To illustrate this, consider convection in the Earth as a back-of-the-envelope example. With the length scale of the mantle
L = 3-10% m, viscosity n = 1024 kg/m/s, density p = 3 - 103 kg/m?3 and a typical velocity of U = 0.1 m/year = 3-1072 m/s,
we get that the friction term in (1) has size nU/L? ~ 3 - 102 kg/m/s3. On the other hand, the term V - (pu) in the continuity
equation (2) has size pU/L ~ 3 - 10712 kg/s/m3. In other words, their numerical values are 14 orders of magnitude apart.

13

http://en.wikipedia.org/wiki/Rayleigh_number

coefficients and the difficulties associated with variable coefficients were not a concern. On the other hand,
our goal with ASPECT is for it to be a code that solves realistic problems using complex models and that
is easy to use. Thus, we allow users to input models in physical or non-dimensional units, at their discretion.
We believe that this makes the description of realistic models simpler. On the other hand, ensuring numerical
stability is not something users should have to be concerned about, and is taken care of in the implementation
of ASPECT’s core (see the corresponding section in [KHB12]).

2.4 Static or dynamic pressure?

One could reformulate equation (1) somewhat. To this end, let us say that we would want to represent the
pressure p as the sum of two parts that we will call static and dynamic, p = ps + pg. If we assume that p,
is already given, then we can replace (1) by

-V .- 2nVu+ Vpy = pg — Vps.

One typically chooses ps as the pressure one would get if the whole medium were at rest — i.e., as the
hydrostatic pressure. This pressure can be computed noting that (1) reduces to

vPs = P(Ps; Tsv x)g

in the absence of any motion where Ty is some static temperature field (see also Section 2.6). This, our
rewritten version of (1) would look like this:

=V -2nVu+ Vpg = [p(p, T, x) — p(ps, Ts,x)] .

In this formulation, it is clear that the quantity that drives the fluid flow is in fact the buoyancy caused by
the variation of densities, not the density itself.
This reformulation has a number of advantages and disadvantages:

e One can notice that in many realistic cases, the dynamic component p, of the pressure is orders of
magnitude smaller than the static component p,. For example, in the earth, the two are separated
by around 6 orders of magnitude at the bottom of the earth mantle. Consequently, if one wants to
solve the linear system that arises from discretization of the original equations, one has to solve it a
significant degree of accuracy (6-7 digits) to get the dynamic part of the pressure correct to even one
digit. This entails a very significant numerical effort, and one that is not necessary if we can split
the pressure in a way so that the pre-computed static pressure ps (or, rather, the density using the
static pressure and temperature from which ps results) absorbs the dominant part and one only has to
compute the remaining, dynamic pressure to 2 or 3 digits of accuracy, rather than the corresponding
7-8 for the total pressure.

e On the other hand, the pressure py; one computes this way is not immediately comparable to quantities
that we use to look up pressure-dependent quantities such as the density. Rather, one needs to first find
the static pressure as well (see Section 2.6) and add the two together before they can be used to look
up material properties or to compare them with experimental results. Consequently, if the pressure
a program outputs (either for visualization, or in the internal interfaces to parts of the code where
users can implement pressure- and temperature-dependent material properties) is only the dynamic
component, then all of the consumers of this information need to convert it into the total pressure
when comparing with physical experiments. Since any code implementing realistic material models
has a great many of these places, there is a large potential for inadvertent errors and bugs.

e Finally, the definition of a reference density p(ps, Ts,x) derived from static pressures and temperatures
is only simple if we have incompressible models and under the assumption that the temperature-
induced density variations are small compared to the overall density. In this case, we can choose
p(ps, Ts,x) = po with a constant reference density pg. On the other hand, for more complicated

14

models, it is not a priori clear which density to choose since we first need to compute static pressures
and temperatures — quantities that satisfy equations that introduce boundary layers, may include phase
changes releasing latent heat, and where the density may have discontinuities at certain depths, see
Section 2.6.

Thus, if we compute adiabatic pressures and temperatures ps, Ts under the assumption of a thermal
boundary layer worth 900 Kelvin at the top, and we get a corresponding density profile p = p(ps, T, X),
but after running for a few million years the temperature turns out to be so that the top boundary
layer has a jump of only 800 Kelvin with corresponding adiabatic pressures and temperatures pq, Ty,
then a more appropriate density profile would be p = p(ps, TS, X).

The problem is that it may well be that the erroneously computed density profile p does not lead to a
separation where |p4| < |ps| because, especially if the material undergoes phase changes, there will be
entire areas of the computational domain in which |p — ps| < |p| but |p — ps| & |p|. Consequently the
benefits of lesser requirements on the iterative linear solver would not be realized.

We do note that most of the codes available today and that we are aware of split the pressure into
static and dynamic parts nevertheless, either internally or require the user to specify the density profile as
the difference between the true and the hydrostatic density. This may, in part, be due to the fact that
historically most codes were written to solve problems in which the medium was considered incompressible,
i.e., where the definition of a static density was simple.

On the other hand, we intend ASPECT to be a code that can solve more general models for which this
definition is not as simple. As a consequence, we have chosen to solve the equations as stated originally — i.e.,
we solve for the full pressure rather than just its dynamic component. With most traditional methods, this
would lead to a catastrophic loss of accuracy in the dynamic pressure since it is many orders of magnitude
smaller than the total pressure at the bottom of the earth mantle. We avoid this problem in ASPECT by
using a cleverly chosen iterative solver that ensures that the full pressure we compute is accurate enough so
that the dynamic pressure can be extracted from it with the same accuracy one would get if one were to
solve for only the dynamic component. The methods that ensure this are described in detail in [KHB12] and
in particular in the appendix of that paper.

2.5 Pressure normalization

The equations described above, (1)—(3), only determine the pressure p up to an additive constant. On the
other hand, since the pressure appears in the definition of many of the coefficients, we need a pressure that
has some sort of absolute definition. A physically useful definition would be to normalize the pressure in such
a way that the average pressure along the “surface” has a prescribed value where the geometry description
(see Section 7.3.3) has to determine which part of the boundary of the domain is the “surface” (we call a
part of the boundary the “surface” if its depth is “close to zero”).

Typically, one will choose this average pressure to be zero, but there is a parameter “Surface pressure”

in the input file (see Section 5.2) to set it to a different value. One may want to do that, for example, if one

wants to simulate the earth mantle without the overlying lithosphere. In that case, the “surface” would be
the interface between mantle and lithosphere, and the average pressure at the surface to which the solution
of the equations will be normalized should in this case be the hydrostatic pressure at the bottom of the
lithosphere.

An alternative is to normalize the pressure in such a way that the average pressure throughout the
domain is zero or some constant value. This is not a useful approach for most geodynamics applications but
is common in benchmarks for which analytic solutions are available. Which kind of normalization is chosen
is determined by the “Pressure normalization” flag in the input file, see Section 5.2.

2.6 Initial conditions and the adiabatic pressure/temperature

Equations (1)—(3) require us to pose initial conditions for the temperature, and this is done by selecting
one of the existing models for initial conditions in the input parameter file, see Section 5.51. The equations

15

themselves do not require that initial conditions are specified for the velocity and pressure variables (since
there are no time derivatives on these variables in the model).

Nevertheless, a nonlinear solver will have difficulty converging to the correct solution if we start with a
completely unphysical pressure for models in which coefficients such as density p and viscosity 1 depend on the
pressure and temperature. To this end, ASPECT computes pressure and temperature fields paq(z), Tad(2)
that satisfy adiabatic conditions:

d ap

PCPETad(Z) = ﬁTad(Z)927 (13)
d
et} — 1
o Pad(2) = P, (14)

where strictly speaking g, is the magnitude of the vertical component of the gravity vector field, but in
practice we take the magnitude of the entire gravity vector.

These equations can be integrated numerically starting at z = 0, using the depth dependent gravity field
and values of the coefficients p = p(p, T, 2),C, = Cp(p,T,z). As starting conditions at z = 0 we choose
a pressure p.q(0) equal to the average surface pressure (often chosen to be zero, see Section 2.5), and an
adiabatic surface temperature T,q(0) that is also selected in the input parameter file.

Note: The adiabatic surface temperature is often chosen significantly higher than the actual
surface temperature. For example, on earth, the actual surface temperature is on the order of 290
K, whereas a reasonable adiabatic surface temperature is maybe 1200 K. The reason is that the
bulk of the mantle is more or less in thermal equilibrium with a thermal profile that corresponds
to the latter temperature, whereas the very low actual surface temperature and the very high
bottom temperature at the core-mantle boundary simply induce a thermal boundary layer. Since
the temperature and pressure profile we compute using the equations above are simply meant to
be good starting points for nonlinear solvers, it is important to choose this profile in such a way
that it covers most of the mantle well; choosing an adiabatic surface temperature of 290 K would
yield a temperature and pressure profile that is wrong almost throughout the entire mantle.

2.7 Compositional fields

The last of the basic equations, (4), describes the evolution of a set of variables ¢;(x,t),i = 1...C that we
typically call compositional fields and that we often aggregate into a vector c.

Compositional fields were originally intended to track what their name suggest, namely the chemical
composition of the convecting medium. In this interpretation, they composition is a quantity that is simply
advected along passively, i.e., it would satisfy the equation

Jc

—+u-Ve=0.

at
However, these compositional fields participate in determining the values of the various coefficients as dis-
cussed in Section 2.2.

That said, over time compositional fields have shown to be a much more useful tool than originally
intended. For example, they can be used to track where material comes from and goes to (see Section 6.2.4)
and, if one allows for a reaction rate q on the right hand side,

Jc

—4+u-Ve=q,

ot 1
then one can also model interaction between species — for example to simulate phase changes where one
compositional field indicating a particular phase transforms into another phase depending on pressure and
temperature, or where several phases combine to other phases. Inside the material model, the interaction is
given by reaction_term which is defined as At - q.

16

Modeling reactions between different compositional fields often involves finding an equilibrium state
between state between different fields because chemical reactions happen on a much faster time scale than
transport. In other words, one then often assumes that there is a ¢*(p, T') so that

q(pa Ta 5(11)7 . (p, T)) =0.

Consequently, the material model methods that deal with source terms for the compositional fields need to
compute an increment Ac to the previous value of the compositional fields so that the sum of the previous
values and the increment equals ¢*. This is opposed to the usual approach of evaluating the right hand side
term ¢, which corresponds to a rate, instead of an increment.

On the other hand, there are other uses of compositional fields that do not actually have anything to do
with quantities that can be considered related to compositions. For example, one may define a field that
tracks the grain size of rocks. If the strain rate is high, then the grain size decreases as the rocks break.
If the temperature is high enough, then grains heal and their size increases again. Such “damage” models
would then call for an equation of the form (assuming one uses only a single compositional field)

Jdc
& o u-Ve=qg(T
6t+u Ve=q(T,c),

where in the simplest case one could postulate
q(T, c) = —ac+ Bmax{T — Thealing, 0}c.

One would then use this compositional field in the definition of the viscosity of the material: more damage
means lower viscosity because the rocks are weaker.

In cases like this, there is only a single compositional field and it is not in permanent equilibrium.
Consequently, the increment implementations of material models in ASPECT need to compute is typically
the rate ¢(7, ¢) times the time step. In other words, if you compute a reaction rate inside the material model
you need to multiply it by the time step size before returning the value.

Compositional fields have proven to be surprisingly versatile tools to model all sorts of components of
models that go beyond the simple Stokes plus temperature set of equations. Play with them!

2.8 Constitutive laws

Equation (1) describes buoyancy-driven flow in an isotropic fluid where strain rate is related to stress by
a scalar (possibly spatially variable) multiplier, 7. For some material models it is useful to generalize
this relationship to anisotropic materials, or other exotic constitutive laws. For these cases ASPECT can
optionally include a generalized, fourth-order tensor field as a material model state variable which changes
equation (1) to

V. [277 (Cs(u) - ;)(tr(C’g(u)))l)] + V=g in O (15)

and the shear heating term in equation (3) to

+20 (Cetw) - 3er(Ce)1) + (eto) — (7 uﬁ-). (16)

where C' = (1 is defined by the material model. For physical reasons, C' needs to be a symmetric rank-
4 tensor: i.e., when multiplied by a symmetric (strain rate) tensor of rank 2 it needs to return another
symmetric tensor of rank 2. In mathematical terms, this means that Cyjr = Cjir = Cijix = Cjur. Energy
considerations also require that C is positive definite: i.e., for any € # 0, the scalar ¢ : (Ce) must be positive.

17

This functionality can be optionally invoked by any material model that chooses to define a C' field, and
falls back to the default case (C = T) if no such field is defined. It should be noted that 7 still appears
in equations (15) and (16). C is therefore intended to be thought of as a “director” tensor rather than a
replacement for the viscosity field, although in practice either interpretation is okay.

2.9

Numerical methods

There is no shortage in the literature for methods to solve the equations outlined above. The methods
used by ASPECT use the following, interconnected set of strategies in the implementation of numerical
algorithms:

Mesh adaptation: Mantle convection problems are characterized by widely disparate length scales (from
plate boundaries on the order of kilometers or even smaller, to the scale of the entire earth). Uniform
meshes can not resolve the smallest length scale without an intractable number of unknowns. Fully
adaptive meshes allow resolving local features of the flow field without the need to refine the mesh
globally. Since the location of plumes that require high resolution change and move with time, meshes
also need to be adapted every few time steps.

Accurate discretizations: The Boussinesq problem upon which most models for the earth mantle are
based has a number of intricacies that make the choice of discretization non-trivial. In particular, the
finite elements chosen for velocity and pressure need to satisfy the usual compatibility condition for
saddle point problems. This can be worked around using pressure stabilization schemes for low-order
discretizations, but high-order methods can yield better accuracy with fewer unknowns and offer more
reliability. Equally important is the choice of a stabilization method for the highly advection-dominated
temperature equation. ASPECT uses a nonlinear artificial diffusion method for the latter.

Efficient linear solvers: The major obstacle in solving the Boussinesq system is the saddle-point nature
of the Stokes equations. Simple linear solvers and preconditioners can not efficiently solve this system in
the presence of strong heterogeneities or when the size of the system becomes very large. ASPECT uses
an efficient solution strategy based on a block triangular preconditioner utilizing an algebraic multigrid
that provides optimal complexity even up to problems with hundreds of millions of unknowns.

Parallelization of all of the steps above: Global mantle convection problems frequently require ex-
tremely large numbers of unknowns for adequate resolution in three dimensional simulations. The only
realistic way to solve such problems lies in parallelizing computations over hundreds or thousands of
processors. This is made more complicated by the use of dynamically changing meshes, and it needs
to take into account that we want to retain the optimal complexity of linear solvers and all other
operations in the program.

Modularity of the code: A code that implements all of these methods from scratch will be unwieldy,
unreadable and unusable as a community resource. To avoid this, we build our implementation on
widely used and well tested libraries that can provide researchers interested in extending it with the
support of a large user community. Specifically, we use the DEAL.II library [BHK07, BHK12] for
meshes, finite elements and everything discretization related; the TRILINOS library [HBH'05, H*11]
for scalable and parallel linear algebra; and p4esT [BWGI11] for distributed, adaptive meshes. As
a consequence, our code is freed of the mundane tasks of defining finite element shape functions or
dealing with the data structures of linear algebra, can focus on the high-level description of what is
supposed to happen, and remains relatively compact. The code will also automatically benefit from
improvements to the underlying libraries with their much larger development communities. ASPECT
is extensively documented to enable other researchers to understand, test, use, and extend it.

Rather than detailing the various techniques upon which ASPECT is built, we refer to the paper by
Kronbichler, Heister and Bangerth [KHB12] that gives a detailed description and rationale for the various
building blocks.

18

2.10 Simplifications of the basic equations

There are two common variations to equations (1)—(3) that are frequently used and that make the system
much simpler to solve and analyze: assuming that the fluid is incompressible (the Boussinesq approximation)
and a linear dependence of the density on the temperature with constants that are otherwise independent of
the solution variables. These are discussed in the following; ASPECT has run-time parameters that allow
both of these simpler models to be used.

2.10.1 The Boussinesq approximation: Incompressibility

The original Boussinesq approximation assumes that the density can be considered constant in all occurrences
in the equations with the exception of the buoyancy term on the right hand side of (1). The primary result
of this assumption is that the continuity equation (2) will now read

V-u=0.

This makes the equations much simpler to solve: First, because the divergence operation in this equation
is the transpose of the gradient of the pressure in the momentum equation (1), making the system of these
two equations symmetric. And secondly, because the two equations are now linear in pressure and velocity
(assuming that the viscosity n and the density p are considered fixed). In addition, one can drop all terms
involving V - u from the left hand side of the momentum equation (1) as well as from the shear heating term
on the right hand side of (3); while dropping these terms does not affect the solution of the equations, it
makes assembly of linear systems faster. In addition, in the incompressible case, one needs to neglect the
adiabatic heating term g—;Tu - g on the right hand side of (3).

From a physical perspective, the assumption that the density is constant in the continuity equation but
variable in the momentum equation is of course inconsistent. However, it is justified if the variation is small
since the momentum equation can be rewritten to read

=V - 2ne(u) + Vpg = (p — po)g;

where pg is the dynamic pressure and pg is the constant reference density. This makes it clear that the true
driver of motion is in fact the deviation of the density from its background value, however small this value
is: the resulting velocities are simply proportional to the density variation, not to the absolute magnitude
of the density.

As such, the Boussinesq approximation can be justified. On the other hand, given the real pressures and
temperatures at the bottom of the earth mantle, it is arguable whether the density can be considered to be
almost constant. Most realistic models predict that the density of mantle rocks increases from somewhere
around 3300 at the surface to over 5000 kilogram per cubic meters at the core mantle boundary, due to the
increasing lithostatic pressure. While this appears to be a large variability, if the density changes slowly
with depth, this is not in itself an indication that the Boussinesq approximation will be wrong. To this end,
consider that the continuity equation can be rewritten as %V -(pu) = 0, which we can multiply out to obtain

1
V-u—i—;u-Vp:O.

The question whether the Boussinesq approximation is valid is then whether the second term (the one
omitted in the Boussinesq model) is small compared to the first. To this end, consider that the velocity can
change completely over length scales of maybe 10 km, so that V - u = ||ul|/10km. On the other hand, given
a smooth dependence of density on pressure, the length scale for variation of the density is the entire earth
mantle, i.e., %u -Vp =~ ||u]|0.5/3000km (given a variation between minimal and maximal density of 0.5 times
the density itself). In other words, for a smooth variation, the contribution of the compressibility to the
continuity equation is very small. This may be different, however, for models in which the density changes
rather abruptly, for example due to phase changes at mantle discontinuities.

19

In summary, models that use the approximation of incompressibility solve the following set of equations
instead of (1)—(3):

=V - [2ne(u)] + Vp = pg in €, (17)
V-u=0 in (18)
oT .
oC, ((% +u- VT) — V- kVT = pH + 2ne(u) : e(u) in ©, (19)

where the coefficients 7, p, g, C, may possible depend on the solution variables.

Note: As we will see in Section 7, it is easy to add new material models to ASPECT. Each model
can decide whether it wants to use the Boussinesq approximation or not. The description of the
models in Section 5.66 also gives an answer which of the models already implemented uses the
approximation or considers the material sufficiently compressible to go with the fully compressible
continuity equation.

2.10.2 Almost linear models

A further simplification can be obtained if one assumes that all coefficients with the exception of the density
do not depend on the solution variables but are, in fact, constant. In such models, one typically assumes that
the density satisfies a relationship of the form p = p(T") = po(1 — S(T — Tp)) with a small thermal expansion
coefficient 8 and a reference density py that is attained at temperature Ty. Since the thermal expansion is
considered small, this naturally leads to the following variant of the Boussinesq model discussed above:

=V 2ne(u)] + Vp = po(1 = B(T — To))g in ©,
V-u=0 in Q,
oT .
oC) E—i—u-VT —V -kVT = pH + 2ne(u) : g(u) in Q,
If the gravitational acceleration g results from a gravity potential ¢ via g = —V, then one can rewrite the
equations above in the following, commonly used form:*
=V [2ne(a)] + Vpg = —BpoT'g in Q, (20)
V-u=0 in Q, (21)
oT .
pCp e +u-VT | =V -kVT = pH + 2ne(u) : e(u) in €, (22)

where pg = p+ po(1 + B8Tp)p is the dynamic pressure, as opposed to the total pressure p = pg + ps that
also includes the hydrostatic pressure p; = —po(1l + 57p)p. Note that the right hand side forcing term in
(20) is now only the deviation of the gravitational force from the force that would act if the material were
at temperature Tj.

Under the assumption that all other coefficients are constant, one then arrives at equations in which the
only nonlinear terms are the advection term, u- VT, and the shear friction, 2ne(u) : £(u), in the temperature
equation (22). This facilitates the use of a particular class of time stepping scheme in which one does not
solve the whole set of equations at once, iterating out nonlinearities as necessary, but instead in each time
step solves first the Stokes system with the previous time step’s temperature, and then uses the so-computed
velocity to solve the temperature equation. These kind of time stepping schemes are often referred to as
IMPES methods (they originate in the porous media flow community, where the acronym stands for Implicit
Pressure, Explicit Saturation). For details see [KHB12].

4Note, however, that ASPECT does not solve the equations in the form given in (20)—(22). Rather, it takes the original
form with the real density, not the variation of the density. That said, you can use the formulation (20)—(22) by implementing
a material model (see Section 7.3.1) in which the density in fact has the form p(T) = BpoT even though this is not physical.

20

2.10.3 Compressible models

In the compressible case, the conservation of mass equation in equation (2) becomes V - (pu) = 0 instead
of V- u = 0, which is nonlinear and no longer symmetric to the Vp term in the force balance equation (1),
making solving and preconditioning the resulting linear and nonlinear systems difficult. To make this work
in ASPECT, we consequently reformulate this equation. Dividing by p and applying the product rule of

differentiation gives

1 1
~V-(pu)=V-u+-Vp-u.
p P

We will now make two basic assumptions: First, the variation of the density p(p, T, x,¢) is dominated by
the dependence on the (total) pressure; in other words, Vp = g—ZVp. This assumption is primarily justified
by the fact that, in the Earth mantle, the density increases by at least 50% between Earth crust and the
core-mantle boundary due to larger pressure there. Secondly, we assume that the pressure is dominated by
the static pressure, which can be written as Vp =~ Vp, ~ pg. This is essentially motivated by the slowness
of the movement in the Earth or, alternatively, based on the fact that the viscosity is so large. This finally
allows us to write

1 10 10 10
,VpumfipruzfipvPsuzfippgu
P p Op p Op p Op
so we get
10p
o (23)

where %g—z is often referred to as the compressibility.

In the implementation used in ASPECT, this equation replaces (2). It has the advantage that it retains
the symmetry of the Stokes equations if we can treat the right hand side of (23) as known. We do so by
evaluating p and u using the solution from the last time step (or values extrapolated from previous time
steps).

2.11 Free surface calculations

In reality the boundary conditions of a convecting Earth are not no-slip or free slip (i.e., no normal velocity).
Instead, we expect that a free surface is a more realistic approximation, since air and water should not
prevent the flow of rock upward or downward. This means that we require zero stress on the boundary, or
o-n = 0, where o = 2ne(u). In general there will be flow across the boundary with this boundary condition.
To conserve mass we must then advect the boundary of the domain in the direction of fluid flow. Thus,
using a free surface necessitates that the mesh be dynamically deformable.

2.11.1 Arbitrary Lagrangian-Eulerian implementation

The question of how to handle the motion of the mesh with a free surface is challenging. Eulerian meshes
are well behaved, but they do not move with the fluid motions, which makes them difficult for use with free
surfaces. Lagrangian meshes do move with the fluid, but they quickly become so distorted that remeshing is
required. ASPECT implements an Arbitrary Lagrangian-Eulerian (ALE) framework for handling motion of
the mesh. The ALE approach tries to retain the benefits of both the Lagrangian and the Eulerian approaches
by allowing the mesh motion u,, to be largely independent of the fluid. The mass conservation condition
requires that u,, -n = u-n on the free surface, but otherwise the mesh motion is unconstrained, and should
be chosen to keep the mesh as well behaved as possible.

ASPECT uses a Laplacian scheme for calculating the mesh velocity. The mesh velocity is calculated by
solving

21

—Au,, =0 in Q, (24)
u, =(u-n)n on 9 ree surface; (25)
u, n=0 on 0ree slip, (26)
u, =0 on O pirichlet- (27)

After this mesh velocity is calculated, the mesh vertices are time-stepped explicitly. This scheme has the
effect of choosing a minimally distorting perturbation to the mesh. Because the mesh velocity is no longer
zero in the ALE approach, we must then correct the Eulerian advection terms in the advection system with
the mesh velocity (see, e.g. [DHPRF04]). For instance, the temperature equation (22) becomes

T
pCp(%tJr(uumyVT)VokVTpH in Q.

2.11.2 Free surface stabilization

Small disequilibria in the location of a free surface can cause instabilities in the surface position and result
in a “sloshing” instability. This may be countered with a quasi-implicit free surface integration scheme
described in [KMM10]. This scheme enters the governing equations as a small stabilizing surface traction
that prevents the free surface advection from overshooting its true position at the next time step. ASPECT
implements this stabilization, the details of which may be found in [KMM10].

An example of a simple model which uses a free surface may be found in Section 6.2.6.

2.12 Nullspace removal

The Stokes equation (1) only involves symmetric gradients of the velocity, and as such the velocity is
determined only up to rigid-body motions (that is to say, translations and rotations). For many simulations
the boundary conditions will fully specify the velocity solution, but for some combinations of geometries and
boundary conditions the solution will still be underdetermined. In the language of linear algebra, the Stokes
system may have a nullspace.

Usually the user will be able to determine beforehand whether their problem has a nullspace. For instance,
a model in a spherical shell geometry with free-slip boundary conditions at the top and bottom will have
a rigid-body rotation in its nullspace (but not translations, as the boundary conditions do not allow flow
through them). That is to say, the solver may be able to come up with a solution to the Stokes operator,
but that solution plus an arbitrary rotation is also an equally valid solution.

Another example is a model in a Cartesian box with periodic boundary conditions in the z-direction,
and free slip boundaries on the top and bottom. This setup has arbitrary translations along the z-axis in
its nullspace, so any solution plus an arbitrary z-translation is also a solution.

A solution with some small power in these nullspace modes should not affect the physics of the simulation.
However, the timestepping of the model is based on evaluating the maximum velocities in the solution, and
having unnecessary motions can severely shorten the time steps that ASPECT takes. Furthermore, rigid
body motions can make postprocessing calculations and visualization more difficult to interpret.

ASPECT allows the user to specify if their model has a nullspace. If so, any power in the nullspace is
calculated and removed from the solution after every timestep. There are two varieties of nullspace removal
implemented: removing net linear/angular momentum, and removing net translations/rotations.

For removing linear momentum we search for a constant velocity vector ¢ such that

/Qp(u—C)ZO

This may be solved by realizing that fQ pu = p, the linear momentum, and fQ p = M, the total mass of
the model. Then we find
c=p/M

22

Figure 1: Ezample of nullspace removal. On the left the nullspace (a rigid rotation) is removed, and the
velocity vectors accurately show the mantle flow. On the right there is a significant clockwise rotation to the
velocity solution which is making the more interesting flow features difficult to see.

which is subtracted off of the velocity solution.
Removing the angular momentum is similar, though a bit more complicated. We search for a rotation
vector w such that

/p(xx(u—wxx))zO
Q

Recognizing that fQ px x u = H, the angular momentum, and fQ px X w X x = I-w, the moment of
inertia dotted into the sought-after vector, we can solve for w:

w=I"1"H

A rotation about the rotation vector w is then subtracted from the velocity solution.

Removing the net translations/rotations are identical to their momentum counterparts, but for those the
density is dropped from the formulae. For most applications the density should not vary so wildly that there
will be an appreciable difference between the two varieties, though removing linear/angular momentum is
more physically motivated.

The user can flag the nullspace for removal by setting the Remove nullspace option, as described in
Section 5.87. Figure 1 shows the result of removing angular momentum from a convection model in a 2D
annulus with free-slip velocity boundary conditions.

3 Installation

This is a brief explanation of how to install all the required software and ASPECT itself.

3.1 System prerequisites

In order to install ASPECT and its dependencies, you should have your system set up to be able to compile
and link programs. Additionally, ASPECT needs a number of widely used libraries that are available
for most operating systems. Therefore, you will need compilers for C, C++ and Fortran, the GNU make
system, the CMake build system, and the libraries and header files of BLAS, LAPACK and zlib, which is
used for compressing the output data. To use more than one process for your computations you will need
to install a MPI library, its headers and the necessary executables to run MPI programs. There are some
optional packages for additional features, like the HDF5 libraries for additional output formats, PETSC for
alternative solvers, and Numdiff for checking ASPECT’s test results with reasonable accuracy, but these

23

are not strictly required, and in some operating systems they are not available as packages but need to be
compiled from scratch. Finally, for obtaining a recent development version of ASPECT you will need the
git version control system.

An exemplary command to obtain all required packages on Ubuntu 14.04 would be:

sudo apt-get install build-essential \
cmake \
gce \
g++ \
gfortran \
git \
libblas-dev \
liblapack-dev \
libopenmpi-dev \
numdiff \
openmpi-bin \
zliblg-dev

3.2 Software prerequisites

ASPECT builds on a few other libraries that are widely used in the computational science area and that
provide most of the lower-level functionality such as finite element descriptions or parallel linear algebra.
Specifically, it builds on DEAL.II which in turn uses Trilinos and P4EST. These need to be installed first
before you can compile and run ASPECT. All of these libraries can readily be installed in a user’s home
directory, without the need to modify the overall system directories.

The following steps should guide you through the installation of these prerequisites:

1. Trilinos: Trilinos can be downloaded from http://trilinos.org/download/. At the current time we
recommend Trilinos Version 11.4.x.° For installation instructions see the deal.Il README file on
installing Trilinos. Note that you have to configure with MPI by using

TPL_ENABLE_MPI :BOOL=0N

in the call to cmake. After that, run make install.

2. P4EST: Download and install P4EST as described in the deal.Il p4est installation instructions. This is
done using the pdest-setup.sh; do not use the P4EST stand-alone installation instructions.

3. DEAL.II: The current version of ASPECT requires DEAL.II version 8.2 or later. This version can be
downloaded and installed from https://www.dealii.org/download.html.

4. Configuring and compiling DEAL.I1: Now it is time to configure DEAL.II. To this end, follow the DEAL.II
installation instructions. Note that DEAL.II recently made the switch to cmake, so the configuration
changed. Make sure you enable MPI. A typical command line would look like this:

mkdir build

cd build

cmake -DDEAL_II_WITH_MPI=0N \
-DCMAKE_INSTALL_PREFIX=/u/username/deal-installed/ \
-DTRILINOS_DIR=/u/username/trilinos-11.4.1/ \
-DP4EST_DIR=/u/username/pdest-0.3.4.1/ \
../deal.II

50ther versions of Trilinos like 10.6.x and 10.8.x have bugs that make these versions unusable for our purpose. The DEAL.IT
ReadMe file provides a list of versions that are known to work without bugs with DEAL.II.

24

http://trilinos.org/download/
https://www.dealii.org/developer/external-libs/trilinos.html
https://www.dealii.org/developer/external-libs/trilinos.html
https://www.dealii.org/developer/external-libs/p4est.html
https://www.dealii.org/download.html
https://www.dealii.org/developer/readme.html

if the Trilinos and P4EST packages have been installed in the subdirectory /u/username/. Make sure
the configuration succeeds and detects the MPI compilers correctly. For more information see the
documentation of DEAL.II.

Now you are ready to compile DEAL.II by running make install. If you have multiple processor cores,
feel free to do make install -jN where N is the number of processors in your machine to accelerate
the process.

5. Testing your installation: Test that your installation works by running the step-32 example that you
can find in $DEAL_II DIR/examples/step-32. Compile by running make and run with mpirun -n 2
./step-32.

6. You may now want to set the environment variable® DEAL_II_DIR to the directory where you installed
DEAL.II.
3.3 Obtaining ASPECT and initial configuration
The development version of ASPECT can be downloaded by executing the command
git clone https://github.com/geodynamics/aspect.git
If $DEAL_II DIR points to your DEAL.II installation, you can configure ASPECT by running
cmake .

in the aspect directory created by the git clone command above. If you did not set $DEAL_II_DIR you
have to supply cmake with the location:

cmake -DDEAL_II_DIR=/u/username/deal-installed/ .

An alternative would be to configure ASPECT as an out-of-source build. Similar to the configu-
ration of DEAL.II, you would need to create a build directory and specify an install directory using -
DCMAKE_INSTALL_PREFIX. The instructions in the following sections assume an in-source build, so
you need to adapt the location of the ASPECT binary.

3.4 Compiling ASPECT and generating documentation
After downloading ASPECT and having built the libraries it builds on, you can compile it by typing

make

on the command line (or make -jN if you have multiple processors in your machine, where N is the number of
processors). This builds the ASPECT executable which will reside in the main directory and will be named
./aspect. If you intend to modify ASPECT for your own experiments, you may want to also generate
documentation about the source code. This can be done using the command

cd doc; make

which assumes that you have the doxygen documentation generation tool installed. Most Linux distributions
have packages for doxygen. The result will be the file doc/doxygen/index.html that is the starting point
for exploring the documentation.

6For bash this would be adding the line export DEAL_II_DIR=/path/to/deal-installed/ to the file ~/.bashrc. Then close
the terminal and open it again to activate the change.

25

doc/doxygen/index.html

3.5 Compiling a static ASPECT executable

ASPECT defaults to a dynamically linked executable, which saves disk space and build time. In some
circumstances however, it is preferred to generate a statically linked executable that incorporates all used
libraries. This need may arise on large clusters on which libraries and loaded modules/variables on login
nodes may be different from the ones available on compute nodes. The general build procedure in such a
case equals the above explained instructions with the following differences:

1. Trilinos: Add the following lines to your cmake call:

-DBUILD_SHARED_LIBS=0FF
-DTPL_FIND_SHARED_LIBS=0FF

2. P4EST: Change items "—enable-shared” to ”—enable-static” in p4est-setup.sh lines 83 and 97.

3. DEAL.II: Add the following lines to your call to cmake:
-DDEAL_TI_STATIC_EXECUTABLE=0N

4. ASPECT: If everything above is set up correctly, there is no need for any configuration change to
ASPECT’s build procedure. You should see the following cmake output from ASPECT:

-- Creating a statically linked executable
-- Disabling dynamic loading of plugins from the input file

The here mentioned build was tested on a Cray XC30 cluster, which was set up for default static compiling
and linking. On machines that default to dynamic linking additional compiler and/or linker flags may be
required (e.g. "-fPIC” / 7—static”). In case of questions send an email to the mailing list.

3.6 Installing and running ASPECT on Mac OS X

OS X has some eccentricities which can complicate installation of ASPECT. Currently the easiest and most
reliable way to run ASPECT under Mac OS X Mavericks (10.9) and Yosemite (10.10) is to install and
run the binary package for DEAL.II. The step-by-step process is described in detail, with screenshots, here:
https://wiki.geodynamics.org/_media/software:aspect:aspect_yosemite_20150529.pdf

1. Install Cmake.

CMake is a cross-platform, open-source build system that can be downloaded from http://www.cmake.
org. After installation of CMake.app, the terminal command for cmake will be

/Applications/CMake.app/Contents/bin/cmake
2. Download and install the parallel DEAL.IT. This is the binary package for Mac OS .dmg file.
open https://github.com/dealii/dealii/releases/download/v8.2.1/dealii-8.2.1-parallel-bundle.dmg

Open the downloaded disk image, and drag DEAL.IL.app into the Applications folder. To start the
DEAL.II app, double click the icon in the Applications folder or use the open command:

open /Applications/deal.II.app
DEAL.II app opens a terminal window and displays a DEAL.II message. DEAL.Il.app will install all

required libraries for ASPECT (pdest, parMeTiS, and Trilinos) and will include the environment
variables needed to use these libraries.

26

https://wiki.geodynamics.org/_media/software:aspect:aspect_yosemite_20150529.pdf
http://www.cmake.org
http://www.cmake.org

4

3. Download the ASPECT source from the git repository.

cd $HOME/src
git clone https://github.com/geodynamics/aspect.git

Note: you MUST build and run ASPECT in the terminal window started by DEAL.II.

4. Build ASPECT

(a)

(d)

Go to the directory where you wish to install ASPECT and run the following commands:

cmake .

This should display something like:

Project aspect set up with deal.II-8.2.1 found at /Applications/deal.II.app/Contents/Resources

Run make:

bash-3.2$ make

Scanning dependencies of target aspect

[0%] Building CXX object CMakeFiles/aspect.dir/source/adiabatic_conditions/initial_profile.cc.o
[0%] Building CXX object CMakeFiles/aspect.dir/source/adiabatic_conditions/interface.cc.o

Linking CXX executable aspect

[100%] Built target aspect

bash-3.2% 1ls -1 aspect

-rwxr-xr-x 1 <name> staff 19131292 May 7 15:02 aspect

There may be warnings from the compiler, but if the ASPECT target is created then it was
successful.
By default, ASPECT compiles the debug version of the code. To compile the optimized version:

make release
Run make test

make test

5. Run ASPECT.

A reminder: you must run ASPECT on the terminal window which is opened by DEAL.IL.app.
To start ASPECT using MPI for parallelization, from the directory where you installed ASPECT:

mpirun -np <# of processes> ./aspect <parameter file>

To check quickly whether you are running ASPECT on the DEAL.Il.app terminal, check the location
of the mpirun command:

bash-3.2$ which mpirun
/Applications/deal.II.app/Contents/Resources/opt/openmpi-1.6.5/bin/mpirun

Running ASPECT

4.1 Overview

After compiling ASPECT as described above, you should have an executable file in the main directory. It
can be called as follows:

./aspect parameter-file.prm

27

or, if you want to run the program in parallel, using something like
mpirun -np 32 ./aspect parameter-file.prm

to run with 32 processors. In either case, the argument denotes the (path and) name of a file that contains
input parameters.” When you download ASPECT, there are a number of sample input files in the cookbooks
directory, corresponding to the examples discussed in Section 6, and input files for some of the benchmarks
discussed in Section 6.4 are located in the benchmarks directory. A full description of all parameters one
can specify in these files is given in Section 5.

Running ASPECT with an input file will produce output that will look something like this (numbers
will all be different, of course):

Number of active cells: 1,536 (on 5 levels)
Number of degrees of freedom: 20,756 (12,738+1,649+6,369)

*xx Timestep 0: t=0 years
Rebuilding Stokes preconditionmer...
Solving Stokes system... 30+3 iterations.

Solving temperature system... 8 iteratioms.

Number of active cells: 2,379 (on 6 levels)
Number of degrees of freedom: 33,859 (20,786+2,680+10,393)

*xx Timestep 0: t=0 years

Rebuilding Stokes preconditiomer...

Solving Stokes system... 30+4 iterations.
Solving temperature system... 8 iteratioms.
Postprocessing:

Writing graphical output: output/solution-00000

RMS, max velocity: 0.0946 cm/year, 0.183 cm/year

Temperature min/avg/max: 300 K, 3007 K, 6300 K
Inner/outer heat fluxes: 1.076e+05 W, 1.967e+05 W

*xx Timestep 1: t=1.99135e+07 years

Solving Stokes system... 30+3 iterations.
Solving temperature system... 8 iteratioms.
Postprocessing:

Writing graphical output: output/solution-00001

RMS, max velocity: 0.104 cm/year, 0.217 cm/year

Temperature min/avg/max: 300 K, 3008 K, 6300 K
Inner/outer heat fluxes: 1.079e+05 W, 1.988e+05 W

7As a special case, if you call ASPECT with an argument that consists of two dashes, “-=”, then the arguments will be read

from the standard input stream of the program. In other words, you could type the input parameters into your shell window
in this case (though that would be cumbersome, ASPECT would seem to hang until you finish typing all of your input into
the window and then terminating the input stream by typing Ctrl-D). A more common case would be to use Unix pipes so
that the default input of ASPECT is the output of another program, as in a command like cat parameter-file.prm.in |
mypreprocessor | ./aspect --, where mypreprocessor would be a program of your choice that somehow transforms the file
parameter-file.prm.in into a valid input file, for example to systematically vary one of the input parameters.

If you want to run ASPECT in parallel, you can do something like cat parameter-file.prm.in | mypreprocessor | mpirun
-np 4 ./aspect --. In cases like this, mpirun only forwards the output of mypreprocessor to the first of the four MPI processes,
which then sends the text to all other processors.

28

*xx Timestep 2: t=3.98271e+07 years

Solving Stokes system... 30+3 iteratioms.
Solving temperature system... 8 iteratioms.
Postprocessing:

RMS, max velocity: 0.111 cm/year, 0.231 cm/year

Temperature min/avg/max: 300 K, 3008 K, 6300 K
Inner/outer heat fluxes: 1.083e+05 W, 2.01e+05 W

*xk Timestep 3: t=5.97406e+07 years

This output was produced by a parameter file that, among other settings, contained the following values
(we will discuss many such input files in Section 6:

set Dimension =2
set End time = 2e9
set Output directory output

subsection Geometry model
set Model name
end

spherical shell

subsection Mesh refinement

set Initial global refinement = 4
set Initial adaptive refinement = 1
end
subsection Postprocess
set List of postprocessors = all

end

In other words, these run-time parameters specify that we should start with a geometry that represents
a spherical shell (see Sections 5.32 and 5.38 for details). The coarsest mesh is refined 4 times globally, i.e.,
every cell is refined into four children (or eight, in 3d) 4 times. This yields the initial number of 1,536 cells
on a mesh hierarchy that is 5 levels deep. We then solve the problem there once and, based on the number
of adaptive refinement steps at the initial time set in the parameter file, use the solution so computed to
refine the mesh once adaptively (yielding 2,379 cells on 6 levels) on which we start the computation over at
time £ = 0.

Within each time step, the output indicates the number of iterations performed by the linear solvers,
and we generate a number of lines of output by the postprocessors that were selected (see Section 5.88).
Here, we have selected to run all postprocessors that are currently implemented in ASPECT which includes
the ones that evaluate properties of the velocity, temperature, and heat flux as well as a postprocessor that
generates graphical output for visualization.

While the screen output is useful to monitor the progress of a simulation, its lack of a structured output
makes it not useful for later plotting things like the evolution of heat flux through the core-mantle boundary.
To this end, ASPECT creates additional files in the output directory selected in the input parameter file
(here, the output/ directory relative to the directory in which ASPECT runs). In a simple case, this will
look as follows:

aspect> 1ls -1 output/

total 780
“rW-—————- 1 b 9863 Dec 1 15:13 parameters.prm
—“rw--—--——- 1 b 306562 Dec 1 15:13 solution-00000.0000.vtu

29

—rw--—-——--- 1 b 97057 Nov 30 05:58 solution-00000.0001.vtu

b 1061 Dec 1 15:13 solution-00000.pvtu
“rw--—-—---- 1b 35 Dec 1 15:13 solution-00000.visit
—rw-—-—---- 1 b 306530 Dec 1 15:13 solution-00001.0000.vtu
-rw-—-————- 1b 1061 Dec 1 15:13 solution-00001.pvtu
“rw--—-—-—-- 1b 35 Dec 1 15:13 solution-00001.visit
-rw-r-—-r—— 1D 997 Dec 1 15:13 solution.pvd
-rw-r--r-- 1 b 997 Dec 1 15:13 solution.visit
—rw-—-—---- 1b 924 Dec 1 15:13 statistics

The purpose of these files is as follows:

o A listing of all run-time parameters: The output/parameters.prn file contains a complete listing of
all run-time parameters. In particular, this includes the one that have been specified in the input
parameter file passed on the command line, but it also includes those parameters for which defaults
have been used. It is often useful to save this file together with simulation data to allow for the easy
reproduction of computations later on.

e Graphical output files: One of the postprocessors you select when you say “all” in the parameter files is
the one that generates output files that represent the solution at certain time steps. The screen output
indicates that it has run at time step 0, producing output files of the form output/solution-00000.
At the current time, the default is that ASPECT generates this output in VTK format® as that is
widely used by a number of excellent visualization packages and also supports parallel visualization.”
If the program has been run with multiple MPI processes, then the list of output files will look as
shown above, with the base solution-x.y denoting that this the xth time we create output files and
that the file was generated by the yth processor.

VTK files can be visualized by many of the large visualization packages. In particular, the Visit and
ParaView programs, both widely used, can read the files so created. However, while VTK has become
a de-facto standard for data visualization in scientific computing, there doesn’t appear to be an agreed
upon way to describe which files jointly make up for the simulation data of a single time step (i.e., all
files with the same x but different y in the example above). Visit and Paraview both have their method
of doing things, through .pvtu and .visit files. To make it easy for you to view data, ASPECT
simply creates both kinds of files in each time step in which graphical data is produced.

The final two files of this kind, solution.pvd and solution.visit, are files that describes to Par-
aview and Visit, respectively, which solution-xxxx.pvtu and solution-xxxx.yyyy.vtu jointly form
a complete simulation. In the former case, the file lists the .pvtu files of all timesteps together with
the simulation time to which they correspond. In the latter case, it actually lists all .vtu that belong
to one simulation, grouped by the timestep they correspond to. To visualize an entire simulation, not
just a single time step, it is therefore simplest to just load one of these files, depending on whether you
use Paraview or Visit.!?

For more on visualization, see also Section 4.4.

8The output is in fact in the VTU version of the VTK file format. This is the XML-based version of this file format in which
contents are compressed. Given that typical file sizes for 3d simulation are substantial, the compression saves a significant
amount of disk space.

9The underlying DEAL.II package actually supports output in around a dozen different formats, but most of them are not
very useful for large-scale, 3d, parallel simulations. If you need a different format than VTK, you can select this using the
run-time parameters discussed in Section 5.100.

10At the time of writing this, current versions of Visit (starting with version 2.5.1) actually have a bug that prevents them
from successfully reading the solution.visit or solution-xxxx.visit files — Visit believes that each of these files corresponds
to an individual time step, rather than that a whole group of files together form one time step. This bug is not fixed in Visit
2.6.3, but may be fixed in later versions.

30

https://visit.llnl.gov
http://www.paraview.org/

o A statistics file: The output/statistics file contains statistics collected during each time step, both
from within the simulator (e.g., the current time for a time step, the time step length, etc.) as well
as from the postprocessors that run at the end of each time step. The file is essentially a table that
allows for the simple production of time trends. In the example above, it looks like this:

1: Time step number

2: Time (years)

3: Iterations for Stokes solver

4: Time step size (year)

5: Iterations for temperature solver

6: Visualization file name

7: RMS wvelocity (m/year)

8: Max. velocity (m/year)

9: Minimal temperature (K)

10: Average temperature (K)

11: Mazimal temperature (K)

12: Average nondimensional temperature (K)

13: Core-mantle heat fluz (W)

14: Surface heat fluz (W)

0 0.0000e+00 33 2.9543e+07 8 "" 0.0000 0.0000 0.0000 0.0000 ...
0 0.0000e+00 34 1.9914e+07 8 output/solution-00000 0.0946 0.1829 300.0000 3007.2519 ...
1 1.9914e+07 33 1.9914e+07 8 output/solution-00001 0.1040 0.2172 300.0000 3007.8406 ...
2 3.9827e+07 33 1.9914e+07 8 "" 0.1114 0.2306 300.0000 3008.3939 ...

The actual columns you have in your statistics file may differ from the ones above, but the format of
this file should be obvious. Since the hash mark is a comment marker in many programs (for example,
gnuplot ignores lines in text files that start with a hash mark), it is simple to plot these columns as
time series. Alternatively, the data can be imported into a spreadsheet and plotted there.

Note: As noted in Section 2.3, ASPECT can be thought of as using the meter-kilogram-
second (MKS, or SI) system. Unless otherwise noted, the quantities in the output file are
therefore also in MKS units.

A simple way to plot the contents of this file is shown in Section 4.4.2.

e Output files generated by other postprocessors: Similar to the output/statistics file, several of the
existing postprocessors one can select from the parameter file generate their data in their own files in the
output directory. For example, ASPECT can write depth-average statistics into output/depth_average.gnuplot.
This is done by the “depth average” postprocessor and the user can control how often this file is up-
dated, as well as what graphical file format to use (if anything other than gnuplot is desired).

By default, the data is written in text format that can be easily displayed by e.g. gnuplot. For an
example, see Figure 2. The plot shows how an initially linear temperature profile forms upper and
lower boundary layers.

4.2 Selecting between 2d and 3d runs

ASPECT can solve both two- and three-dimensional problems. You select which one you want by putting
a line like the following into the parameter file (see Section 5):

set Dimension =2

Internally, dealing with the dimension builds on a feature in DEAL.II, upon which ASPECT is based,
that is called dimension-independent programming. In essence, what this does is that you write your code

31

"depthaverage.plt” using 1:2:3 ——

1.5e+14 Se+0E

2e+14
25e+14

35e+14 0

Figure 2: Example output for depth average statistics. On the left axis are 13 time steps, on the right is the
depth (from the top at 0 to the bottom of the mantle on the far right), and the upwards pointing axis is the
average temperature. This plot is generated by gnuplot, but the depth averages can be written in many other
output formats as well, if preferred (see Section 5.90).

only once in a way so that the space dimension is a variable (or, in fact, a template parameter) and you
can compile the code for either 2d or 3d. The advantage is that codes can be tested and debugged in 2d
where simulations are relatively cheap, and the same code can then be re-compiled and executed in 3d where
simulations would otherwise be prohibitively expensive for finding bugs; it is also a useful feature when
scoping out whether certain parameter settings will have the desired effect by testing them in 2d first, before
running them in 3d. This feature is discussed in detail in the DEAL.II tutorial program step-4. Like there, all
the functions and classes in ASPECT are compiled for both 2d and 3d. Which dimension is actually called
internally depends on what you have set in the input file, but in either case, the machine code generated
for 2d and 3d results from the same source code and should, thus, contain the same set of features and
bugs. Running in 2d and 3d should therefore yield comparable results. Be prepared to wait much longer for
computations to finish in the latter case, however.

4.3 Debug or optimized mode

ASPECT utilizes a DEAL.II feature called debug mode. By default, ASPECT uses debug mode, i.e., it calls
a version of the DEAL.II library that contain lots of checks for the correctness of function arguments, the
consistency of the internal state of data structure, etc. If you program with DEAL.II, for example to extend
ASPECT, it has been our experience over the years that, by number, most programming errors are of the
kind where one forgets to initialize a vector, one accesses data that has not been updated, one tries to write
into a vector that has ghost elements, etc. If not caught, the result of these bugs is that parts of the program
use invalid data (data written into ghost elements is not communicated to other processors), that operations
simply make no sense (adding vectors of different length), that memory is corrupted (writing past the end
of an array) or, in rare and fortunate cases, that the program simply crashes.

Debug mode is designed to catch most of these errors: It enables some 7,300 assertions (as of late 2011)
in DEAL.IT where we check for errors like the above and, if the condition is violated, abort the program
with a detailed message that shows the failed check, the location in the source code, and a stacktrace
how the program got there. The downside of debug mode is, of course, that it makes the program much
slower — depending on application by a factor of 4-10. An example of the speedup one can get is shown in
Section 6.2.1.

ASPECT by default uses debug mode because most users will want to play with the source code, and

32

https://www.dealii.org/developer/doxygen/deal.II/step_4.html

because it is also a way to verify that the compilation process worked correctly. If you have verified that the
program runs correctly with your input parameters, for example by letting it run for the first 10 time steps,
then you can switch to optimized mode by compiling ASPECT with the command!

make release
and then compile using
make
To switch back to debug mode type:

make debug

Note: It goes without saying that if you make significant modifications to the program, you
should do the first runs in debug mode to verify that your program still works as expected.

4.4 Visualizing results

Among the postprocessors that can be selected in the input parameter file (see Sections 4.1 and 5.100) are
some that can produce files in a format that can later be used to generate a graphical visualization of the
solution variables u, p and T at select time steps, or of quantities derived from these variables (for the latter,
see Section 7.3.9).

By default, the files that are generated are in VTU format, i.e., the XML-based, compressed format
defined by the VTK library, see http://public.kitware.com/VTK/. This file format has become a broadly
accepted pseudo-standard that many visualization program support, including two of the visualization pro-
grams used most widely in computational science: Visit (see https://visit.1llnl.gov/) and ParaView
(see http://www.paraview.org/). The VTU format has a number of advantages beyond being widely
distributed:

e It allows for compression, keeping files relatively small even for sizeable computations.
e It is a structured XML format, allowing other programs to read it without too much trouble.

e It has a degree of support for parallel computations where every processor would only write that part
of the data to a file that this processor in fact owns, avoiding the need to communicate all data to a
single processor that then generates a single file. This requires a master file for each time step that
then contains a reference to the individual files that together make up the output of a single time step.
Unfortunately, there doesn’t appear to be a standard for these master records; however, both ParaView
and Visit have defined a format that each of these programs understand and that requires placing a
file with ending .pvtu or .visit into the same directory as the output files from each processor.
Section 4.1 gives an example of what can be found in the output directory.

Note: You can select other formats for output than VTU, see the run-time parameters in Sec-
tion 5.100. However, none of the numerous formats currently implemented in DEAL.IT other than
the VTK/VTU formats allows for splitting up data over multiple files in case of parallel computa-
tions, thus making subsequent visualization of the entire volume impossible. Furthermore, given
the amount of data ASPECT can produce, the compression that is part of the VTU format is
an important part of keeping data manageable.

HNote that this procedure also changed with the switch to cmake.

33

http://public.kitware.com/VTK/
https://visit.llnl.gov/
http://www.paraview.org/

78 [visr211 | ® o 0| 78 [visr211 | ® o 0| 78 [visr211 | ® o 0|
Fle Confrols Optons Windows PlotAtls OpAfls Help Fle Confrols Optons Windows PlotAtls OpAfls Help Fle Confrols Optons Windows PlotAtls OpAfls Help
| Main ¢ Main Main
I Giobal Giobal
Active window m [] Auto apply Active window m [] Auto apply Active window m [] Auto apply
e E 6 g & e 6 &5 © e & 6 &5 ©
Open Close Reopen || Aeplace Overlay Open Close Reopen | Aeplace Overlay Open Close Reopen | Aeplace Overlay
Aotive sotirce - Active source | solution-00003 visit - Active source | solution-00003 visit -
i i i
o L_J o L_J o L_J
_Plots _Plots Plots
[of of 2 o >
R = % “ o LT 0 - o LT B -
Add| Operators | Delets Hide/Show Draw: . Add_ Operalors_ Delets Hide/Show Draw . Add_ Operators Delets Hide/Show Draw
» [8B]Pseudocolor - T
%] Apply operators /(3] selection 1o il plots. %] Apply operators /(3] selection 1o il plots. %] Apply operators /(3] selection 1o all plots.
Unpost Dismiss Unpost Dismiss Unpost Dismiss
= = =
(2) (b) (c)

Figure 3: Main window of Visit, illustrating the different steps of adding content to a visualization.

4.4.1 Visualization the graphical output using Visit

In the following, let us discuss the process of visualizing a 2d computation using Visit. The steps necessary
for other visualization programs will obviously differ but are, in principle, similar.

To this end, let us consider a simulation of convection in a box-shaped, 2d region (see the “cookbooks”
section, Section 6, and in particular Section 6.2.1 for the input file for this particular model). We can run
the program with 4 processors using

mpirun -np 4 ./aspect cookbooks/convection-box.prm

Letting the program run for a while will result in several output files as discussed in Section 4.1 above.
In order to visualize one time step, follow these steps:'?

e Selecting input files: As mentioned above, in parallel computations we usually generate one output file
per processor in each time step for which visualization data is produced (see, however, Section 4.4.3).
To tell Visit which files together make up one time step, ASPECT creates a solution-NNNNN.visit
file in the output directory. To open it, start Visit, click on the “Open” button in the “Sources” area
of its main window (see Fig. 3(a)) and select the file you want. Alternatively, you can also select files
using the “File > Open” menu item, or hit the corresponding keyboard short-cut. After adding an
input source, the “Sources” area of the main window should list the selected file name.

e Selecting what to plot: ASPECT outputs all sorts of quantities that characterize the solution, such as
temperature, pressure, velocity, and many others on demand (see Section 5.100). Once an input file
has been opened, you will want to add graphical representations of some of this data to the still empty
canvas. To this end, click on the “Add” button of the “Plots” area. The resulting menu provides a
number of different kinds of plots. The most important for our purpose are: (i) “Pseudocolor” allows
the visualization of a scalar field (e.g., temperature, pressure, density) by using a color field. (ii)

12The instructions and screenshots were generated with Visit 2.1. Later versions of Visit differ slightly in the arrangement of
components of the graphical user interface, but the workflow and general idea remains unchanged.

34

Window 1

2o —
FoeEo-s==n#lk D@aan > -

&o

e —
FoeEo-s==n#lk D@aean - -

Window 1

e

stk fwQll

stk fwQll

DB solution-001680000.vtu
Cyele:0

DB solution-001680000.vtu
Cyele:0

Pesudacolar
Var: 1

Hax
Hire 0000

1093
—08194
05483

— 02731

1003 Wax
iy 0000
Msth
Ve mesh
Vector 0.6
Ve, velac
i 07
PRRhgos
6527284

— 32632108

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
x.

user: bal

wser: ba rgerih
ThulMar 8215105 2012

rgerih
ThuMar 62152:442012

(b)
Figure 4: Display window of Visit, showing a single plot and one where different data is overlaid.

“Vector” displays a vector-valued field (e.g., velocity) using arrows. (iii) “Mesh” displays the mesh.
The “Contour”, “Streamline” and “Volume” options are also frequently useful, in particular in 3d.

Let us choose the “Pseudocolor” item and select the temperature field as the quantity to plot. Your
main window should now look as shown in Fig. 3(b). Then hit the “Draw” button to make Visit
generate data for the selected plots. This will yield a picture such as shown in Fig. 4(a) in the display
window of Visit.

Overlaying data: Visit can overlay multiple plots in the same view. To this end, add another plot to
the view using again the “Add” button to obtain the menu of possible plots, then the “Draw” button
to actually draw things. For example, if we add velocity vectors and the mesh, the main window looks
as in Fig. 3(c) and the main view as in Fig. 4(b).

Adjusting how data is displayed: Without going into too much detail, if you double click onto the name
of a plot in the “Plots” window, you get a dialog in which many of the properties of this plot can be
adjusted. Further details can be changed by using “Operators” on a plot.

Making the output prettier: As can be seen in Fig. 4, Visit by default puts a lot of clutter around the
figure — the name of the user, the name of the input file, color bars, axes labels and ticks, etc. This
may be useful to explore data in the beginning but does not yield good pictures for presentations or
publications. To reduce the amount of information displayed, go to the “Controls > Annotations”
menu item to get a dialog in which all of these displays can be selectively switched on and off.

Saving figures: To save a visualization into a file that can then be included into presentations and
publications, go to the menu item “File > Save window”. This will create successively numbered files
in the directory from which Visit was started each time a view is saved. Things like the format used
for these files can be chosen using the “File > Set save options” menu item. We have found that one
can often get better looking pictures by selecting the “Screenshot” method in this dialog.

35

More information on all of these topics can be found in the Visit documentation, see https://visit.
11nl.gov/. We have also recorded video lectures demonstrating this process interactively at http://www.
youtube.com/watch?v=3ChnUxqtt08 for Visit, and at http://www.youtube.com/watch?v=w-65jufR-bc
for Paraview.

4.4.2 Visualizing statistical data

In addition to the graphical output discussed above, ASPECT produces a statistics file that collects in-
formation produced during each time step. For the remainder of this section, let us assume that we have
run ASPECT with the input file discussed in Section 6.2.1, simulating convection in a box. After running
ASPECT, you will find a file called statistics in the output directory that, at the time of writing this,
looked like this: This file has a structure that looks (at the time of writing this section) like this:

1: Time step number
2: Time (seconds)
3: Number of mesh cells
4: Number of Stokes degrees of freedom
5: Number of temperature degrees of freedom
6: Iterations for temperature solver
7: Iterations for Stokes solver
8: Veloctity iterations in Stokes preconditioner
9: Schur complement iterations in Stokes preconditioner

~
S

: Time step size (seconds)
: RMS welocity (m/s)

oW R R R R R W W oW oW OWH R R R W W OW oW W
~
~

12: Mazx. velocity (m/s)

13: Minimal temperature (K)

14: Average temperature (K)

15: Mazimal temperature (K)

16: Average nondimensional temperature (K)

17: Outward heat fluz through boundary with indicator 0 ("left") (W)

18: Outward heat fluz through boundary with indicator 1 ("right") (W)

19: Outward heat fluz through boundary with indicator 2 ("bottom") (W)

20: Outward heat fluz through boundary with indicator 3 ("top") (W)

21: Visualization file name

0 0.0000e+00 256 2467 1089 0 29 30 29 1.2268e-02 1.79026783e+00 2.54322608e+00
1 1.2268e-02 256 2467 1089 32 29 30 30 3.7388e-03 5.89844152e+00 8.35160076e+00
2 1.6007e-02 256 2467 1089 20 28 29 29 2.0239e-03 1.09071922e+01 1.54298908e+01
3 1.8031e-02 256 2467 1089 15 27 28 28 1.3644e-03 1.61759153e+01 2.28931189e+01
4 1.9395e-02 256 2467 1089 13 26 27 27 1.0284e-03 2.14465789e+01 3.03731397e+01
5 2.0424e-02 256 2467 1089 11 25 26 26 8.2812e-04 2.66110761e+01 3.77180480e+01

In other words, it first lists what the individual columns mean with a hash mark at the beginning of the
line and then has one line for each time step in which the individual columns list what has been explained
above.!?

This file is easy to visualize. For example, one can import it as a whitespace separated file into a
spreadsheet such as Microsoft Excel or OpenOffice/LibreOffice Calc and then generate graphs of one column
against another. Or, maybe simpler, there is a multitude of simple graphing programs that do not need the
overhead of a full fledged spreadsheet engine and simply plot graphs. One that is particularly simple to use
and available on every major platform is Gnuplot. It is extensively documented at http://www.gnuplot.
info/.

13With input files that ask for initial adaptive refinement, the first time step may appear twice because we solve on a mesh that
is globally refined and we then start the entire computation over again on a once adaptively refined mesh (see the parameters
in Section 5.82 for how to do that).

36

https://visit.llnl.gov/
https://visit.llnl.gov/
http://www.youtube.com/watch?v=3ChnUxqtt08
http://www.youtube.com/watch?v=3ChnUxqtt08
http://www.youtube.com/watch?v=w-65jufR-bc
http://www.gnuplot.info/
http://www.gnuplot.info/

Gnuplot is a command line program in which you enter commands that plot data or modify the way
data is plotted. When you call it, you will first get a screen that looks like this:

/home/user/aspect/output gnuplot

GNUPLOT
Version 4.6 patchlevel 0 last modified 2012-03-04
Build System: Linux x86_64

Copyright (C) 1986-1993, 1998, 2004, 2007-2012
Thomas Williams, Colin Kelley and many others

gnuplot home: http://www. gnuplot. info
faq, bugs, etc: type "help FAQ"
immediate help: type "help" (plot window: hit ’h’)

Terminal type set to ’qt’
gnuplot>

At the prompt on the last line, you can then enter commands. Given the description of the individual
columns given above, let us first try to plot the heat flux through boundary 2 (the bottom boundary of the
box), i.e., column 19, as a function of time (column 2). This can be achieved using the following command:

plot "statistics" using 2:19

The left panel of Fig. 5 shows what Gnuplot will display in its output window. There are many things one
can configure in these plots (see the Gnuplot manual referenced above). For example, let us assume that
we want to add labels to the z- and y-axes, use not just points but lines and points for the curves, restrict
the time axis to the range [0,0.2] and the heat flux axis to [—10 : 10], plot not only the flux through the
bottom but also through the top boundary (column 20) and finally add a key to the figure, then the following
commands achieve this:

set xlabel "Time"

set ylabel "Heat flux"

set style data linespoints

plot [0:0.2][-10:10] "statistics" using 2:19 title "Bottom boundary", \
"statistics" using 2:20 title "Top boundary"

If a line gets too long, you can continue it by ending it in a backslash as above. This is rarely used on the
command line but useful when writing the commands above into a script file, see below. We have done it
here to get the entire command into the width of the page.

For those who are lazy, Gnuplot allows to abbreviate things in many different ways. For example, one
can abbreviate most commands. Furthermore, one does not need to repeat the name of an input file if it
is the same as the previous one in a plot command. Thus, instead of the commands above, the following
abbreviated form would have achieved the same effect:

se x1 "Time"

se yl "Heat flux"

se sty da 1p

pl [:0.2][-10:10] "statistics" us 2:19 t "Bottom boundary", "" us 2:20 t "Top boundary"

This is of course unreadable at first but becomes useful once you become more familiar with the commands
offered by this program.

Once you have gotten the commands that create the plot you want right, you probably want to save it
into a file. Gnuplot can write output in many different formats. For inclusion in publications, either eps or
png are the most common. In the latter case, the commands to achieve this are

37

B0 [Gnuplot window 0

© 0 0] = [Gruplot window 0

"Gﬁ"\ 8 Q 7 VGHQ\ e_a e

1

"StatisticsTus 2217 '+ Bottom boundary ——
Top boundary

Heat flux
°

bt

+++++++++¢&&++¢++*+&+++}#M

10
-8 0 0.05 0.1 0.15 0.2
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time
0.325056, -3.96157 0.206455, -4.42110

Figure 5: Visualizing the statistics file obtained from the example in Section 6.2.1 using Gnuplot: Output
using simple commands.

set terminal png
set output "heatflux.png"
replot

The last command will simply generate the same plot again but this time into the given file. The result is a
graphics file similar to the one shown in Fig. 7 on page 176.

Note: After setting output to a file, all following plot commands will want to write to this file.
Thus, if you want to create more plots after the one just created, you need to reset output back to
the screen. On Linux, this is done using the command set terminal X11. You can then continue
experimenting with plots and when you have the next plot ready, switch back to output to a file.

What makes Gnuplot so useful is that it doesn’t just allow entering all these commands at the prompt.
Rather, one can write them all into a file, say plot-heatflux.gnuplot, and then, on the command line, call

gnuplot plot-heatflux.gnuplot

to generate the heatflux.png file. This comes in handy if one wants to create the same plot for multiple
simulations while playing with parameters of the physical setup. It is also a very useful tool if one wants to
generate the same kind of plot again later with a different data set, for example when a reviewer requested
additional computations to be made for a paper or if one realizes that one has forgotten or misspelled an
axis label in a plot.™

Gnuplot has many many more features we have not even touched upon. For example, it is equally happy
to produce three-dimensional graphics, and it also has statistics modules that can do things like curve fits,
statistical regression, and many more operations on the data you provide in the columns of an input file. We
will not try to cover them here but instead refer to the manual at http://www.gnuplot.info/. You can

also get a good amount of information by typing help at the prompt, or a command like help plot to get
help on the plot command.

M1n my own work, I usually save the ASPECT input file, the statistics output file and the Gnuplot script along with the
actual figure I want to include in a paper. This way, it is easy to either re-run an entire simulation, or just tweak the graphic
at a later time. Speaking from experience, you will not believe how often one wants to tweak a figure long after it was first

created. In such situations it is outstandingly helpful if one still has both the actual data as well as the script that generated
the graphic.

38

http://www.gnuplot.info/

4.4.3 Large data issues for parallel computations

Among the challenges in visualizing the results of parallel computations is dealing with the large amount of
data. The first bottleneck this presents is during run-time when ASPECT wants to write the visualization
data of a time step to disk. Using the compressed VTU format, ASPECT generates on the order of 10 bytes
of output for each degree of freedom in 2d and more in 3d; thus, output of a single time step can run into
the range of gigabytes that somehow have to get from compute nodes to disk. This stresses both the cluster
interconnect as well as the data storage array.

There are essentially two strategies supported by ASPECT for this scenario:

e If your cluster has a fast interconnect, for example Infiniband, and if your cluster has a fast, distributed
file system, then ASPECT can produce output files that are already located in the correct output
directory (see the options in Section 5.2) on the global file system. ASPECT uses MPI I/O calls to
this end, ensuring that the local machines do not have to access these files using slow NEFS-mounted
global file systems.

e If your cluster has a slow interconnect, e.g., if it is simply a collection of machines connected via
Ethernet, then writing data to a central file server may block the rest of the program for a while. On
the other hand, if your machines have fast local storage for temporary file systems, then ASPECT can
write data first into such a file and then move it in the background to its final destination while already
continuing computations. To select this mode, set the appropriate variables discussed in Section 5.100.
Note, however, that this scheme only makes sense if every machine on which MPI processes run has
fast local disk space for temporary storage.

Note: An alternative would be if every processor directly writes its own files into the global
output directory (possibly in the background), without the intermediate step of the temporary
file. In our experience, file servers are quickly overwhelmed when encountering a few hundred
machines wanting to open, fill, flush and close their own file via NFS mounted file system calls,
sometimes completely blocking the entire cluster environment for extended periods of time.

4.5 Checkpoint/restart support

If you do long runs, especially when using parallel computations, there are a number of reasons to periodically
save the state of the program:

e If the program crashes for whatever reason, the entire computation may be lost. A typical reason is
that a program has exceeded the requested wallclock time allocated by a batch scheduler on a cluster.

e Most of the time, no realistic initial conditions for strongly convecting flow are available. Consequently,
one typically starts with a somewhat artificial state and simply waits for a long while till the convective
state enters the phase where it shows its long-term behavior. However, getting there may take a good
amount of CPU time and it would be silly to always start from scratch for each different parameter
setting. Rather, one would like to start such parameter studies with a saved state that has already
passed this initial, unphysical, transient stage.

To this end, ASPECT creates a set of files in the output directory (selected in the parameter file) every
N time steps (controlled by the number of steps or wall time as specified in subsection Checkpointing, see
Section 5.24) in which the entire state of the program is saved so that a simulation can later be continued
at this point. The previous checkpoint files will then be deleted. To resume operations from the last saved
state, you need to set the Resume computation flag in the input parameter file to true, see Section 5.2.

39

Note: It is not imperative that the parameters selected in the input file are exactly the same
when resuming a program from a saved state than what they were at the time when this state
was saved. For example, one may want to choose a different parametrization of the material law,
or add or remove postprocessors that should be run at the end of each time step. Likewise, the
end time, the times at which some additional mesh refinement steps should happen, etc., can be
different.

Yet, it is clear that some other things can’t be changed: For example, the geometry model that
was used to generate the coarse mesh and describe the boundary must be the same before and
after resuming a computation. Likewise, you can not currently restart a computation with a
different number of processors than initially used to checkpoint the simulation. Not all invalid
combinations are easy to detect, and ASPECT may not always realize immediate what is going on
if you change a setting that can’t be changed. However, you will almost invariably get nonsensical
results after some time.

4.6 Making ASPECT run faster

When developing ASPECT, we are guided by the principle that the default for all settings should be safe.
In particular, this means that you should get errors when something goes wrong, the program should not
let you choose an input file parameter so that it doesn’t make any sense, and we should solve the equations
to best ability without cutting corners. The goal is that when you start working with ASPECT that we
give you the best answer we can. The downside is that this also makes ASPECT run slower than may be
possible. This section describes ways of making ASPECT run faster — assuming that you know what you
are doing and are making conscious decisions.

4.6.1 Debug vs. optimized mode

Both DEAL.IT and ASPECT by default have a great deal of internal checking to make sure that the code’s
state is valid. For example, if you write a new postprocessing plugin (see Section 7.1)) in which you need to
access the solution vector, then DEAL.II’s Vector class will make sure that you are only accessing elements
of the vector that actually exist and are available on the current machine if this is a parallel computation.
We do so because it turns out that by far the most bugs one introduces in programs are of the kind where
one tries to do something that obviously doesn’t make sense (such as accessing vector element 101 when it
only has 100 elements). These kinds of bugs are more frequent than implementing a wrong algorithm, but
they are fortunately easy to find if you have a sufficient number of assertions in your code. The downside is
that assertions cost run time.

As mentioned above, the default is to have all of these assertions in the code to catch those places where
we may otherwise silently access invalid memory locations. However, once you have a plugin running and
verified that your input file runs without problems, you can switch off all of these checks by switching from
debug to optimized mode. This means re-compiling ASPECT and linking against a version of the DEAL.II
library without all of these internal checks. Because this is the first thing you will likely want to do, we have
already discussed how to do all of this in Section 4.3.

4.6.2 Adjusting solver tolerances

At the heart of every time step lies the solution of linear systems for the Stokes equations, the temperature
field, and possibly for compositional fields. In essence, each of these steps requires us to solve a linear system
of the form Az = b which we do through iterative solvers, i.e., we try to find a sequence of approximations z(¥)
where () — z = A~'b. This iteration is terminated at iteration k if the approximation is “close enough”
to the exact solution. The solvers we use this determine this by testing after every iteration whether the
residual, 1) = A(x — 2®) = b — Az®) | satisfies ||r*)|| < g|r(®)|| where ¢ is called the (relative) tolerance.

Obviously, the smaller we choose ¢, the more accurate the approximation z(*) will be. On the other hand,
it will also take more iterations and, consequently, more CPU time to reach the stopping criterion with a

40

smaller tolerance. The default value of these tolerances are chosen so that the approximation is typically
sufficient. You can make ASPECT run faster if you choose these tolerances larger. The parameters you
can adjust are all listed in Section 5.2 and are located at the top level of the input file. In particular,
the parameters you want to look at are Linear solver tolerance, Temperature solver tolerance and
Composition solver tolerance.

All this said, it is important to understand the consequences of choosing tolerances larger. In particular,
if you choose tolerances too large, then the difference between the exact solution of a linear system x and the
approximation z(®¥) may become so large that you do not get an accurate output of your model any more.
A rule of thumb in choosing tolerances is to start with a small value and then increase the tolerance until
you come to a point where the output quantities start to change significantly. This is the point where you
will want to stop.

4.6.3 Adjusting solver preconditioner tolerances

To solve the Stokes equations it is necessary to lower the condition number of the Stokes matrix by precon-
A1 _A-1BTg-1
0 5-1

system, where A~ A-1is the approximate inverse of the A block and S~ is the approximate inverse of the Schur

ditioning it. In ASPECT a right preconditioner Y~ = (> is used to precondition the

complement matrix. Matrix A~ A=1 and S—1 are calculated through a CG solve, which requires a tolerance to
be set. In comparison with the solver tolerances of the previous section, these parameters are relatively safe
to use, since they only change the preconditioner, but can speed up or slow down solving the Stokes system
considerably.

In practice A—1 takes by far the most time to compute, but is also very important in conditioning the
system. The accuracy of the computation of A—! is controlled by the parameter Linear solver A block
tolerance which has a default value of 1e — 2. Setting this tolerance to a less strict value will result in more
outer iterations, since the preconditioner is not as good, but the amount of time to compute A~! can drop
significantly resulting in a reduced total solve time. The cookbook crustal deformation (Section 6.3.6) for
example can be computed much faster by setting the Linear solver A block tolerance to 5¢ — 1. The
calculation of S—1 is usually much faster and the conditioning of the system is less sensitive to the parameter
Linear solver S block tolerance, but for some problems it might be worth it to investigate.

4.6.4 Using lower order elements for the temperature/compositional discretization

The default settings of ASPECT use quadratic finite elements for the velocity. Given that the temperature
and compositional fields essentially (up to material parameters) satisfy advection equations of the kind
0,/T+u-VT = ..., it seems appropriate to also use quadratic finite elemen shape functions for the temperature
and compositional fields.

However, this is not mandatory. If you do not care about high accuracy in these fields and are mostly
interested in the velocity or pressure field, you can select lower-order finite elements in the input file. The
polynomial degrees are controlled with the parameters in the discretization section of the input file, see
Section 5.29, in particular by Temperature polynomial degree and Composition polynomial degree.

As with the other parameters discussed above and below, it is worthwhile comparing the results you get
with different values of these parameters when making a decision whether you want to save on accuracy in
order to reduce compute time. An example of how this choice affects the accuracy you get is discussed in
Section 6.2.1.

4.6.5 Limiting postprocessing

ASPECT has a lot of postprocessing capabilities, from generating graphical output to computing average
temperatures or temperature fluxes. To see what all is possible, take a look at the List of postprocessors
parameter that can be set in the input file, see Section 5.88.

41

Many of these postprocessors take a non-negligible amount of time. How much they collectively use
can be inferred from the timing report ASPECT prints periodically among its output, see for example the
output shown in Section 6.2.1. So, if your computations take too long, consider limiting which postprocessors
you run to those you really need. Some postprocessors — for example those that generate graphical output,
see Section 5.100 — also allow you to run them only once every once in a while, rather than at every time
step.

4.6.6 Switching off pressure normalization

In most practically relevant cases, the Stokes equations (1)—(2) only determine the pressure up to a constant
because only the pressure gradient appears in the equations, not the actual value of it. However, unlike this
“mathematical” pressure, we have a very specific notion of the “physical” pressure: namely a well-defined
quantity that at the surface of Earth equals the air pressure, which compared to the hydrostatic pressure
inside Earth is essentially zero.

As a consequence, the default in ASPECT is to normalize the computed “mathematical” pressure in
such a way that either the mean pressure at the surface is zero (where the geometry model describes where
the “surface” is, see Section 7.3.3), or that the mean pressure in the domain is zero. This normalization is
important if your model describes densities, viscosities and other quantities in dependence of the pressure
— because you almost certainly had the “physical” pressure in mind, not some unspecified “mathematical”
one. On the other hand, if you have a material model in which the pressure does not enter, then you don’t
need to normalize the pressure at all — simply go with whatever the solver provides. In that case, you can
switch off pressure normalization by looking at the Pressure normalization parameter at the top level of
the input file, see Section 5.2.

4.6.7 Regularizing models with large coefficient variation

Models with large jumps in viscosity and other coefficients present significant challenges to both discretiza-
tions and solvers. In particular, they can lead to very long solver times. Section 6.2.8 presents parameters
that can help regularize models and these typically also include significant improvements in run-time.

5 Run-time input parameters

5.1 Overview

What ASPECT computes is driven by two things:

e The models implemented in ASPECT. This includes the geometries, the material laws, or the initial
conditions currently supported. Which of these models are currently implemented is discussed below;
Section 7 discusses in great detail the process of implementing additional models.

e Which of the implemented models is selected, and what their run-time parameters are. For example,
you could select a model that prescribes constant coefficients throughout the domain from all the mate-
rial models currently implemented; you could then select appropriate values for all of these constants.
Both of these selections happen from a parameter file that is read at run time and whose name is
specified on the command line. (See also Section 4.1.)

In this section, let us give an overview of what can be selected in the parameter file. Specific parameters,
their default values, and allowed values for these parameters are documented in the following subsections.
An index with page numbers for all run-time parameters can be found on page 309.

5.1.1 The structure of parameter files

Most of the run-time behavior of ASPECT is driven by a parameter file that looks in essence like this:

42

set Dimension =2

set Resume computation = false
set End time = 1lel0
set CFL number =1.0
set Output directory = bin

subsection Mesh refinement
set Initial adaptive refinement = 1
set Initial global refinement
end

subsection Material model
set Model name = simple

subsection Simple model

set Reference density = 3300
set Reference temperature = 293
set Viscosity = be24
end
end

Some parameters live at the top level, but most parameters are grouped into subsections. An input
parameter file is therefore much like a file system: a few files live in the root directory; others are in a nested
hierarchy of sub-directories. And just as with files, parameters have both a name (the thing to the left of
the equals sign) and a content (what’s to the right).

All parameters you can list in this input file have been declared in ASPECT. What this means is that
you can’t just list anything in the input file, and expect that entries that are unknown are simply ignored.
Rather, if your input file contains a line setting a parameter that is unknown, you will get an error message.
Likewise, all declared parameters have a description of possible values associated with them — for example,
some parameters must be non-negative integers (the number of initial refinement steps), can either be true or
false (whether the computation should be resumed from a saved state), or can only be a single element from
a selection (the name of the material model). If an entry in your input file doesn’t satisfy these constraints,
it will be rejected at the time of reading the file (and not when a part of the program actually accesses
the value and the programmer has taken the time to also implement some error checking at this location).
Finally, because parameters have been declared, you do not need to specify a parameter in the input file: if a
parameter isn’t listed, then the program will simply use the default provided when declaring the parameter.

Note: In cases where a parameter requires a significant amount of text, you can end a line in the
input file with a backslash. This indicates that the following line will simply continue to be part
of the text of the current line, in the same way as the C/C++ preprocessor expands lines that
end in backslashes.

5.1.2 Categories of parameters
The parameters that can be provided in the input file can roughly be categorized into the following groups:

e Global parameters (see Section 5.2): These parameters determine the overall behavior of the program.
Primarily they describe things like the output directory, the end time of the simulation, or whether
the computation should be resumed from a previously saved state.

e Parameters for certain aspects of the numerical algorithm: These describe, for example, the specifics of
the spatial discretization. In particular, this is the case for parameters concerning the polynomial degree

43

of the finite element approximation (Section 5.29), some details about the stabilization (Section 5.30),
and how adaptive mesh refinement is supposed to work (Section 5.82).

e Parameters that describe certain global aspects of the equations to be solved: This includes, for
example, a description if certain terms in the model should be omitted or not. See Section 5.87 for the
list of parameters in this category.

e Parameters that characterize plugins: Certain behaviors of ASPECT are described by what we call
plugins — self-contained parts of the code that describe one particular aspect of the simulation. An
example would be which of the implemented material models to use, and the specifics of this material
model. The sample parameter file above gives an indication of how this works: within a subsection of
the file that pertains to the material models, one can select one out of several plugins (or, in the case
of the postprocessors, any number, including none, of the available plugins), and one can then specify
the specifics of this model in a sub-subsection dedicated to this particular model.

A number of components of ASPECT are implemented via plugins. Some of these, together with the
sections in which their parameters are declared, are the following:

— The material model: Sections 5.66 and following.

— The geometry: Sections 5.32 and following.

— The gravity description: Sections 5.39 and following.

— Initial conditions for the temperature: Sections 5.51 and following.

— Temperature boundary conditions: Sections 5.10 and following.

Postprocessors: Sections 5.88 and following for most postprocessors, section 5.100 and following
for postprocessors related to visualization.

The details of parameters in each of these categories can be found in the sections linked to above. Some
of them will also be used in the cookbooks in Section 6.

5.1.3 A note on the syntax of formulas in input files

Input files have different ways of describing certain things to ASPECT. For example, you could select a
plugin for the temperature initial values that prescribes a constant temperature, or a plugin that implements
a particular formula for these initial conditions in C++ in the code of the plugin, or a plugin that allows
you to describe this formula in a symbolic way in the input file (see Section 5.51). An example of this latter
case is this snippet of code discussed in Section 6.2.2:

subsection Initial conditions
set Model name = function

subsection Function

set Variable names = X,y,Z
p=0.01, L=1, pi=3.1415926536, k=1
(1.0-2z) - p*cos(k*pi*x/L)*sin(pi*z)*y~3

set Function constants
set Function expression
end
end

The formulas you can enter here need to use a syntax that is understood by the functions and classes

that interpret what you write. Internally, this is done using the muparser library, see http://muparser.
beltoforion.de/. The syntax is mostly self-explanatory in that it allows to use the usual symbols x, y and z

to reference coordinates (unless a particular plugin uses different variables, such as the depth), the symbol t

for time in many situations, and allows you to use all of the typical mathematical functions such as sine and co-

sine. Another common case is an if-statement that has the general form if (condition,true-expression,false-expression
For more examples of the syntax understood, reference the documentation of the muparser library linked to

above.

44

http://muparser.beltoforion.de/
http://muparser.beltoforion.de/

5.2 Global parameters

o Parameter name: Additional shared libraries
Value:
Default:

Description: A list of names of additional shared libraries that should be loaded upon starting up the
program. The names of these files can contain absolute or relative paths (relative to the directory in
which you call ASPECT). In fact, file names that are do not contain any directory information (i.e.,
only the name of a file such as <myplugin.so> will not be found if they are not located in one of
the directories listed in the LD_LIBRARY_PATH environment variable. In order to load a library in the
current directory, use <./myplugin.so> instead.

The typical use of this parameter is so that you can implement additional plugins in your own directo-
ries, rather than in the ASPECT source directories. You can then simply compile these plugins into a
shared library without having to re-compile all of ASPECT. See the section of the manual discussing
writing extensions for more information on how to compile additional files into a shared library.

Possible values: [List list of [FileName (Type: input)] of length 0...4294967295 (inclusive)]

e Parameter name: Adiabatic surface temperature
Value: 0
Default: 0

Description: In order to make the problem in the first time step easier to solve, we need a reasonable
guess for the temperature and pressure. To obtain it, we use an adiabatic pressure and temperature
field. This parameter describes what the ‘adiabatic’ temperature would be at the surface of the domain
(i.e. at depth zero). Note that this value need not coincide with the boundary condition posed at this
point. Rather, the boundary condition may differ significantly from the adiabatic value, and then
typically induce a thermal boundary layer.

For more information, see the section in the manual that discusses the general mathematical model.
Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

e Parameter name: CFL number
Value: 1.0
Default: 1.0
Description: In computations, the time step k is chosen according to k = cming HuHhiKKpT where hg is
the diameter of cell K, and the denominator is the maximal magnitude of the velocity on cell K times
the polynomial degree pr of the temperature discretization. The dimensionless constant c is called the
CFL number in this program. For time discretizations that have explicit components, ¢ must be less
than a constant that depends on the details of the time discretization and that is no larger than one.
On the other hand, for implicit discretizations such as the one chosen here, one can choose the time
step as large as one wants (in particular, one can choose ¢ > 1) though a CFL number significantly
larger than one will yield rather diffusive solutions. Units: None.

Possible values: [Double 0...1.79769e+308 (inclusive)]

e Parameter name: Composition solver tolerance
Value: 1le-12
Default: 1e-12

Description: The relative tolerance up to which the linear system for the composition system gets
solved. See ’linear solver tolerance’ for more details.

Possible values: [Double 0...1 (inclusive)]

45

e Parameter name: Dimension
Value: 2
Default: 2

Description: The number of space dimensions you want to run this program in. ASPECT can run in
2 and 3 space dimensions.

Possible values: [Integer range 2...4 (inclusive)]

e Parameter name: End time
Value: 5.69¢+300
Default: 5.69e+300

Description: The end time of the simulation. The default value is a number so that when converted
from years to seconds it is approximately equal to the largest number representable in floating point
arithmetic. For all practical purposes, this equals infinity. Units: Years if the 'Use years in output
instead of seconds’ parameter is set; seconds otherwise.

Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

e Parameter name: Linear solver A block tolerance
Value: 1e-2
Default: 1e-2

Description: A relative tolerance up to which the approximate inverse of the A block of the Stokes
system is computed. This approximate A is used in the preconditioning used in the GMRES solver.

Possible values: [Double 0...1 (inclusive)]

o Parameter name: Linear solver S block tolerance
Value: 1e-6
Default: 1e-6

Description: A relative tolerance up to which the approximate inverse of the S block (Schur complement
matrix, S = BA!BT) of the Stokes system is computed. This approximate inverse of the S block is
used in the preconditioning used in the GMRES solver.

Possible values: [Double 0...1 (inclusive)]

o Parameter name: Linear solver tolerance
Value: 1e-7
Default: 1e-7

Description: A relative tolerance up to which the linear Stokes systems in each time or nonlinear step
should be solved. The absolute tolerance will then be |[Mxy — F| - tol, where o = (0,pp) is the
initial guess of the pressure, M is the system matrix, F is the right-hand side, and tol is the parameter
specified here. We include the initial guess of the pressure to remove the dependency of the tolerance
on the static pressure. A given tolerance value of 1 would mean that a zero solution vector is an
acceptable solution since in that case the norm of the residual of the linear system equals the norm of
the right hand side. A given tolerance of 0 would mean that the linear system has to be solved exactly,
since this is the only way to obtain a zero residual.

In practice, you should choose the value of this parameter to be so that if you make it smaller the
results of your simulation do not change any more (qualitatively) whereas if you make it larger, they
do. For most cases, the default value should be sufficient. In fact, a tolerance of 1le-4 might be accurate
enough.

Possible values: [Double 0...1 (inclusive)]

46

e Parameter name: Max nonlinear iterations
Value: 10
Default: 10
Description: The maximal number of nonlinear iterations to be performed.

Possible values: [Integer range 0...2147483647 (inclusive)]

o Parameter name: Max nonlinear iterations in pre-refinement
Value: 2147483647
Default: 2147483647

Description: The maximal number of nonlinear iterations to be performed in the pre-refinement steps.
This does not include the last refinement step before moving to timestep 1. When this parameter has
a larger value than max nonlinear iterations, the latter is used.

Possible values: [Integer range 0...2147483647 (inclusive)]

e Parameter name: Maximum time step
Value: 5.69e+300
Default: 5.69e+300

Description: Set a maximum time step size for the solver to use. Generally the time step based on
the CFL number should be sufficient, but for complicated models or benchmarking it may be useful
to limit the time step to some value. The default value is a value so that when converted from
years into seconds it equals the largest number representable by a floating point number, implying an
unlimited time step.Units: Years or seconds, depending on the “Use years in output instead of seconds”
parameter.

Possible values: [Double 0...1.79769e+308 (inclusive)]

e Parameter name: Nonlinear solver scheme
Value: IMPES
Default: IMPES

Description: The kind of scheme used to resolve the nonlinearity in the system. 'IMPES’ is the
classical IMplicit Pressure Explicit Saturation scheme in which ones solves the temperatures and Stokes
equations exactly once per time step, one after the other. The ’iterated IMPES’ scheme iterates this
decoupled approach by alternating the solution of the temperature and Stokes systems. The ’iterated
Stokes’ scheme solves the temperature equation once at the beginning of each time step and then
iterates out the solution of the Stokes equation. The 'Stokes only’ scheme only solves the Stokes
system and ignores compositions and the temperature equation (careful, the material model must not
depend on the temperature; mostly useful for Stokes benchmarks). The ’Advection only’scheme only
solves the temperature and other advection systems and instead of solving for the Stokes system, a
prescribed velocity and pressure is used

Possible values: [Selection IMPES—iterated IMPES—iterated Stokes—Stokes only—Advection only |

e Parameter name: Nonlinear solver tolerance
Value: 1e-5
Default: 1e-5

Description: A relative tolerance up to which the nonlinear solver will iterate. This parameter is only
relevant if Nonlinear solver scheme is set to ’iterated Stokes’ or ’iterated IMPES’.

Possible values: [Double 0...1 (inclusive)]

47

e Parameter name: Number of cheap Stokes solver steps
Value: 30
Default: 30

Description: As explained in the ASPECT paper (Kronbichler, Heister, and Bangerth, GJI 2012) we
first try to solve the Stokes system in every time step using a GMRES iteration with a poor but
cheap preconditioner. By default, we try whether we can converge the GMRES solver in 30 such
iterations before deciding that we need a better preconditioner. This is sufficient for simple problems
with constant viscosity and we never need the second phase with the more expensive preconditioner.
On the other hand, for more complex problems, and in particular for problems with strongly varying
viscosity, the 30 cheap iterations don’t actually do very much good and one might skip this part right
away. In that case, this parameter can be set to zero, i.e., we immediately start with the better but
more expensive preconditioner.

Possible values: [Integer range 0...2147483647 (inclusive)]

e Parameter name: Output directory
Value: output
Default: output

Description: The name of the directory into which all output files should be placed. This may be an
absolute or a relative path.

Possible values: [DirectoryName]

e Parameter name: Pressure normalization
Value: surface
Default: surface

Description: If and how to normalize the pressure after the solution step. This is necessary because
depending on boundary conditions, in many cases the pressure is only determined by the model up to
a constant. On the other hand, we often would like to have a well-determined pressure, for example
for table lookups of material properties in models or for comparing solutions. If the given value is
‘surface’, then normalization at the end of each time steps adds a constant value to the pressure in
such a way that the average pressure at the surface of the domain is zero; the surface of the domain
is determined by asking the geometry model whether a particular face of the geometry has a zero or
small ‘depth’. If the value of this parameter is ‘volume’ then the pressure is normalized so that the
domain average is zero. If ‘no’ is given, the no pressure normalization is performed.

Possible values: [Selection surface—volume—no |

e Parameter name: Resume computation
Value: false
Default: false

Description: A flag indicating whether the computation should be resumed from a previously saved
state (if true) or start from scratch (if false). If auto is selected, models will be resumed if there is an
existing checkpoint file, otherwise started from scratch.

Possible values: [Selection true—false—auto |

e Parameter name: Start time
Value: 0
Default: 0

48

Description: The start time of the simulation. Units: Years if the 'Use years in output instead of
seconds’ parameter is set; seconds otherwise.

Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

Parameter name: Surface pressure
Value: 0
Default: 0

Description: The mathematical equations that describe thermal convection only determine the pressure
up to an arbitrary constant. On the other hand, for comparison and for looking up material parameters
it is important that the pressure be normalized somehow. We do this by enforcing a particular average
pressure value at the surface of the domain, where the geometry model determines where the surface is.
This parameter describes what this average surface pressure value is supposed to be. By default, it is
set to zero, but one may want to choose a different value for example for simulating only the volume of
the mantle below the lithosphere, in which case the surface pressure should be the lithostatic pressure
at the bottom of the lithosphere.

For more information, see the section in the manual that discusses the general mathematical model.
Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

Parameter name: Temperature solver tolerance
Value: le-12
Default: 1e-12

Description: The relative tolerance up to which the linear system for the temperature system gets
solved. See ’linear solver tolerance’ for more details.

Possible values: [Double 0...1 (inclusive)]

Parameter name: Timing output frequency
Value: 100
Default: 100

Description: How frequently in timesteps to output timing information. This is generally adjusted only
for debugging and timing purposes. If the value is set to zero it will also output timing information at
the initiation timesteps.

Possible values: [Integer range 0...2147483647 (inclusive)]

Parameter name: Use conduction timestep
Value: false
Default: false

Description: Mantle convection simulations are often focused on convection dominated systems. How-
ever, these codes can also be used to investigate systems where heat conduction plays a dominant role.
This parameter indicates whether the simulator should also use heat conduction in determining the
length of each time step.

Possible values: [Bool]

Parameter name: Use direct solver for Stokes system
Value: false
Default: false

49

5.3

5.4

Description: If set to true the linear system for the Stokes equation will be solved using Trilinos klu,
otherwise an iterative Schur complement solver is used. The direct solver is only efficient for small
problems.

Possible values: [Bool]

Parameter name: Use years in output instead of seconds
Value: true
Default: true

Description: When computing results for mantle convection simulations, it is often difficult to judge the
order of magnitude of results when they are stated in MKS units involving seconds. Rather, some kinds
of results such as velocities are often stated in terms of meters per year (or, sometimes, centimeters per
year). On the other hand, for non-dimensional computations, one wants results in their natural unit
system as used inside the code. If this flag is set to ’true’ conversion to years happens; if it is ’false’,
no such conversion happens. Note that when ’true’, some input such as prescribed velocities should
also use years instead of seconds.

Possible values: [Bool]

Parameters in section Adiabatic conditions model

Parameter name: Model name

Value: initial profile

Default: initial profile

Description: Select one of the following models:

‘initial profile’: A model in which the adiabatic profile is calculated once at the start of the model run.
The gravity is assumed to be in depth direction and the composition is evaluated at reference points,
no lateral averaging is performed. All material parameters are used from the material model plugin.

Possible values: [Selection initial profile]

Parameters in section Boundary composition model

Parameter name: Model name

Value: unspecified

Default: unspecified

Description: Select one of the following models:

‘ascii data’: Implementation of a model in which the boundary composition is derived from files
containing data in ascii format. Note the required format of the input data: The first lines may
contain any number of comments if they begin with '#’, but one of these lines needs to contain the
number of grid points in each dimension as for example '# POINTS: 3 3’. The order of the data
columns has to be 'x’, ’compositionl’, ’composition2’; etc. in a 2d model and ’x’, ’y’, ’composition1’,
‘composition2’; etc., in a 3d model, according to the number of compositional fields, which means that
there has to be a single column for every composition in the model. Note that the data in the input
files need to be sorted in a specific order: the first coordinate needs to ascend first, followed by the
second in order to assign the correct data to the prescribed coordinates.If you use a spherical model,
then the data will still be handled as Cartesian, however the assumed grid changes. 'x’ will be replaced
by the radial distance of the point to the bottom of the model, 'y’ by the azimuth angle and 'z’ by the
polar angle measured positive from the north pole. The grid will be assumed to be a latitude-longitude
grid. Note that the order of spherical coordinates is 'r’, 'phi’, 'theta’ and not 'r’, ’theta’, 'phi’, since
this allows for dimension independent expressions.

50

5.5

‘box’: A model in which the composition is chosen constant on all the sides of a box.

‘box with lithosphere boundary indicators’> A model in which the composition is chosen constant on
all the sides of a box. Additional boundary indicators are added to the lithospheric parts of the vertical
boundaries. This model is to be used with the "Two Merged Boxes’ Geometry Model.

‘initial composition’: A model in which the composition at the boundary is chosen to be the same as
given in the initial conditions.

Because this class simply takes what the initial composition had described, this class can not know
certain pieces of information such as the minimal and maximal composition on the boundary. For
operations that require this, for example in postprocessing, this boundary composition model must
therefore be told what the minimal and maximal values on the boundary are. This is done using
parameters set in section “Boundary composition model/Initial composition”.

‘spherical constant’: A model in which the composition is chosen constant on the inner and outer
boundaries of a spherical shell or chunk. Parameters are read from subsection ’Spherical constant’.

Possible values: [Selection ascii data—box—box with lithosphere boundary indicators—initial compo-
sition—spherical constant—unspecified |

Parameters in section Boundary composition model/Ascii data model

Parameter name: Data directory
Value: $ASPECT_SOURCE_DIR/data/boundary-composition/ascii-data/test/
Default: $ASPECT_SOURCE_DIR/data/boundary-composition/ascii-data/test/

Description: The name of a directory that contains the model data. This path may either be absolute
(if starting with a ’/’) or relative to the current directory. The path may also include the special text
"$ASPECT_SOURCE_DIR’ which will be interpreted as the path in which the ASPECT source files
were located when ASPECT was compiled. This interpretation allows, for example, to reference files
located in the ’'data/’ subdirectory of ASPECT.

Possible values: [DirectoryName]

Parameter name: Data file name
Value: box_2d_%s.%d.txt
Default: box_2d_%s.%d.txt

Description: The file name of the material data. Provide file in format: (Velocity file name).%s%d
where %s is a string specifying the boundary of the model according to the names of the boundary
indicators (of a box or a spherical shell).%d is any sprintf integer qualifier, specifying the format of the
current file number.

Possible values: [Anything]

Parameter name: Data file time step
Value: 1e6
Default: 1e6

Description: Time step between following velocity files. Depending on the setting of the global "Use
years in output instead of seconds’ flag in the input file, this number is either interpreted as seconds
or as years. The default is one million, i.e., either one million seconds or one million years.

Possible values: [Double 0...1.79769e¢+308 (inclusive)]

51

e Parameter name: Decreasing file order

5.6

Value: false
Default: false

Description: In some cases the boundary files are not numbered in increasing but in decreasing order
(e.g. 'Ma BP’). If this flag is set to "True’ the plugin will first load the file with the number 'First
velocity file number’” and decrease the file number during the model run.

Possible values: [Bool]

Parameter name: First data file model time
Value: 0
Default: 0

Description: Time from which on the velocity file with number "First velocity file number’ is used as
boundary condition. Previous to this time, a no-slip boundary condition is assumed. Depending on
the setting of the global "Use years in output instead of seconds’ flag in the input file, this number is
either interpreted as seconds or as years.

Possible values: [Double 0...1.79769¢+308 (inclusive)]

Parameter name: First data file number
Value: 0
Default: 0

Description: Number of the first velocity file to be loaded when the model time is larger than "First
velocity file model time’.

Possible values: [Integer range -2147483648...2147483647 (inclusive)]

Parameter name: Scale factor
Value: 1
Default: 1

Description: Scalar factor, which is applied to the boundary velocity. You might want to use this to
scale the velocities to a reference model (e.g. with free-slip boundary) or another plate reconstruction.
Another way to use this factor is to convert units of the input files. The unit is assumed to bem/s or
m/yr depending on the "Use years in output instead of seconds’ flag. If you provide velocities in cm/yr
set this factor to 0.01.

Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameters in section Boundary composition model/Box

Parameter name: Bottom composition
Value:
Default:

Description: A comma separated list of composition boundary values at the bottom boundary (at
minimal y-value in 2d, or minimal z-value in 3d). This list must have as many entries as there are
compositional fields. Units: none.

Possible values: [List list of [Double -1.79769e+308...1.79769e+308 (inclusive)] of length 0...4294967295
(inclusive)]

52

e Parameter name: Left composition

5.7

Value:
Default:

Description: A comma separated list of composition boundary values at the left boundary (at minimal
x-value). This list must have as many entries as there are compositional fields. Units: none.

Possible values: [List list of [Double -1.79769e+308...1.79769e+308 (inclusive)] of length 0...4294967295
(inclusive)]

Parameter name: Right composition

Value:

Default:

Description: A comma separated list of composition boundary values at the right boundary (at maximal
x-value). This list must have as many entries as there are compositional fields. Units: none.

Possible values: [List list of [Double -1.79769e+308...1.79769e+308 (inclusive)] of length 0...4294967295
(inclusive)]

Parameter name: Top composition

Value:

Default:

Description: A comma separated list of composition boundary values at the top boundary (at maximal
y-value in 2d, or maximal z-value in 3d). This list must have as many entries as there are compositional
fields. Units: none.

Possible values: [List list of [Double -1.79769e+308...1.79769e+308 (inclusive)] of length 0...4294967295
(inclusive)]

Parameters in section Boundary composition model/Box with lithosphere boundary

indicators

Parameter name: Bottom composition
Value:
Default:

Description: A comma separated list of composition boundary values at the bottom boundary (at
minimal y-value in 2d, or minimal z-value in 3d). This list must have as many entries as there are
compositional fields. Units: none.

Possible values: [List list of [Double -1.79769e+308...1.79769e+308 (inclusive)] of length 0...4294967295
(inclusive)]

Parameter name: Left composition

Value:

Default:

Description: A comma separated list of composition boundary values at the left boundary (at minimal
x-value). This list must have as many entries as there are compositional fields. Units: none.

Possible values: [List list of [Double -1.79769¢e+308...1.79769e+308 (inclusive)] of length 0...4294967295
(inclusive)]

53

o Parameter name: Left composition lithosphere

5.8

Value:
Default:

Description: A comma separated list of composition boundary values at the left boundary (at minimal
x-value). This list must have as many entries as there are compositional fields. Units: none.

Possible values: [List list of [Double -1.79769e+308...1.79769e+308 (inclusive)] of length 0...4294967295
(inclusive)]

Parameter name: Right composition

Value:

Default:

Description: A comma separated list of composition boundary values at the right boundary (at maximal
x-value). This list must have as many entries as there are compositional fields. Units: none.

Possible values: [List list of [Double -1.79769e+308...1.79769e+308 (inclusive)] of length 0...4294967295
(inclusive)]

Parameter name: Right composition lithosphere

Value:

Default:

Description: A comma separated list of composition boundary values at the right boundary (at maximal
x-value). This list must have as many entries as there are compositional fields. Units: none.

Possible values: [List list of [Double -1.79769e+308...1.79769e+308 (inclusive)| of length 0...4294967295
(inclusive)]

Parameter name: Top composition

Value:

Default:

Description: A comma separated list of composition boundary values at the top boundary (at maximal
y-value in 2d, or maximal z-value in 3d). This list must have as many entries as there are compositional
fields. Units: none.

Possible values: [List list of [Double -1.79769e+308...1.79769e+308 (inclusive)] of length 0...4294967295
(inclusive)]

Parameters in section Boundary composition model/Initial composition

Parameter name: Maximal composition

Value: 1

Default: 1

Description: Maximal composition. Units: none.

Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

Parameter name: Minimal composition

Value: 0

Default: 0

Description: Minimal composition. Units: none.

Possible values: [Double -1.79769e+308...1.79769¢+308 (inclusive)]

54

5.9 Parameters in section Boundary composition model/Spherical constant

o Parameter name: Inner composition

Value: 1

Default: 1

Description: Composition at the inner boundary (core mantle boundary). Units: none.
Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

Parameter name: Outer composition

Value: 0

Default: 0

Description: Composition at the outer boundary (lithosphere water/air). Units: none.
Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

5.10 Parameters in section Boundary temperature model

o Parameter name: Model name

Value: box
Default: unspecified
Description: Select one of the following models:

‘ascii data’: Implementation of a model in which the boundary data is derived from files containing
data in ascii format. Note the required format of the input data: The first lines may contain any
number of comments if they begin with ’#’, but one of these lines needs to contain the number of grid
points in each dimension as for example '# POINTS: 3 3’. The order of the data columns has to be
'x’, "Temperature [K]’ in a 2d model and ’x’, ’y’, "Temperature [K]” in a 3d model, which means that
there has to be a single column containing the temperature. Note that the data in the input files need
to be sorted in a specific order: the first coordinate needs to ascend first, followed by the second in
order to assign the correct data to the prescribed coordinates. If you use a spherical model, then the
data will still be handled as Cartesian, however the assumed grid changes. 'x’ will be replaced by the
radial distance of the point to the bottom of the model, ’y’ by the azimuth angle and ’z’ by the polar
angle measured positive from the north pole. The grid will be assumed to be a latitude-longitude grid.
Note that the order of spherical coordinates is ’r’, 'phi’, 'theta’ and not ’r’, ’theta’, 'phi’, since this
allows for dimension independent expressions.

‘box’: A model in which the temperature is chosen constant on all the sides of a box.

‘box with lithosphere boundary indicators’ A model in which the temperature is chosen constant on
all the sides of a box. Additional boundary indicators are added to the lithospheric parts of the vertical
boundaries. This model is to be used with the "Two Merged Boxes’ Geometry Model.

‘constant’: A model in which the temperature is chosen constant on a given boundary indicator.
Parameters are read from the subsection ’Constant’.

‘function’: Implementation of a model in which the boundary temperature is given in terms of an ex-
plicit formula that is elaborated in the parameters in section “Boundary temperature model—Function”.

Since the symbol ¢ indicating time may appear in the formulas for the prescribed temperatures, it is
interpreted as having units seconds unless the global input parameter “Use years in output instead of
seconds” is set, in which case we interpret the formula expressions as having units year.

Because this class simply takes what the function calculates, this class can not know certain pieces
of information such as the minimal and maximal temperature on the boundary. For operations that
require this, for example in postprocessing, this boundary temperature model must therefore be told

55

what the minimal and maximal values on the boundary are. This is done using parameters set in
section “Boundary temperature model/Initial temperature”.

The format of these functions follows the syntax understood by the muparser library, see Section 5.1.3.

‘initial temperature’: A model in which the temperature at the boundary is chosen to be the same as
given in the initial conditions.

Because this class simply takes what the initial temperature had described, this class can not know
certain pieces of information such as the minimal and maximal temperature on the boundary. For
operations that require this, for example in postprocessing, this boundary temperature model must
therefore be told what the minimal and maximal values on the boundary are. This is done using
parameters set in section “Boundary temperature model/Initial temperature”.

‘spherical constant’: A model in which the temperature is chosen constant on the inner and outer
boundaries of a spherical shell, ellipsoidal chunk or chunk. Parameters are read from subsection
"Spherical constant’.

Possible values: [Selection ascii data—box—box with lithosphere boundary indicators—constant—function—initial
temperature—spherical constant—unspecified |

5.11 Parameters in section Boundary temperature model/Ascii data model

e Parameter name: Data directory
Value: $ASPECT_SOURCE_DIR/data/boundary-temperature/ascii-data/test /
Default: $ASPECT_SOURCE_DIR/data/boundary-temperature/ascii-data/test/

Description: The name of a directory that contains the model data. This path may either be absolute
(if starting with a ’/’) or relative to the current directory. The path may also include the special text
"$ASPECT_SOURCE_DIR’ which will be interpreted as the path in which the ASPECT source files
were located when ASPECT was compiled. This interpretation allows, for example, to reference files
located in the ’'data/’ subdirectory of ASPECT.

Possible values: [DirectoryName]

e Parameter name: Data file name
Value: box_2d_%s.%d.txt
Default: box_2d_%s.%d.txt

Description: The file name of the material data. Provide file in format: (Velocity file name).%s%d
where %s is a string specifying the boundary of the model according to the names of the boundary
indicators (of a box or a spherical shell).%d is any sprintf integer qualifier, specifying the format of the
current file number.

Possible values: [Anything]

e Parameter name: Data file time step
Value: 1e6
Default: 1e6

Description: Time step between following velocity files. Depending on the setting of the global "Use
years in output instead of seconds’ flag in the input file, this number is either interpreted as seconds
or as years. The default is one million, i.e., either one million seconds or one million years.

Possible values: [Double 0...1.79769e¢+308 (inclusive)]

56

e Parameter name: Decreasing file order
Value: false
Default: false

Description: In some cases the boundary files are not numbered in increasing but in decreasing order
(e.g. 'Ma BP’). If this flag is set to "True’ the plugin will first load the file with the number 'First
velocity file number’ and decrease the file number during the model run.

Possible values: [Bool]

e Parameter name: First data file model time
Value: 0
Default: 0

Description: Time from which on the velocity file with number "First velocity file number’ is used as
boundary condition. Previous to this time, a no-slip boundary condition is assumed. Depending on
the setting of the global 'Use years in output instead of seconds’ flag in the input file, this number is
either interpreted as seconds or as years.

Possible values: [Double 0...1.79769e+308 (inclusive)]

e Parameter name: First data file number
Value: 0
Default: 0

Description: Number of the first velocity file to be loaded when the model time is larger than 'First
velocity file model time’.

Possible values: [Integer range -2147483648...2147483647 (inclusive)]

o Parameter name: Scale factor
Value: 1
Default: 1

Description: Scalar factor, which is applied to the boundary velocity. You might want to use this to
scale the velocities to a reference model (e.g. with free-slip boundary) or another plate reconstruction.
Another way to use this factor is to convert units of the input files. The unit is assumed to bem/s or
m/yr depending on the 'Use years in output instead of seconds’ flag. If you provide velocities in cm/yr
set this factor to 0.01.

Possible values: [Double 0...1.79769e+308 (inclusive)]

5.12 Parameters in section Boundary temperature model/Box

e Parameter name: Bottom temperature
Value: 0
Default: 0
Description: Temperature at the bottom boundary (at minimal z-value). Units: K.
Possible values: [Double -1.79769e+-308...1.79769e+308 (inclusive)]
e Parameter name: Left temperature
Value: 1
Default: 1

Description: Temperature at the left boundary (at minimal x-value). Units: K.
Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

57

e Parameter name: Right temperature
Value: 0
Default: 0
Description: Temperature at the right boundary (at maximal x-value). Units: K.
Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

o Parameter name: Top temperature
Value: 0
Default: 0
Description: Temperature at the top boundary (at maximal x-value). Units: K.
Possible values: [Double -1.79769¢+308...1.79769e+308 (inclusive)]

5.13 Parameters in section Boundary temperature model/Box with lithosphere boundary
indicators
e Parameter name: Bottom temperature
Value: 0
Default: 0
Description: Temperature at the bottom boundary (at minimal z-value). Units: K.
Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

e Parameter name: Left temperature
Value: 1
Default: 1
Description: Temperature at the left boundary (at minimal x-value). Units: K.
Possible values: [Double -1.79769e+308...1.79769¢+308 (inclusive)]

e Parameter name: Left temperature lithosphere
Value: 0
Default: 0

Description: Temperature at the additional left lithosphere boundary (specified by user in Geometry
Model). Units: K.

Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

e Parameter name: Right temperature
Value: 0
Default: 0
Description: Temperature at the right boundary (at maximal x-value). Units: K.
Possible values: [Double -1.79769¢+-308...1.79769e+308 (inclusive)]

e Parameter name: Right temperature lithosphere
Value: 0
Default: 0

Description: Temperature at the additional right lithosphere boundary (specified by user in Geometry
Model). Units: K.

Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

58

e Parameter name: Top temperature
Value: 0
Default: 0
Description: Temperature at the top boundary (at maximal x-value). Units: K.
Possible values: [Double -1.79769e+308...1.79769¢+308 (inclusive)]

5.14 Parameters in section Boundary temperature model/Constant

o Parameter name: Boundary indicator to temperature mappings
Value:
Default:

Description: A comma separated list of mappings between boundary indicators and the temperature
associated with the boundary indicators. The format for this list is “indicatorl : valuel, indicator2 :
value2, ...” where each indicator is a valid boundary indicator (either a number or the symbolic name
of a boundary as provided by the geometry model) and each value is the temperature of that boundary.

Possible values: [Map map of [Anything]:[Double -1.79769e+308...1.79769e+308 (inclusive)] of length
0...4204967295 (inclusive)]

5.15 Parameters in section Boundary temperature model/Function

e Parameter name: Function constants
Value:
Default:

Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘varl=valuel, var2=value2, ...".

A typical example would be to set this runtime parameter to ‘pi=3.1415926536’ and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)

Possible values: [Anything]

o Parameter name: Function expression
Value: 0
Default: 0

Description: The formula that denotes the function you want to evaluate for particular values of
the independent variables. This expression may contain any of the usual operations such as addition
or multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may
contain expressions like ‘if(x;0, 1, -1)” where the expression evaluates to the second argument if the
first argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.

If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.

Possible values: [Anything]

59

e Parameter name: Maximal temperature
Value: 3773
Default: 3773
Description: Maximal temperature. Units: K.
Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

e Parameter name: Minimal temperature
Value: 273
Default: 273
Description: Minimal temperature. Units: K.
Possible values: [Double -1.79769e+308...1.79769¢+308 (inclusive)]

e Parameter name: Variable names
Value: x,y,t
Default: x,y,t

Description: The name of the variables as they will be used in the function, separated by commas. By
default, the names of variables at which the function will be evaluated is ‘x’ (in 1d), ‘x,y’ (in 2d) or
‘x,y,2" (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’” and then use these variable names in your
function expression.

Possible values: [Anything]

5.16 Parameters in section Boundary temperature model/Initial temperature

e Parameter name: Maximal temperature
Value: 3773
Default: 3773
Description: Maximal temperature. Units: K.
Possible values: [Double -1.79769e+308...1.79769¢+308 (inclusive)]

e Parameter name: Minimal temperature
Value: 0
Default: 0
Description: Minimal temperature. Units: K.
Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

5.17 Parameters in section Boundary temperature model/Spherical constant
o Parameter name: Inner temperature
Value: 6000
Default: 6000
Description: Temperature at the inner boundary (core mantle boundary). Units: K.
Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

60

e Parameter name: Outer temperature
Value: 0
Default: 0
Description: Temperature at the outer boundary (lithosphere water/air). Units: K.
Possible values: [Double -1.79769e+308...1.79769¢+308 (inclusive)]

5.18 Parameters in section Boundary traction model

5.19 Parameters in section Boundary traction model/Function

e Parameter name: Function constants
Value:
Default:

Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘varl=valuel, var2=value2, ...".

A typical example would be to set this runtime parameter to ‘pi=3.1415926536’ and then use ‘pi’ in

the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)

Possible values: [Anything]

e Parameter name: Function expression
Value: 0; 0
Default: 0; 0

Description: The formula that denotes the function you want to evaluate for particular values of
the independent variables. This expression may contain any of the usual operations such as addition
or multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may
contain expressions like ‘if(x;0, 1, -1)” where the expression evaluates to the second argument if the
first argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.

If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.

Possible values: [Anything]

e Parameter name: Variable names
Value: x,y,t
Default: x,yt

Description: The name of the variables as they will be used in the function, separated by commas. By
default, the names of variables at which the function will be evaluated is ‘x’ (in 1d), ‘x,y’ (in 2d) or
‘x,y,z" (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’” and then use these variable names in your
function expression.

Possible values: [Anything]

61

5.20 Parameters in section Boundary velocity model

5.21 Parameters in section Boundary velocity model/Ascii data model

e Parameter name: Data directory
Value: $ASPECT_SOURCE_DIR/data/velocity-boundary-conditions/ascii-data/test/
Default: $ASPECT_SOURCE_DIR/data/velocity-boundary-conditions/ascii-data/test/

Description: The name of a directory that contains the model data. This path may either be absolute
(if starting with a ’/’) or relative to the current directory. The path may also include the special text
"$ASPECT_SOURCE_DIR’ which will be interpreted as the path in which the ASPECT source files
were located when ASPECT was compiled. This interpretation allows, for example, to reference files
located in the ’data/’ subdirectory of ASPECT.

Possible values: [DirectoryName|

o Parameter name: Data file name
Value: box_2d_%s.%d.txt
Default: box_2d_%s.%d.txt

Description: The file name of the material data. Provide file in format: (Velocity file name).%s%d
where %s is a string specifying the boundary of the model according to the names of the boundary
indicators (of a box or a spherical shell).%d is any sprintf integer qualifier, specifying the format of the
current file number.

Possible values: [Anything]

o Parameter name: Data file time step
Value: 1e6
Default: 1e6

Description: Time step between following velocity files. Depending on the setting of the global "Use
years in output instead of seconds’ flag in the input file, this number is either interpreted as seconds
or as years. The default is one million, i.e., either one million seconds or one million years.

Possible values: [Double 0...1.79769e+308 (inclusive)]

e Parameter name: Decreasing file order
Value: false
Default: false

Description: In some cases the boundary files are not numbered in increasing but in decreasing order
(e.g. 'Ma BP’). If this flag is set to 'True’ the plugin will first load the file with the number "First
velocity file number’” and decrease the file number during the model run.

Possible values: [Bool]

e Parameter name: First data file model time
Value: 0
Default: 0

Description: Time from which on the velocity file with number "First velocity file number’ is used as
boundary condition. Previous to this time, a no-slip boundary condition is assumed. Depending on
the setting of the global "Use years in output instead of seconds’ flag in the input file, this number is
either interpreted as seconds or as years.

Possible values: [Double 0...1.79769¢+4308 (inclusive)]

62

e Parameter name: First data file number
Value: 0
Default: 0

Description: Number of the first velocity file to be loaded when the model time is larger than 'First
velocity file model time’.

Possible values: [Integer range -2147483648...2147483647 (inclusive)]

o Parameter name: Scale factor
Value: 1
Default: 1

Description: Scalar factor, which is applied to the boundary velocity. You might want to use this to
scale the velocities to a reference model (e.g. with free-slip boundary) or another plate reconstruction.
Another way to use this factor is to convert units of the input files. The unit is assumed to bem/s or
m/yr depending on the 'Use years in output instead of seconds’ flag. If you provide velocities in cm/yr
set this factor to 0.01.

Possible values: [Double 0...1.79769¢+308 (inclusive)]

5.22 Parameters in section Boundary velocity model/Function

e Parameter name: Function constants
Value:
Default:

Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘varl=valuel, var2=value2, ...".

A typical example would be to set this runtime parameter to ‘pi=3.1415926536’ and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)

Possible values: [Anything]

o Parameter name: Function expression
Value: 0; 0
Default: 0; 0

Description: The formula that denotes the function you want to evaluate for particular values of
the independent variables. This expression may contain any of the usual operations such as addition
or multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may
contain expressions like ‘if(x;0, 1, -1)” where the expression evaluates to the second argument if the
first argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.

If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.

Possible values: [Anything]

e Parameter name: Variable names
Value: x,y.,t
Default: x,y,t

63

Description: The name of the variables as they will be used in the function, separated by commas. By
default, the names of variables at which the function will be evaluated is ‘x’ (in 1d), ‘x,y’ (in 2d) or
‘x,y,z" (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’” and then use these variable names in your
function expression.

Possible values: [Anything)

5.23 Parameters in section Boundary velocity model/GPlates model

e Parameter name: Data directory
Value: $ASPECT_SOURCE_DIR/data/velocity-boundary-conditions/gplates/
Default: $ASPECT_SOURCE_DIR/data/velocity-boundary-conditions/gplates/

Description: The name of a directory that contains the model data. This path may either be absolute
(if starting with a ’/’) or relative to the current directory. The path may also include the special text
"$ASPECT_SOURCE_DIR’ which will be interpreted as the path in which the ASPECT source files
were located when ASPECT was compiled. This interpretation allows, for example, to reference files
located in the ’'data/’ subdirectory of ASPECT.

Possible values: [DirectoryName]

o Parameter name: Data file time step
Value: 1e6
Default: 1e6

Description: Time step between following velocity files. Depending on the setting of the global 'Use
years in output instead of seconds’ flag in the input file, this number is either interpreted as seconds
or as years. The default is one million, i.e., either one million seconds or one million years.

Possible values: [Double 0...1.79769e+308 (inclusive)]

e Parameter name: Decreasing file order
Value: false
Default: false

Description: In some cases the boundary files are not numbered in increasing but in decreasing order
(e.g. 'Ma BP’). If this flag is set to "True’ the plugin will first load the file with the number 'First
velocity file number’ and decrease the file number during the model run.

Possible values: [Bool]

o Parameter name: First data file model time
Value: 0
Default: 0

Description: Time from which on the velocity file with number "First velocity file number’ is used as
boundary condition. Previous to this time, a no-slip boundary condition is assumed. Depending on
the setting of the global 'Use years in output instead of seconds’ flag in the input file, this number is
either interpreted as seconds or as years.

Possible values: [Double 0...1.79769e+308 (inclusive)]

64

Parameter name: First data file number
Value: 0
Default: 0

Description: Number of the first velocity file to be loaded when the model time is larger than 'First
velocity file model time’.

Possible values: [Integer range -2147483648...2147483647 (inclusive)]

Parameter name: Lithosphere thickness
Value: 100000
Default: 100000

Description: Determines the depth of the lithosphere, so that the GPlates velocities can be applied at
the sides of the model as well as at the surface.

Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Point one
Value: 1.570796,0.0
Default: 1.570796,0.0

Description: Point that determines the plane in which a 2D model lies in. Has to be in the format
‘a,b’ where a and b are theta (polar angle) and phi in radians.

Possible values: [Anything]

Parameter name: Point two
Value: 1.570796,1.570796
Default: 1.570796,1.570796

Description: Point that determines the plane in which a 2D model lies in. Has to be in the format
‘a,b’ where a and b are theta (polar angle) and phi in radians.

Possible values: [Anything]

Parameter name: Scale factor
Value: 1
Default: 1

Description: Scalar factor, which is applied to the boundary velocity. You might want to use this to
scale the velocities to a reference model (e.g. with free-slip boundary) or another plate reconstruction.

Possible values: [Double 0...1.79769¢+308 (inclusive)]

Parameter name: Velocity file name
Value: phi.%d
Default: phi.%d

Description: The file name of the material data. Provide file in format: (Velocity file name).%d.gpml
where %d is any sprintf integer qualifier, specifying the format of the current file number.

Possible values: [Anything]

65

5.24 Parameters in section Checkpointing

o Parameter name: Steps between checkpoint
Value: 0
Default: 0

Description: The number of timesteps between performing checkpoints. If 0 and time between check-
point is not specified, checkpointing will not be performed. Units: None.

Possible values: [Integer range 0...2147483647 (inclusive)]

e Parameter name: Time between checkpoint
Value: 0
Default: 0

Description: The wall time between performing checkpoints. If 0, will use the checkpoint step frequency
instead. Units: Seconds.

Possible values: [Integer range 0...2147483647 (inclusive)]

5.25 Parameters in section Compositional fields

o Parameter name: List of normalized fields
Value:
Default:

Description: A list of integers smaller than or equal to the number of compositional fields. All compo-
sitional fields in this list will be normalized before the first timestep. The normalization is implemented
in the following way: First, the sum of the fields to be normalized is calculated at every point and the
global maximum is determined. Second, the compositional fields to be normalized are divided by this
maximum.

Possible values: [List list of [Integer range 0...2147483647 (inclusive)] of length 0...4294967295 (inclu-
sive)]
e Parameter name: Names of fields
Value:
Default:
Description: A user-defined name for each of the compositional fields requested.
Possible values: [List list of [Anything] of length 0...4294967295 (inclusive)]

e Parameter name: Number of fields
Value: 0
Default: 0

Description: The number of fields that will be advected along with the flow field, excluding velocity,
pressure and temperature.

Possible values: [Integer range 0...2147483647 (inclusive)]

66

5.26 Parameters in section Compositional initial conditions

o Parameter name: Model name
Value: function
Default: function
Description: Select one of the following models:

‘ascii data’: Implementation of a model in which the initial composition is derived from files containing
data in ascii format. Note the required format of the input data: The first lines may contain any
number of comments if they begin with ’#’, but one of these lines needs to contain the number of grid
points in each dimension as for example '# POINTS: 3 3’. The order of the data columns has to be 'x’,
'y’, ’compositionl’, ‘composition2’, etc. in a 2d model and 'x’, ’y’, ’z’, ’compositionl’, ’composition2’,
etc. in a 3d model, according to the number of compositional fields, which means that there has to
be a single column for every composition in the model.Note that the data in the input files need to
be sorted in a specific order: the first coordinate needs to ascend first, followed by the second and the
third at last in order to assign the correct data to the prescribed coordinates. If you use a spherical
model, then the data will still be handled as Cartesian, however the assumed grid changes. ’'x’ will
be replaced by the radial distance of the point to the bottom of the model, 'y’ by the azimuth angle
and 'z’ by the polar angle measured positive from the north pole. The grid will be assumed to be a
latitude-longitude grid. Note that the order of spherical coordinates is 'r’, 'phi’, ’theta’ and not ’r’,
‘theta’, 'phi’, since this allows for dimension independent expressions.

‘function’: Specify the composition in terms of an explicit formula. The format of these functions
follows the syntax understood by the muparser library, see Section 5.1.3.

Possible values: [Selection ascii data—function |

5.27 Parameters in section Compositional initial conditions/Ascii data model

e Parameter name: Data directory
Value: $ASPECT_SOURCE_DIR/data/compositional-initial-conditions/ascii-data/test/
Default: $ASPECT_SOURCE_DIR/data/compositional-initial-conditions/ascii-data/test/

Description: The name of a directory that contains the model data. This path may either be absolute
(if starting with a ’/’) or relative to the current directory. The path may also include the special text
"$ASPECT_SOURCE_DIR’ which will be interpreted as the path in which the ASPECT source files
were located when ASPECT was compiled. This interpretation allows, for example, to reference files
located in the ’data/’ subdirectory of ASPECT.

Possible values: [DirectoryName]

e Parameter name: Data file name
Value: box_2d.txt
Default: box_2d.txt

Description: The file name of the material data. Provide file in format: (Velocity file name).%s%d
where %s is a string specifying the boundary of the model according to the names of the boundary
indicators (of a box or a spherical shell).%d is any sprintf integer qualifier, specifying the format of the
current file number.

Possible values: [Anything]

e Parameter name: Scale factor
Value: 1
Default: 1

67

Description: Scalar factor, which is applied to the boundary velocity. You might want to use this to
scale the velocities to a reference model (e.g. with free-slip boundary) or another plate reconstruction.
Another way to use this factor is to convert units of the input files. The unit is assumed to bem/s or
m/yr depending on the 'Use years in output instead of seconds’ flag. If you provide velocities in cm/yr
set this factor to 0.01.

Possible values: [Double 0...1.79769e+308 (inclusive)]

5.28 Parameters in section Compositional initial conditions/Function

e Parameter name: Function constants
Value:
Default:

Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘varl=valuel, var2=value2, ...".

A typical example would be to set this runtime parameter to ‘pi=3.1415926536" and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)

Possible values: [Anything]

e Parameter name: Function expression
Value: 0
Default: 0

Description: The formula that denotes the function you want to evaluate for particular values of
the independent variables. This expression may contain any of the usual operations such as addition
or multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may
contain expressions like ‘if(x;0, 1, -1)” where the expression evaluates to the second argument if the
first argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.

If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.

Possible values: [Anything]

e Parameter name: Variable names
Value: x,y,t
Default: x,y,t

Description: The name of the variables as they will be used in the function, separated by commas. By
default, the names of variables at which the function will be evaluated is ‘x’ (in 1d), ‘x,y’ (in 2d) or
‘x,y,2" (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’” and then use these variable names in your
function expression.

Possible values: [Anything]

68

5.29 Parameters in section Discretization

e Parameter name: Composition polynomial degree
Value: 2
Default: 2
Description: The polynomial degree to use for the composition variable(s). Units: None.

Possible values: [Integer range 1...2147483647 (inclusive)]

e Parameter name: Stokes velocity polynomial degree
Value: 2
Default: 2

Description: The polynomial degree to use for the velocity variables in the Stokes system. The poly-
nomial degree for the pressure variable will then be one less in order to make the velocity /pressure pair
conform with the usual LBB (Babuska-Brezzi) condition. In other words, we are using a Taylor-Hood
element for the Stoeks equations and this parameter indicates the polynomial degree of it. Units:
None.

Possible values: [Integer range 1...2147483647 (inclusive)]

e Parameter name: Temperature polynomial degree
Value: 2
Default: 2
Description: The polynomial degree to use for the temperature variable. Units: None.
Possible values: [Integer range 1...2147483647 (inclusive)]

o Parameter name: Use discontinuous composition discretization
Value: false
Default: false

Description: Whether to use a composition discretization that is discontinuous as opposed to contin-
uous. This then requires the assembly of face terms between cells, and weak imposition of boundary
terms for the composition field via the discontinuous Galerkin method.

Possible values: [Bool]

e Parameter name: Use discontinuous temperature discretization
Value: false
Default: false

Description: Whether to use a temperature discretization that is discontinuous as opposed to contin-
uous. This then requires the assembly of face terms between cells, and weak imposition of boundary
terms for the temperature field via the interior-penalty discontinuous Galerkin method.

Possible values: [Bool]

e Parameter name: Use locally conservative discretization
Value: false
Default: false

Description: Whether to use a Stokes discretization that is locally conservative at the expense of a
larger number of degrees of freedom (true), or to go with a cheaper discretization that does not locally
conserve mass, although it is globally conservative (false).

69

When using a locally conservative discretization, the finite element space for the pressure is discontinu-
ous between cells and is the polynomial space P_, of polynomials of degree ¢ in each variable separately.
Here, ¢ is one less than the value given in the parameter “Stokes velocity polynomial degree”. As a
consequence of choosing this element, it can be shown if the medium is considered incompressible that
the computed discrete velocity field uy satisfies the property faK uy -n = 0 for every cell K, i.e.,
for each cell inflow and outflow exactly balance each other as one would expect for an incompressible
medium. In other words, the velocity field is locally conservative.

On the other hand, if this parameter is set to “false”, then the finite element space is chosen as Q.
This choice does not yield the local conservation property but has the advantage of requiring fewer
degrees of freedom. Furthermore, the error is generally smaller with this choice.

For an in-depth discussion of these issues and a quantitative evaluation of the different choices, see
[KHB12] .

Possible values: [Bool]

5.30 Parameters in section Discretization/Stabilization parameters

e Parameter name: Discontinuous penalty
Value: 10
Default: 10

Description: The value used to penalize discontinuities in the discontinuous Galerkin method. This is
used only for the temperature field, and not for the composition field, as pure advection does not use
the interior penalty method. This is largely empirically decided — it must be large enough to ensure
the bilinear form is coercive, but not so large as to penalize discontinuity at all costs.

Possible values: [Double 0...1.79769¢+308 (inclusive)]

e Parameter name: Use artificial viscosity smoothing
Value: false
Default: false

Description: If set to false, the artificial viscosity of a cell is computed andis computed on every cell
separately as discussed in [KHB12]. If set to true, the maximum of the artificial viscosity in the cell
as well as the neighbors of the cell is computed and used instead.

Possible values: [Bool]

e Parameter name: alpha
Value: 2
Default: 2

Description: The exponent « in the entropy viscosity stabilization. Valid options are 1 or 2. The
recommended setting is 2. (This parameter does not correspond to any variable in the 2012 GJI paper
by Kronbichler, Heister and Bangerth that describes ASPECT. Rather, the paper always uses 2 as the
exponent in the definition of the entropy, following eq. (15).).Units: None.

Possible values: [Integer range 1...2 (inclusive)]

e Parameter name: beta
Value: 0.078
Default: 0.078

Description: The g factor in the artificial viscosity stabilization. An appropriate value for 2d is 0.078
and 0.117 for 3d. (For historical reasons, the name used here is different from the one used in the 2012

70

GJI paper by Kronbichler, Heister and Bangerth that describes ASPECT. This parameter corresponds
to the factor amayx in the formulas following equation (15) of the paper. After further experiments,
we have also chosen to use a different value than described there: It can be chosen as stated there for
uniformly refined meshes, but it needs to be chosen larger if the mesh has cells that are not squares or
cubes.) Units: None.

Possible values: [Double 0...1.79769e+308 (inclusive)]

e Parameter name: cR
Value: 0.33
Default: 0.33

Description: The cg factor in the entropy viscosity stabilization. (For historical reasons, the name used
here is different from the one used in the 2012 GJI paper by Kronbichler, Heister and Bangerth that
describes ASPECT. This parameter corresponds to the factor ag in the formulas following equation
(15) of the paper. After further experiments, we have also chosen to use a different value than described
there.) Units: None.

Possible values: [Double 0...1.79769e+308 (inclusive)]

5.31 Parameters in section Free surface

o Parameter name: Additional tangential mesh velocity boundary indicators
Value:
Default:

Description: A comma separated list of names denoting those boundaries where there the mesh is
allowed to move tangential to the boundary. All tangential mesh movements along those boundaries
that have tangential material velocity boundary conditions are allowed by default, this parameters
allows to generate mesh movements along other boundaries that are open, or have prescribed material
velocities or tractions.

The names of the boundaries listed here can either be numbers (in which case they correspond to the
numerical boundary indicators assigned by the geometry object), or they can correspond to any of the
symbolic names the geometry object may have provided for each part of the boundary. You may want
to compare this with the documentation of the geometry model you use in your model.

Possible values: [List list of [Anything] of length 0...4294967295 (inclusive)]

e Parameter name: Free surface stabilization theta
Value: 0.5
Default: 0.5

Description: Theta parameter described in Kaus et. al. 2010. An unstabilized free surface can
overshoot its equilibrium position quite easily and generate unphysical results. One solution is to use a
quasi-implicit correction term to the forces near the free surface. This parameter describes how much
the free surface is stabilized with this term, where zero is no stabilization, and one is fully implicit.

Possible values: [Double 0...1 (inclusive)]

e Parameter name: Surface velocity projection
Value: normal
Default: normal

Description: After each time step the free surface must be advected in the direction of the velocity field.
Mass conservation requires that the mesh velocity is in the normal direction of the surface. However,

71

for steep topography or large curvature, advection in the normal direction can become ill-conditioned,
and instabilities in the mesh can form. Projection of the mesh velocity onto the local vertical direction
can preserve the mesh quality better, but at the cost of slightly poorer mass conservation of the domain.

Possible values: [Selection normal—vertical |

5.32 Parameters in section Geometry model

e Parameter name: Model name
Value: box
Default: unspecified
Description: Select one of the following models:

‘box’: A box geometry parallel to the coordinate directions. The extent of the box in each coordinate
direction is set in the parameter file. The box geometry labels its 2*dim sides as follows: in 2d, boundary
indicators 0 through 3 denote the left, right, bottom and top boundaries; in 3d, boundary indicators
0 through 5 indicate left, right, front, back, bottom and top boundaries (see also the documentation
of the deal.Il class “GeometryInfo”). You can also use symbolic names “left”, “right”, etc., to refer to
these boundaries in input files.

‘box with lithosphere boundary indicators’: A box geometry parallel to the coordinate directions. The
extent of the box in each coordinate direction is set in the parameter file. This geometry model labels
its sides with 2*dim+2*(dim-1) boundary indicators: in 2d, boundary indicators 0 through 3 denote
the left, right, bottom and top boundaries, while indicators4 and 5 denote the upper part of the left and
right vertical boundary, respectively. In 3d, boundary indicators 0 through 5 indicate left, right, front,
back, bottom and top boundaries (see also the documentation of the deal.Il class “GeometryInfo”),
while indicators 6, 7, 8 and 9 denote the left, rigth, front and back upper parts of the vertical boundaries,
respectively. You can also use symbolic names “left”, “right”, “left lithosphere”, etc., to refer to these
boundaries in input files.

Note that for a given “Global refinement level” and no user-specified “Repetitions”, the lithosphere
part of the mesh will be more refined.

The additional boundary indicators for the lithosphere allow for selecting boundary conditions for the
lithosphere different from those for the underlying mantle. An example application of this geometry is
to prescribe a velocity on the lithospheric plates, but use open boundary conditions underneath.

‘chunk’ A geometry which can be described as a chunk of a spherical shell, bounded by lines of
longitude, latitude and radius. The minimum and maximum longitude, (latitude) and depth of the
chunk is set in the parameter file. The chunk geometry labels its 2*dim sides as follows: “west” and
“east”: minimum and maximum longitude, “south” and “north”: minimum and maximum latitude,
“inner” and “outer”: minimum and maximum radii. Names in the parameter files are as follows:
Chunk (minimum maximum) (longitude latitude): edges of geographical quadrangle (in
degrees)Chunk (inner outer) radius: Radii at bottom and top of chunk(Longitude Latitude
—— Radius) repetitions: number of cells in each coordinate direction.

‘ellipsoidal chunk’: A 3D chunk geometry that accounts for Earth’s ellipticity (default assuming the
WGS84 ellipsoid definition) which can be defined in non-coordinate directions. In the description of
the ellipsoidal chunk, two of the ellipsoidal axes have the same length so that there is only a semi-major
axis and a semi-minor axis. The user has two options for creating an ellipsoidal chunk geometry: 1)
by defining two opposing points (SW and NE or NW and SE) a coordinate parallel ellipsoidal chunk
geometry will be created. 2) by defining three points a non-coordinate parallel ellipsoidal chunk will
be created. The points are defined in the input file by longitude:latitude. It is also possible to define
additional subdivisions of the mesh in each direction. Faces of the model are defined as 0, west; 1,east;
2, south; 3, north; 4, inner; 5, outer.

72

‘sphere’: Geometry model for sphere with a user specified radius. This geometry has only a single
boundary, so the only valid boundary indicator to specify in the input file is “0”. It can also be
referenced by the symbolic name “surface” in input files.

‘spherical shell’: A geometry representing a spherical shell or a piece of it. Inner and outer radii are
read from the parameter file in subsection ’Spherical shell’.

The model assigns boundary indicators as follows: In 2d, inner and outer boundaries get boundary
indicators zero and one, and if the opening angle set in the input file is less than 360, then left and
right boundaries are assigned indicators two and three. These boundaries can also be referenced using
the symbolic names ’inner’, 'outer’ and (if applicable) ’left’, 'right’.

In 3d, inner and outer indicators are treated as in 2d. If the opening angle is chosen as 90 degrees, i.e.,
the domain is the intersection of a spherical shell and the first octant, then indicator 2 is at the face
x=0,3at y=0, and 4 at z = 0. These last three boundaries can then also be referred to as ’east’,
'west’” and ’south’ symbolically in input files.

Possible values: [Selection box—box with lithosphere boundary indicators—chunk—ellipsoidal chunk—sphere—spherica
shell—unspecified]

5.33 Parameters in section Geometry model/Box

e Parameter name: Box origin X coordinate
Value: 0
Default: 0
Description: X coordinate of box origin. Units: m.
Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

e Parameter name: Box origin Y coordinate
Value: 0
Default: 0
Description: Y coordinate of box origin. Units: m.
Possible values: [Double -1.79769e¢+308...1.79769¢+308 (inclusive)]

e Parameter name: Box origin Z coordinate
Value: 0
Default: 0
Description: 7 coordinate of box origin. This value is ignored if the simulation is in 2d. Units: m.
Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

e Parameter name: X extent
Value: 1
Default: 1
Description: Extent of the box in x-direction. Units: m.
Possible values: [Double 0...1.79769¢+4308 (inclusive)]
e Parameter name: X periodic
Value: false
Default: false
Description: Whether the box should be periodic in X direction

Possible values: [Bool]

73

Parameter name: X repetitions

Value: 1

Default: 1

Description: Number of cells in X direction.

Possible values: [Integer range 1...2147483647 (inclusive)]

Parameter name: Y extent

Value: 1

Default: 1

Description: Extent of the box in y-direction. Units: m.
Possible values: [Double 0...1.79769¢+308 (inclusive)]

Parameter name: Y periodic

Value: false

Default: false

Description: Whether the box should be periodic in Y direction

Possible values: [Bool]

Parameter name: Y repetitions

Value: 1

Default: 1

Description: Number of cells in Y direction.

Possible values: [Integer range 1...2147483647 (inclusive)]

Parameter name: Z extent
Value: 1
Default: 1

Description: Extent of the box in z-direction. This value is ignored if the simulation is in 2d. Units:
m.

Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Z periodic

Value: false

Default: false

Description: Whether the box should be periodic in Z direction

Possible values: [Bool]

Parameter name: Z repetitions

Value: 1

Default: 1

Description: Number of cells in 7 direction.

Possible values: [Integer range 1...2147483647 (inclusive)]

74

5.34 Parameters in section Geometry model/Box with lithosphere boundary indicators

e Parameter name: Box origin X coordinate
Value: 0
Default: 0
Description: X coordinate of box origin. Units: m.
Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

e Parameter name: Box origin Y coordinate
Value: 0
Default: 0
Description: Y coordinate of box origin. Units: m.
Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

e Parameter name: Box origin Z coordinate
Value: 0
Default: 0
Description: 7 coordinate of box origin. This value is ignored if the simulation is in 2d. Units: m.
Possible values: [Double -1.79769e+308...1.79769¢+308 (inclusive)]

o Parameter name: Lithospheric thickness
Value: 0.2
Default: 0.2

Description: The thickness of the lithosphere used to create additional boundary indicators to set
specific boundary conditions for the lithosphere.

Possible values: [Double 0...1.79769e+308 (inclusive)]

e Parameter name: X extent
Value: 1
Default: 1
Description: Extent of the box in x-direction. Units: m.
Possible values: [Double 0...1.79769e+308 (inclusive)]

e Parameter name: X periodic
Value: false
Default: false
Description: Whether the box should be periodic in X direction.

Possible values: [Bool]

o Parameter name: X periodic lithosphere
Value: false
Default: false
Description: Whether the box should be periodic in X direction in the lithosphere.

Possible values: [Bool]

75

Parameter name: X repetitions
Value: 1
Default: 1

Description: Number of cells in X direction of the lower box. The same number of repetitions will be
used in the upper box.

Possible values: [Integer range 1...2147483647 (inclusive)]

Parameter name: Y extent

Value: 1

Default: 1

Description: Extent of the box in y-direction. Units: m.
Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Y periodic

Value: false

Default: false

Description: Whether the box should be periodic in Y direction.

Possible values: [Bool]

Parameter name: Y periodic lithosphere
Value: false
Default: false

Description: Whether the box should be periodic in Y direction in the lithosphere. This value is
ignored if the simulation is in 2d.

Possible values: [Bool]

Parameter name: Y repetitions
Value: 1
Default: 1

Description: Number of cells in Y direction of the lower box. If the simulation is in 3d, the same
number of repetitions will be used in the upper box.

Possible values: [Integer range 1...2147483647 (inclusive)]

Parameter name: Y repetitions lithosphere

Value: 1

Default: 1

Description: Number of cells in Y direction in the lithosphere. This value is ignored if the simulation
is in 3d.

Possible values: [Integer range 1...2147483647 (inclusive)]

Parameter name: Z extent

Value: 1

Default: 1

Description: Extent of the box in z-direction. This value is ignored if the simulation is in 2d. Units:
m.

Possible values: [Double 0...1.79769e+308 (inclusive)]

76

e Parameter name: Z periodic
Value: false
Default: false

Description: Whether the box should be periodic in Z direction. This value is ignored if the simulation
is in 2d.

Possible values: [Bool]

o Parameter name: Z repetitions
Value: 1
Default: 1

Description: Number of cells in Z direction of the lower box. This value is ignored if the simulation is
in 2d.

Possible values: [Integer range 1...2147483647 (inclusive)]

e Parameter name: Z repetitions lithosphere
Value: 1
Default: 1

Description: Number of cells in Z direction in the lithosphere. This value is ignored if the simulation
is in 2d.

Possible values: [Integer range 1...2147483647 (inclusive)]

5.35 Parameters in section Geometry model/Chunk

e Parameter name: Chunk inner radius
Value: 0
Default: 0
Description: Radius at the bottom surface of the chunk. Units: m.
Possible values: [Double 0...1.79769e+308 (inclusive)]

e Parameter name: Chunk maximum latitude
Value: 1
Default: 1

Description: Maximum latitude of the chunk. This value is ignored if the simulation is in 2d. Units:
degrees.

Possible values: [Double -90...90 (inclusive)]

e Parameter name: Chunk maximum longitude
Value: 1
Default: 1
Description: Maximum longitude of the chunk. Units: degrees.
Possible values: [Double -180...360 (inclusive)]

77

e Parameter name: Chunk minimum latitude
Value: 0
Default: 0

Description: Minimum latitude of the chunk. This value is ignored if the simulation is in 2d. Units:
degrees.

Possible values: [Double -90...90 (inclusive)]

e Parameter name: Chunk minimum longitude
Value: 0
Default: 0
Description: Minimum longitude of the chunk. Units: degrees.
Possible values: [Double -180...360 (inclusive)]

e Parameter name: Chunk outer radius
Value: 1
Default: 1
Description: Radius at the top surface of the chunk. Units: m.
Possible values: [Double 0...1.79769e+308 (inclusive)]

e Parameter name: Latitude repetitions
Value: 1
Default: 1
Description: Number of cells in latitude. This value is ignored if the simulation is in 2d

Possible values: [Integer range 1...2147483647 (inclusive)]

e Parameter name: Longitude repetitions
Value: 1
Default: 1
Description: Number of cells in longitude.

Possible values: [Integer range 1...2147483647 (inclusive)]

e Parameter name: Radius repetitions
Value: 1
Default: 1
Description: Number of cells in radius.

Possible values: [Integer range 1...2147483647 (inclusive)]

5.36 Parameters in section Geometry model/Ellipsoidal chunk
e Parameter name: Depth
Value: 500000.0
Default: 500000.0
Description: Bottom depth of model region.
Possible values: [Double 0...1.79769¢+308 (inclusive)]

78

Parameter name: Depth subdivisions

Value: 1

Default: 1

Description: The number of subdivisions of the coarse (initial) mesh in depth.

Possible values: [Integer range 0...2147483647 (inclusive)]

Parameter name: East-West subdivisions

Value: 1

Default: 1

Description: The number of subdivisions of the coarse (initial) mesh in the East-West direction.

Possible values: [Integer range 0...2147483647 (inclusive)]

Parameter name: Eccentricity
Value: 8.1819190842622¢-2
Default: 8.1819190842622¢-2

Description: Eccentricity of the ellipsoid. Zero is a perfect sphere, default (8.1819190842622¢-2) is
WGS84.

Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: NE corner
Value:
Default:

Description: Longitude:latitude in degrees of the North-East corner point of model region.The North-
East direction is positive. If one of the three corners is not providedthe missing corner value will be
calculated so all faces are parallel.

Possible values: [Anything]

Parameter name: N\W corner
Value:
Default:

Description: Longitude:latitude in degrees of the North-West corner point of model region. The North-
East direction is positive. If one of the three corners is not providedthe missing corner value will be
calculated so all faces are parallel.

Possible values: [Anything]

Parameter name: North-South subdivisions

Value: 1

Default: 1

Description: The number of subdivisions of the coarse (initial) mesh in the North-South direction.
Possible values: [Integer range 0...2147483647 (inclusive)]

Parameter name: SE corner
Value:
Default:

79

Description: Longitude:latitude in degrees of the South-East corner point of model region. The North-
East direction is positive. If one of the three corners is not providedthe missing corner value will be
calculated so all faces are parallel.

Possible values: [Anything]

e Parameter name: SW corner
Value:
Default:

Description: Longitude:latitude in degrees of the South-West corner point of model region. The North-
East direction is positive. If one of the three corners is not providedthe missing corner value will be
calculated so all faces are parallel.

Possible values: [Anything]

e Parameter name: Semi-major axis
Value: 6378137.0
Default: 6378137.0

Description: The semi-major axis (a) of an ellipsoid. This is the radius for a sphere (eccentricity=0).
Default WGS84 semi-major axis.

Possible values: [Double 0...1.79769e+308 (inclusive)]

5.37 Parameters in section Geometry model/Sphere

o Parameter name: Radius
Value: 6371000
Default: 6371000
Description: Radius of the sphere. Units: m.
Possible values: [Double 0...1.79769¢+308 (inclusive)]

5.38 Parameters in section Geometry model/Spherical shell

e Parameter name: Cells along circumference
Value: 0
Default: 0

Description: The number of cells in circumferential direction that are created in the coarse mesh in
2d. If zero, this number is chosen automatically in a way that produces meshes in which cells have a
reasonable aspect ratio for models in which the depth of the mantle is roughly that of the Earth. For
planets with much shallower mantles and larger cores, you may want to chose a larger number to avoid
cells that are elongated in tangential and compressed in radial direction.

In 3d, the number of cells is computed differently and does not have an easy interpretation. Valid
values for this parameter in 3d are 0 (let this class choose), 6, 12 and 96. Other possible values may
be discussed in the documentation of the deal.Il function GridGenerator::hyper_shell. The parameter
is best left at its default in 3d.

In either case, this parameter is ignored unless the opening angle of the domain is 360 degrees.

Possible values: [Integer range 0...2147483647 (inclusive)]

80

e Parameter name: Inner radius
Value: 3481000
Default: 3481000
Description: Inner radius of the spherical shell. Units: m.
Possible values: [Double 0...1.79769e+308 (inclusive)]

o Parameter name: Opening angle
Value: 360
Default: 360
Description: Opening angle in degrees of the section of the shell that we want to build. Units: degrees.
Possible values: [Double 0...360 (inclusive)]

e Parameter name: Outer radius
Value: 6336000
Default: 6336000
Description: Outer radius of the spherical shell. Units: m.
Possible values: [Double 0...1.79769e+308 (inclusive)]

5.39 Parameters in section Gravity model

e Parameter name: Model name
Value: vertical
Default: unspecified
Description: Select one of the following models:

‘function’: Gravity is given in terms of an explicit formula that is elaborated in the parameters in
section “Gravity model—Function”. The format of these functions follows the syntax understood by
the muparser library, see Section 5.1.3.

‘radial constant’: A gravity model in which the gravity direction is radially inward and at constant
magnitude. The magnitude is read from the parameter file in subsection 'Radial constant’.

‘radial earth-like’: A gravity model in which the gravity direction is radially inward and with a mag-
nitude that matches that of the earth at the core-mantle boundary as well as at the surface and in
between is physically correct under the assumption of a constant density.

‘radial linear’: A gravity model which is radially inward, where the magnitudedecreases linearly with
depth down to zero at the maximal depth the geometry returns, as you would get with a constantdensity
spherical domain. (Note that this would be for a full sphere, not a spherical shell.) The magnitude of
gravity at the surface is read from the input file in a section “Gravity model/Radial linear”.
‘vertical’: A gravity model in which the gravity direction is vertically downward and at a constant
magnitude by default equal to one.

Possible values: [Selection function—radial constant—radial earth-like—radial linear—vertical—unspecified

]

81

5.40 Parameters in section Gravity model/Function

e Parameter name: Function constants
Value:
Default:

Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘varl=valuel, var2=value2, ...".

A typical example would be to set this runtime parameter to ‘pi=3.1415926536’ and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)

Possible values: [Anything]

e Parameter name: Function expression
Value: 0; 0
Default: 0; 0

Description: The formula that denotes the function you want to evaluate for particular values of
the independent variables. This expression may contain any of the usual operations such as addition
or multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may
contain expressions like ‘if(x;0, 1, -1)” where the expression evaluates to the second argument if the
first argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.

If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.

Possible values: [Anything]

o Parameter name: Variable names
Value: x,y,t
Default: x,y,t

Description: The name of the variables as they will be used in the function, separated by commas. By
default, the names of variables at which the function will be evaluated is ‘x’ (in 1d), ‘x,y’ (in 2d) or
‘x,y,2" (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’” and then use these variable names in your
function expression.

Possible values: [Anything]

5.41 Parameters in section Gravity model/Radial constant

e Parameter name: Magnitude
Value: 9.81
Default: 9.81

Description: Magnitude of the gravity vector in m/s?. The direction is always radially inward towards
the center of the earth.

Possible values: [Double 0...1.79769e+308 (inclusive)]

82

5.42 Parameters in section Gravity model/Radial linear

e Parameter name: Magnitude at surface
Value: 9.8
Default: 9.8
Description: Magnitude of the radial gravity vector at the surface of the domain. Units: m/s>
Possible values: [Double 0...1.79769e+308 (inclusive)]

5.43 Parameters in section Gravity model/Vertical

e Parameter name: Magnitude
Value: 1
Default: 1
Description: Value of the gravity vector in m/s? directed along negative y (2D) or z (3D) axis.

Possible values: [Double 0...1.79769e+308 (inclusive)]

5.44 Parameters in section Heating model

o Parameter name: List of model names
Value:
Default:

Description: A comma separated list of heating models that will be used to calculate the heating terms
in the energyequation. The results of each of these criteria , i.e., the heating source terms and the
latent heat terms for theleft hand side will be added.

The following heating models are available:
‘adiabatic heating’: Implementation of a standard and a simplified model ofadiabatic heating.
‘constant heating’: Implementation of a model in which the heating rate is constant.

‘function’: Implementation of a model in which the heating rate is given in terms of an explicit formula
that is elaborated in the parameters in section “Heating model—Function”. The format of these
functions follows the syntax understood by the muparser library, see Section 5.1.3.

The formula is interpreted as having units W /kg.

Since the symbol ¢ indicating time may appear in the formulas for the heating rate, it is interpreted
as having units seconds unless the global parameter “Use years in output instead of seconds” is set.

‘latent heat’: Implementation of a standard model for latent heat.

‘radioactive decay’: Implementation of a model in which the internal heating rate is radioactive decaying

in the following rule:

(initial concentration) - 0.5tme/ (half life)

The crust and mantle can have different concentrations, and the crust can be defined either by depth
or by a certain compositional field. The formula is interpreted as having units W /kg.

‘shear heating’: Implementation of a standard model for shear heating.

Possible values: [MultipleSelection adiabatic heating—constant heating—function—latent heat—radioactive
decay—shear heating]

83

e Parameter name: Model name
Value: unspecified
Default: unspecified
Description: Select one of the following models:

Warning: This is the old formulation of specifying heating models and shouldn’t be used. Please use
"List ofmodel names’ instead.‘adiabatic heating’: Implementation of a standard and a simplified model
ofadiabatic heating.

‘constant heating’: Implementation of a model in which the heating rate is constant.

‘function’: Implementation of a model in which the heating rate is given in terms of an explicit formula
that is elaborated in the parameters in section “Heating model—Function”. The format of these
functions follows the syntax understood by the muparser library, see Section 5.1.3.

The formula is interpreted as having units W/kg.

Since the symbol ¢ indicating time may appear in the formulas for the heating rate, it is interpreted
as having units seconds unless the global parameter “Use years in output instead of seconds” is set.

‘latent heat’: Implementation of a standard model for latent heat.

‘radioactive decay’: Implementation of a model in which the internal heating rate is radioactive decaying

in the following rule:

(initial concentration) - 0.5tme/ (half life)

The crust and mantle can have different concentrations, and the crust can be defined either by depth
or by a certain compositional field. The formula is interpreted as having units W /kg.

‘shear heating’: Implementation of a standard model for shear heating.

Possible values: [Selection adiabatic heating—constant heating—function—latent heat—radioactive
decay—shear heating—unspecified]

5.45 Parameters in section Heating model/Adiabatic heating

e Parameter name: Use simplified adiabatic heating
Value: false
Default: false

Description: A flag indicating whether the adiabatic heating should be simplified from o7'(u - Vp) to
apT(u-g).
Possible values: [Bool]

5.46 Parameters in section Heating model/Constant heating

e Parameter name: Radiogenic heating rate
Value: 0e0
Default: 0e0

Description: The specific rate of heating due to radioactive decay (or other bulk sources you may want
to describe). This parameter corresponds to the variable H in the temperature equation stated in the
manual, and the heating term is hoH. Units: W /kg.

Possible values: [Double 0...1.79769¢+308 (inclusive)]

84

5.47 Parameters in section Heating model/Function

e Parameter name: Function constants
Value:
Default:

Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘varl=valuel, var2=value2, ...".

A typical example would be to set this runtime parameter to ‘pi=3.1415926536" and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)

Possible values: [Anything]

e Parameter name: Function expression
Value: 0
Default: 0

Description: The formula that denotes the function you want to evaluate for particular values of
the independent variables. This expression may contain any of the usual operations such as addition
or multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may
contain expressions like ‘if(x;0, 1, -1)” where the expression evaluates to the second argument if the
first argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.

If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.

Possible values: [Anything]

e Parameter name: Variable names
Value: x,y,t
Default: x,y,t

Description: The name of the variables as they will be used in the function, separated by commas. By
default, the names of variables at which the function will be evaluated is x’ (in 1d), ‘x,y’ (in 2d) or
‘x,y,z" (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’” and then use these variable names in your
function expression.

Possible values: [Anything]

5.48 Parameters in section Heating model/Latent heat

5.49 Parameters in section Heating model/Radioactive decay
e Parameter name: Crust composition number
Value: 0
Default: 0
Description: Which composition field should be treated as crust
Possible values: [Integer range 0...2147483647 (inclusive)]

85

Parameter name: Crust defined by composition

Value: false

Default: false

Description: Whether crust defined by composition or depth

Possible values: [Bool]

Parameter name: Crust depth

Value: 0

Default: 0

Description: Depth of the crust when crust if defined by depth. Units: m
Possible values: [Double -1.79769¢+308...1.79769¢+308 (inclusive)]

Parameter name: Half decay times

Value:

Default:

Description: Half decay times. Units: (Seconds), or (Years) if set 'use years instead of seconds’.
Possible values: [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]

Parameter name: Heating rates

Value:

Default:

Description: Heating rates of different elements (W /kg)

Possible values: [List list of [Double -1.79769e+308...1.79769e+308 (inclusive)] of length 0...4294967295
(inclusive)]

Parameter name: Initial concentrations crust

Value:

Default:

Description: Initial concentrations of different elements (ppm)

Possible values: [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]

Parameter name: Initial concentrations mantle

Value:

Default:

Description: Initial concentrations of different elements (ppm)

Possible values: [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]

Parameter name: Number of elements
Value: 0

Default: 0

Description: Number of radioactive elements

Possible values: [Integer range 0...2147483647 (inclusive)]

86

5.50 Parameters in section Heating model/Shear heating

5.51 Parameters in section Initial conditions

e Parameter name: Model name
Value: perturbed box
Default: unspecified
Description: Select one of the following models:

‘S40RTS perturbation’: An initial temperature field in which the temperature is perturbed following the
S20RTS or S40RTS shear wave velocity model by Ritsema and others, which can be downloaded here
http://www.earth.lsa.umich.edu/~jritsema/research.html. Information on the vs model can be
found in Ritsema, J., Deuss, A., van Heijst, H.J. & Woodhouse, J.H., 2011. S40RTS: a degree-40 shear-
velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-
mode splitting function measurements, Geophys. J. Int. 184, 1223-1236. The scaling between the shear
wave perturbation and the temperature perturbation can be set by the user with the ’vs to density
scaling’” parameter and the 'Thermal expansion coefficient in initial temperature scaling’ parameter.
The scaling is as follows: dinp(r,0,$) = & - dlnvs(r, 0, ¢) and 0T (r,0,¢) = —éélnp(r,e,@. £ is the
'vs to density scaling’ parameter and « is the "Thermal expansion coefficient in initial temperature
scaling’ parameter. The temperature perturbation is added to an otherwise constant temperature
(incompressible model) or adiabatic reference profile (compressible model). If a depth is specified in
"Remove temperature heterogeneity down to specified depth’, there is no temperature perturbation
prescribed down to that depth.

‘SAVANI perturbation’: An initial temperature field in which the temperature is perturbed follow-
ing the SAVANI shear wave velocity model by Auer and others, which can be downloaded here
http://n.ethz.ch/~auerl/savani.tar.bz2. Information on the vs model can be found in Auer,
L., Boschi, L., Becker, T.W., Nissen-Meyer, T. & Giardini, D., 2014. Savani:A variable resolution
wholemantle model of anisotropic shear velocityvariations based on multiple data sets. Journal of
GeophysicalResearch: Solid Earth 119.4 (2014): 3006-3034. The scaling between the shear wave per-
turbation and the temperature perturbation can be set by the user with the ’vs to density scaling’
parameter and the "Thermal expansion coefficient in initial temperature scaling’ parameter. The scal-
ing is as follows: dlnp(r, 0, ¢) = £-dlnvs(r, 0, ¢) and 6T'(r, 0,) = fédlnp(r, 0,). £ is the 'vs to density
scaling’ parameter and « is the "Thermal expansion coefficient in initial temperature scaling’ param-
eter. The temperature perturbation is added to an otherwise constant temperature (incompressible
model) or adiabatic reference profile (compressible model).

‘adiabatic’: Temperature is prescribed as an adiabatic profile with upper and lower thermal boundary
layers, whose ages are given as input parameters.

‘adiabatic boundary’: An initial temperature condition that allows for discretizing the model domain
into two layers separated by a user-defined isothermal boundary using a table look-up approach. The
user includes an input ascii data file that is formatted as 3 columns of ’latitude’, ’longitude’, and
"depth’, where ’depth’ is in kilometers and represents the depth of an initial temperature of 1673.15
K (by default). The temperature is defined from the surface (273.15 K) to the isotherm as a linear
gradient. Below the isotherm the temperature increases approximately adiabatically (0.0005 K per
meter). This initial temperature condition is designed specifically for the ellipsoidal chunk geometry
model.

‘ascii data’: Implementation of a model in which the initial temperature is derived from files containing
data in ascii format. Note the required format of the input data: The first lines may contain any number
of comments if they begin with ’#’, but one of these lines needs to contain the number of grid points
in each dimension as for example '# POINTS: 3 3’. The order of the data columns has to be 'x’, ’y’,
"Temperature [K]” in a 2d model and ’x’, ’y’, 'z’, "Temperature [K]’ in a 3d model, which means that

there has to be a single column containing the temperature. Note that the data in the input files need

87

http://www.earth.lsa.umich.edu/~jritsema/research.html
http://n.ethz.ch/~auerl/savani.tar.bz2

to be sorted in a specific order: the first coordinate needs to ascend first, followed by the second and
the third at last in order to assign the correct data to the prescribed coordinates. If you use a spherical
model, then the data will still be handled as Cartesian, however the assumed grid changes. 'x’ will
be replaced by the radial distance of the point to the bottom of the model, 'y’ by the azimuth angle
and 'z’ by the polar angle measured positive from the north pole. The grid will be assumed to be a
latitude-longitude grid. Note that the order of spherical coordinates is 'r’, 'phi’, ’theta’ and not ’r’,
’theta’, 'phi’, since this allows for dimension independent expressions.

‘function’: Specify the initial temperature in terms of an explicit formula. The format of these functions
follows the syntax understood by the muparser library, see Section 5.1.3.

‘harmonic perturbation’. An initial temperature field in which the temperature is perturbed following
a harmonic function (spherical harmonic or sine depending on geometry and dimension) in lateral and
radial direction from an otherwise constant temperature (incompressible model) or adiabatic reference
profile (compressible model).

‘inclusion shape perturbation’. An initial temperature field in which there is an inclusion in a constant-
temperature box field. The size, shape, gradient, position, and temperature of the inclusion are defined
by parameters.

‘mandelbox’: Fractal-shaped temperature field.

‘perturbed box’: An initial temperature field in which the temperature is perturbed slightly from
an otherwise constant value equal to one. The perturbation is chosen in such a way that the initial
temperature is constant to one along the entire boundary.

‘polar box’: An initial temperature field in which the temperature is perturbed slightly from an oth-
erwise constant value equal to one. The perturbation is such that there are two poles on opposing
corners of the box.

‘solidus’: This is a temperature initial condition that starts the model close to solidus, it also contains a
user defined lithoshpere thickness and with perturbations in both lithosphere thickness and temperature
based on spherical harmonic functions. It was used as the initial condition of early Mars after the
freezing of the magma ocean, using the solidus from Parmentier et al., Melt-solid segregation, Fractional
magma ocean solidification, and implications for longterm planetary evolution. Luna and Planetary
Science, 2007.

‘spherical gaussian perturbation’ An initial temperature field in which the temperature is perturbed
by a single Gaussian added to an otherwise spherically symmetric state. Additional parameters are
read from the parameter file in subsection ’Spherical gaussian perturbation’.

‘spherical hexagonal perturbation’: An initial temperature field in which the temperature is perturbed
following an N-fold pattern in a specified direction from an otherwise spherically symmetric state. The
class’s name comes from previous versions when the only option was N = 6.

Possible values: [Selection S40RTS perturbation—SAVANI perturbation—adiabatic—adiabatic bound-
ary—ascii data—function—harmonic perturbation—inclusion shape perturbation—mandelbox—perturbed
box—polar box—solidus—spherical gaussian perturbation—spherical hexagonal perturbation—unspecified

]

5.52 Parameters in section Initial conditions/Adiabatic

e Parameter name: Age bottom boundary layer
Value: 0e0
Default: 0e0

Description: The age of the lower thermal boundary layer, used for the calculation of the half-space
cooling model temperature. Units: years if the "Use years in output instead of seconds’ parameter is
set; seconds otherwise.

88

Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Age top boundary layer
Value: 0e0
Default: 0e0

Description: The age of the upper thermal boundary layer, used for the calculation of the half-space
cooling model temperature. Units: years if the "Use years in output instead of seconds’ parameter is
set; seconds otherwise.

Possible values: [Double 0...1.79769¢+308 (inclusive)]

Parameter name: Amplitude
Value: 0e0
Default: 0e0

Description: The amplitude (in K) of the initial spherical temperature perturbation at the bottom
of the model domain. This perturbation will be added to the adiabatic temperature profile, but not
to the bottom thermal boundary layer. Instead, the maximum of the perturbation and the bottom
boundary layer temperature will be used.

Possible values: [Double 0...1.79769¢+308 (inclusive)]

Parameter name: Position
Value: center
Default: center

Description: Where the initial temperature perturbation should be placed. If 'center’ is given, then the
perturbation will be centered along a 'midpoint’ of some sort of the bottom boundary. For example,
in the case of a box geometry, this is the center of the bottom face; in the case of a spherical shell
geometry, it is along the inner surface halfway between the bounding radial lines.

Possible values: [Selection center |

Parameter name: Radius
Value: 0e0
Default: 0e0

Description: The Radius (in m) of the initial spherical temperature perturbation at the bottom of the
model domain.

Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Subadiabaticity
Value: 0e0
Default: 0e0

Description: If this value is larger than 0, the initial temperature profile will not be adiabatic, but
subadiabatic. This value gives the maximal deviation from adiabaticity. Set to 0 for an adiabatic
temperature profile. Units: K.

The function object in the Function subsection represents the compositional fields that will be used as
a reference profile for calculating the thermal diffusivity. This function is one-dimensional and depends
only on depth. The format of this functions follows the syntax understood by the muparser library,
see Section 5.1.3.

Possible values: [Double 0...1.79769e+308 (inclusive)]

89

5.53 Parameters in section Initial conditions/Adiabatic/Function

e Parameter name: Function constants
Value:
Default:

Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘varl=valuel, var2=value2, ...".

A typical example would be to set this runtime parameter to ‘pi=3.1415926536" and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)

Possible values: [Anything]

e Parameter name: Function expression
Value: 0
Default: 0

Description: The formula that denotes the function you want to evaluate for particular values of
the independent variables. This expression may contain any of the usual operations such as addition
or multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may
contain expressions like ‘if(x;0, 1, -1)” where the expression evaluates to the second argument if the
first argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.

If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.

Possible values: [Anything]

e Parameter name: Variable names
Value: x,t
Default: x,t

Description: The name of the variables as they will be used in the function, separated by commas. By
default, the names of variables at which the function will be evaluated is ‘x’ (in 1d), ‘x,y’ (in 2d) or
‘x,y,2" (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’” and then use these variable names in your
function expression.

Possible values: [Anything]

5.54 Parameters in section Initial conditions/Adiabatic boundary
e Parameter name: Adiabatic temperature gradient
Value: 0.0005
Default: 0.0005
Description: The value of the adiabatic temperature gradient. Units: Km™!.
Possible values: [Double 0...1.79769e+308 (inclusive)]

90

e Parameter name: Data directory
Value: $ASPECT_SOURCE_DIR/data/initial-conditions/adiabatic-boundary/
Default: $ASPECT_SOURCE_DIR/data/initial-conditions/adiabatic-boundary/
Description: The path to the isotherm depth data file

Possible values: [DirectoryName]

o Parameter name: Isotherm depth filename
Value: adiabatic_boundary.txt
Default: adiabatic_boundary.txt
Description: File from which the isotherm depth data is read.
Possible values: [FileName (Type: input)]

e Parameter name: Isotherm temperature
Value: 1673.15
Default: 1673.15
Description: The value of the isothermal boundary temperature. Units: Kelvin.
Possible values: [Double 0...1.79769e+308 (inclusive)]

e Parameter name: Surface temperature
Value: 273.15
Default: 273.15
Description: The value of the suface temperature. Units: Kelvin.
Possible values: [Double 0...1.79769e+308 (inclusive)]

5.55 Parameters in section Initial conditions/Ascii data model

e Parameter name: Data directory
Value: SASPECT_SOURCE_DIR/data/initial-conditions/ascii-data/test/
Default: SASPECT_SOURCE_DIR/data/initial-conditions/ascii-data/test/

Description: The name of a directory that contains the model data. This path may either be absolute
(if starting with a ’/’) or relative to the current directory. The path may also include the special text
"$ASPECT_SOURCE_DIR’ which will be interpreted as the path in which the ASPECT source files
were located when ASPECT was compiled. This interpretation allows, for example, to reference files
located in the ’data/’ subdirectory of ASPECT.

Possible values: [DirectoryName]

o Parameter name: Data file name
Value: box_2d.txt
Default: box_2d.txt

Description: The file name of the material data. Provide file in format: (Velocity file name).%s%d
where %s is a string specifying the boundary of the model according to the names of the boundary
indicators (of a box or a spherical shell).%d is any sprintf integer qualifier, specifying the format of the
current file number.

Possible values: [Anything]

91

e Parameter name: Scale factor
Value: 1
Default: 1

Description: Scalar factor, which is applied to the boundary velocity. You might want to use this to
scale the velocities to a reference model (e.g. with free-slip boundary) or another plate reconstruction.
Another way to use this factor is to convert units of the input files. The unit is assumed to bem/s or
m/yr depending on the 'Use years in output instead of seconds’ flag. If you provide velocities in cm/yr
set this factor to 0.01.

Possible values: [Double 0...1.79769¢+308 (inclusive)]

5.56 Parameters in section Initial conditions/Function

e Parameter name: Function constants
Value:
Default:
Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘varl=valuel, var2=value2, ...".
A typical example would be to set this runtime parameter to ‘pi=3.1415926536" and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)
Possible values: [Anything]

e Parameter name: Function expression
Value: 0
Default: 0

Description: The formula that denotes the function you want to evaluate for particular values of
the independent variables. This expression may contain any of the usual operations such as addition
or multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may
contain expressions like ‘if(x;0, 1, -1)’ where the expression evaluates to the second argument if the
first argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.

If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.

Possible values: [Anything]

e Parameter name: Variable names
Value: x,y,t
Default: x,y,t

Description: The name of the variables as they will be used in the function, separated by commas. By
default, the names of variables at which the function will be evaluated is x’ (in 1d), ‘x,y’ (in 2d) or
‘x,y,z" (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’” and then use these variable names in your
function expression.

Possible values: [Anything]

92

5.57 Parameters in section Initial conditions/Harmonic perturbation

e Parameter name: Lateral wave number one
Value: 3
Default: 3

Description: Doubled first lateral wave number of the harmonic perturbation. Equals the spherical
harmonic degree in 3D spherical shells. In all other cases one equals half of a sine period over the model
domain. This allows for single up-/downswings. Negative numbers reverse the sign of the perturbation
but are not allowed for the spherical harmonic case.

Possible values: [Integer range -2147483648...2147483647 (inclusive)]

e Parameter name: Lateral wave number two
Value: 2
Default: 2

Description: Doubled second lateral wave number of the harmonic perturbation. Equals the spherical
harmonic order in 3D spherical shells. In all other cases one equals half of a sine period over the model
domain. This allows for single up-/downswings. Negative numbers reverse the sign of the perturbation.

Possible values: [Integer range -2147483648...2147483647 (inclusive)]

e Parameter name: Magnitude
Value: 1.0
Default: 1.0
Description: The magnitude of the Harmonic perturbation.
Possible values: [Double 0...1.79769¢+308 (inclusive)]

e Parameter name: Reference temperature
Value: 1600.0
Default: 1600.0

Description: The reference temperature that is perturbed by theharmonic function. Only used in
incompressible models.

Possible values: [Double 0...1.79769e+308 (inclusive)]

e Parameter name: Vertical wave number
Value: 1
Default: 1

Description: Doubled radial wave number of the harmonic perturbation. One equals half of a sine
period over the model domain. This allows for single up-/downswings. Negative numbers reverse the
sign of the perturbation.

Possible values: [Integer range -2147483648...2147483647 (inclusive)]

5.58 Parameters in section Initial conditions/Inclusion shape perturbation
o Parameter name: Ambient temperature
Value: 1.0
Default: 1.0
Description: The background temperature for the temperature field.
Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

93

Parameter name: Center X

Value: 0.5

Default: 0.5

Description: The X coordinate for the center of the shape.
Possible values: [Double -1.79769¢+308...1.79769¢+308 (inclusive)]

Parameter name: Center Y

Value: 0.5

Default: 0.5

Description: The Y coordinate for the center of the shape.
Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

Parameter name: Center Z
Value: 0.5
Default: 0.5

Description: The Z coordinate for the center of the shape. This is only necessary for three-dimensional
fields.

Possible values: [Double -1.79769e¢+308...1.79769¢+-308 (inclusive)]

Parameter name: Inclusion gradient

Value: constant

Default: constant

Description: The gradient of the inclusion to be generated.

Possible values: [Selection gaussian—linear—constant |

Parameter name: Inclusion shape

Value: circle

Default: circle

Description: The shape of the inclusion to be generated.

Possible values: [Selection square—circle |

Parameter name: Inclusion temperature
Value: 0.0
Default: 0.0

Description: The temperature of the inclusion shape. This is only the true temperature in the case
of the constant gradient. In all other cases, it gives one endpoint of the temperature gradient for the
shape.

Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

Parameter name: Shape radius
Value: 1.0
Default: 1.0

Description: The radius of the inclusion to be generated. For shapes with no radius (e.g. square), this
will be the width, and for shapes with no width, this gives a general guideline for the size of the shape.

Possible values: [Double 0...1.79769e+308 (inclusive)]

94

5.59 Parameters in section Initial conditions/S40RTS perturbation

e Parameter name: Data directory
Value: SASPECT_SOURCE_DIR/data/initial-conditions/S40RTS/
Default: SASPECT_SOURCE_DIR/data/initial-conditions/S40RTS/
Description: The path to the model data.

Possible values: [DirectoryName]

e Parameter name: Initial condition file name
Value: S40RTS.sph
Default: S40RTS.sph
Description: The file name of the spherical harmonics coefficients from Ritsema et al.

Possible values: [Anything]

e Parameter name: Maximum order
Value: 20
Default: 20

Description: The maximum order the users specify when reading the data file of spherical harmonic
coeflicients, which must be smaller than the maximum order the data file stored. This parameter will
be used only if 'Specify a lower maximum order’ is set to true

Possible values: [Integer range 0...2147483647 (inclusive)]

e Parameter name: Reference temperature
Value: 1600.0
Default: 1600.0

Description: The reference temperature that is perturbed by the spherical harmonic functions. Only
used in incompressible models.

Possible values: [Double 0...1.79769e+308 (inclusive)]

e Parameter name: Remove degree O from perturbation
Value: true
Default: true

Description: Option to remove the degree zero component from the perturbation, which will ensure
that the laterally averaged temperature for a fixed depth is equal to the background temperature.

Possible values: [Bool]

e Parameter name: Remove temperature heterogeneity down to specified depth
Value: -1.7976931348623157e+308
Default: -1.7976931348623157e+308

Description: This will set the heterogeneity prescribed by S20RTS or S40RTS to zero down to the
specified depth (in meters). Note that your resolution has to be adquate to capture this cutoff. For
example if you specify a depth of 660km, but your closest spherical depth layers are only at 500km
and 750km (due to a coarse resolution) it will only zero out heterogeneities down to 500km. Similar
caution has to be taken when using adaptive meshing.

Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

95

o Parameter name: Specify a lower maximum order
Value: false
Default: false

Description: Option to use a lower maximum order when reading the data file of spherical harmonic
coeflicients. This is probably used for the faster tests or when the users only want to see the spherical
harmonic pattern up to a certain order.

Possible values: [Bool]

e Parameter name: Spline knots depth file name
Value: Spline_knots.txt
Default: Spline_knots.txt
Description: The file name of the spline knot locations from Ritsema et al.

Possible values: [Anything]

e Parameter name: Thermal expansion coefficient in initial temperature scaling
Value: 2e-5
Default: 2e-5
Description: The value of the thermal expansion coefficient 5. Units: 1/K.
Possible values: [Double 0...1.79769e+308 (inclusive)]

e Parameter name: Vs to density scaling
Value: 0.25
Default: 0.25

Description: This parameter specifies how the perturbation in shear wave velocity as prescribed by
S20RTS or S40RTS is scaled into a density perturbation. See the general description of this model for
more detailed information.

Possible values: [Double 0...1.79769e+308 (inclusive)]

5.60 Parameters in section Initial conditions/SAVANI perturbation

e Parameter name: Data directory
Value: SASPECT_SOURCE_DIR/data/initial-conditions/SAVANI/
Default: $ASPECT_SOURCE_DIR/data/initial-conditions/SAVANI/
Description: The path to the model data.

Possible values: [DirectoryName]

e Parameter name: Initial condition file name
Value: savani.dlnvs.60.m.ab
Default: savani.dlnvs.60.m.ab
Description: The file name of the spherical harmonics coefficients from Auer et al.

Possible values: [Anything]

96

e Parameter name: Maximum order
Value: 20
Default: 20

Description: The maximum order the users specify when reading the data file of spherical harmonic
coeflicients, which must be smaller than the maximum order the data file stored. This parameter will
be used only if 'Specify a lower maximum order’ is set to true

Possible values: [Integer range 0...2147483647 (inclusive)]

e Parameter name: Reference temperature
Value: 1600.0
Default: 1600.0

Description: The reference temperature that is perturbed by the spherical harmonic functions. Only
used in incompressible models.

Possible values: [Double 0...1.79769e+308 (inclusive)]

e Parameter name: Remove degree O from perturbation
Value: true
Default: true

Description: Option to remove the degree zero component from the perturbation, which will ensure
that the laterally averaged temperature for a fixed depth is equal to the background temperature.

Possible values: [Bool]

e Parameter name: Remove temperature heterogeneity down to specified depth
Value: -1.7976931348623157e+308
Default: -1.7976931348623157e+308

Description: This will set the heterogeneity prescribed by SAVANI to zero down to the specified depth
(in meters). Note that your resolution has to be adquate to capture this cutoff. For example if you
specify a depth of 660km, but your closest spherical depth layers are only at 500km and 750km (due
to a coarse resolution) it will only zero out heterogeneities down to 500km. Similar caution has to be
taken when using adaptive meshing.

Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

e Parameter name: Specify a lower maximum order
Value: false
Default: false

Description: Option to use a lower maximum order when reading the data file of spherical harmonic
coeflicients. This is probably used for the faster tests or when the users only want to see the spherical
harmonic pattern up to a certain order.

Possible values: [Bool]

e Parameter name: Spline knots depth file name
Value: Spline_knots.txt
Default: Spline_knots.txt

Description: The file name of the spline knots taken from the 28 spherical layersof SAVANI tomography
model.

Possible values: [Anything]

97

e Parameter name: Thermal expansion coefficient in initial temperature scaling
Value: 2e-5
Default: 2e-5
Description: The value of the thermal expansion coefficient 5. Units: 1/K.
Possible values: [Double 0...1.79769e+308 (inclusive)]

e Parameter name: Vs to density scaling
Value: 0.25
Default: 0.25

Description: This parameter specifies how the perturbation in shear wave velocity as prescribed by
SAVANTI is scaled into a density perturbation. See the general description of this model for more
detailed information.

Possible values: [Double 0...1.79769e+308 (inclusive)]

5.61 Parameters in section Initial conditions/Solidus

e Parameter name: Lithosphere thickness
Value: 0
Default: 0
Description: The thickness of lithosphere thickness. Units: m
Possible values: [Double 0...1.79769¢+308 (inclusive)]

o Parameter name: Supersolidus
Value: 0e0
Default: 0e0

Description: The difference from solidus, use this number to generate initial conditions that close to
solidus instead of exactly at solidus. Use small negative number in this parameter to prevent large
melting generation at the beginning. Units: K

Possible values: [Double -1.79769e+308...1.79769¢+308 (inclusive)]

5.62 Parameters in section Initial conditions/Solidus/Data

o Parameter name: Solidus filename
Value:
Default:

Description: The solidus data filename. It is a function of radius or pressure in the following format:

Line 1: Header Line 2: Unit of temperature (C/K) Unit of pressure (GPa/kbar) or radius (km/m) Line

3: Column of solidus temperature Column of radius/pressure See data/initial-temperature/solidus.Mars
as an example.

In order to facilitate placing input files in locations relative to the ASPECT source directory, the file
name may also include the special text ’SASPECT_SOURCE_DIR’ which will be interpreted as the
path in which the ASPECT source files were located when ASPECT was compiled. This interpretation
allows, for example, to reference files located in the ’data/’ subdirectory of ASPECT.

Possible values: [Anything]

98

5.63 Parameters in section Initial conditions/Solidus/Perturbation

e Parameter name: Lateral wave number one
Value: 3
Default: 3

Description: Doubled first lateral wave number of the harmonic perturbation. Equals the spherical
harmonic degree in 3D spherical shells. In all other cases one equals half of a sine period over the model
domain. This allows for single up-/downswings. Negative numbers reverse the sign of the perturbation
but are not allowed for the spherical harmonic case.

Possible values: [Integer range -2147483648...2147483647 (inclusive)]

e Parameter name: Lateral wave number two
Value: 2
Default: 2

Description: Doubled second lateral wave number of the harmonic perturbation. Equals the spherical
harmonic order in 3D spherical shells. In all other cases one equals half of a sine period over the model
domain. This allows for single up-/downswings. Negative numbers reverse the sign of the perturbation.

Possible values: [Integer range -2147483648...2147483647 (inclusive)]

e Parameter name: Lithosphere thickness amplitude
Value: 0e0
Default: 0e0
Description: The amplitude of the initial lithosphere thickness perturbation in (m)
Possible values: [Double -1.79769e+308...1.79769¢+308 (inclusive)]

e Parameter name: Temperature amplitude
Value: 0e0
Default: 0e0
Description: The amplitude of the initial spherical temperature perturbation in (K)
Possible values: [Double 0...1.79769¢+4308 (inclusive)]

5.64 Parameters in section Initial conditions/Spherical gaussian perturbation

e Parameter name: Amplitude
Value: 0.01
Default: 0.01
Description: The amplitude of the perturbation.
Possible values: [Double 0...1.79769e+308 (inclusive)]

e Parameter name: Angle
Value: 0e0
Default: 0e0
Description: The angle where the center of the perturbation is placed.
Possible values: [Double 0...1.79769e+308 (inclusive)]

99

e Parameter name: Filename for initial geotherm table
Value: initial-geotherm-table
Default: initial-geotherm-table

Description: The file from which the initial geotherm table is to be read. The format of the file is
defined by what is read in source/initial_conditions/spherical shell.cc.

Possible values: [FileName (Type: input)]

o Parameter name: Non-dimensional depth
Value: 0.7
Default: 0.7
Description: The non-dimensional radial distance where the center of the perturbation is placed.
Possible values: [Double 0...1.79769e+308 (inclusive)]

e Parameter name: Sigma
Value: 0.2
Default: 0.2
Description: The standard deviation of the Gaussian perturbation.
Possible values: [Double 0...1.79769e+308 (inclusive)]

e Parameter name: Sign
Value: 1
Default: 1
Description: The sign of the perturbation.
Possible values: [Double -1.79769¢+308...1.79769e+308 (inclusive)]

5.65 Parameters in section Initial conditions/Spherical hexagonal perturbation

e Parameter name: Angular mode
Value: 6
Default: 6
Description: The number of convection cells to perturb the system with.
Possible values: [Integer range -2147483648...2147483647 (inclusive)]

e Parameter name: Rotation offset
Value: -45
Default: -45

Description: Amount of clockwise rotation in degrees to apply to the perturbations. Default is set to
-45 in order to provide backwards compatibility.

Possible values: [Double -1.79769¢+308...1.79769e+308 (inclusive)]

100

5.66 Parameters in section Material model

e Parameter name: Material averaging
Value: none
Default: none

Description: Whether or not (and in the first case, how) to do any averaging of material model output
data when constructing the linear systems for velocity/pressure, temperature, and compositions in
each time step, as well as their corresponding preconditioners.

Possible choices: none—arithmetic average—harmonic average—geometric average—pick largest—project
to Ql—log average

The process of averaging, and where it may be used, is discussed in more detail in Section 6.2.8.

More averaging schemes are available in the averaging material model. This material model is a
“compositing material model” which can be used in combination with other material models.

Possible values: [Selection none—arithmetic average—harmonic average—geometric average—pick
largest—project to Ql—log average]
e Parameter name: Model name
Value: simple
Default: unspecified

Description: The name of the material model to be used in this simulation. There are many material
models you can choose from, as listed below. They generally fall into two category: (i) models that
implement a particular case of material behavior, (ii) models that modify other models in some way.
We sometimes call the latter “compositing models”. An example of a compositing model is the “depth
dependent” model below in that it takes another, freely choosable model as its base and then modifies
that model’s output in some way.

You can select one of the following models:

‘Morency and Doin’: An implementation of the visco-plastic rheology described by (Morency and Doin,
2004). Compositional fields can each be assigned individual activation energies, reference densities,
thermal expansivities, and stress exponents. The effective viscosity is defined as

1
1,
Vepf = | 5— + 55—
‘ Vipr o Vers

—it/ne Eo+ Vapmgz
erp n, RT

where

v, =B -
eff <€Te f
v e~ 1+1/np
Vers = (10 +7Pm92) | —7-
Eref
where B is a scaling constant; ¢é is defined as the quadratic sum of the second invariant of the strain rate
tensor and a minimum strain rate, ég; €.y is a reference strain rate; n,, and n, are stress exponents;
E, is the activation energy; V, is the activation volume; p,, is the mantle density; R is the gas constant;

T is temperature; 7y is the cohestive strength of rocks at the surface; «y is a coefficient of yield stress
increase with depth; and z is depth.

Note: (Morency and Doin, 2004) defines the second invariant of the strain rate in a nonstandard way.

The formulation in the paper is given as e;; = %(6%1 + €2,) where € is the strain rate tensor. For
consistency, that is also the formulation implemented in this material model.

101

Morency, C., and MP. Doin. ”Numerical simulations of the mantle lithosphere delamination.” Journal
of Geophysical Research: Solid Earth (19782012) 109.B3 (2004).

The value for the components of this formula and additional parameters are read from the parameter
file in subsection "Material model/Morency and Doin’.

‘Steinberger’: This material model looks up the viscosity from the tables that correspond to the paper
of Steinberger and Calderwood 2006 (“Models of large-scale viscous flow in the Earth’s mantle with
constraints from mineral physics and surface observations”, Geophys. J. Int., 167, 1461-1481, http:
//dx.doi.org/10.1111/j.1365-246X.2006.03131.x) and material data from a database generated
by the thermodynamics code Perplex, see http://www.perplex.ethz.ch/. The default example data
builds upon the thermodynamic database by Stixrude 2011 and assumes a pyrolitic composition by
Ringwood 1988 but is easily replaceable by other data files.

‘averaging’: The “averaging” Material model applies an averaging of the quadrature points within
a cell. The values to average are supplied by any of the other available material models. In other
words, it is a “compositing material model”. Parameters related to the average model are read from a
subsection “Material model/Averaging”.

The user must specify a “Base model” from which material properties are derived. Furthermore an
averaging operation must be selected, where the Choice should be from the list none—arithmetic
average—harmonic average—geometric average—pick largest—log average—NWD arithmetic aver-
age—NWD harmonic average—NWD geometric average.

NWD stands for Normalized Weighed Distance. The models with this in front of their name work
with a weighed average, which means each quadrature point requires an individual weight. The weight
is determined by the distance, where the exact relation is determined by a bell shaped curve. A bell
shaped curve is a continuous function which is one at it’s maximum and exactly zero at and beyond it’s
limit. This bell shaped curve is spanned around each quadrature point to determine the weighting map
for each quadrature point. The used bell shape comes from Lucy (1977). The distance is normalized
so the largest distance becomes one. This means that if variable ”"Bell shape limit” is exactly one, the
farthest quadrature point is just on the limit and it’s weight will be exactly zero. In this plugin it
is not implemented as larger and equal than the limit, but larger than, to ensure the the quadrature
point at distance zero is always included.

‘composition reaction’: A material model that behaves in the same way as the simple material model,
but includes two compositional fields and a reaction between them. Above a depth given in the input
file, the first fields gets converted to the second field.

‘depth dependent’: The “depth dependent” Material model applies a depth-dependent scaling to any
of the other available material models. In other words, it is a “compositing material model”.

Parameters related to the depth dependent model are read from a subsection “Material model/Depth
dependent model”. The user must specify a “Base model” from which material properties are derived.
Currently the depth dependent model only allows depth dependence of viscosity - other material
properties are taken from the “Base model”. Viscosity n at depth z is calculated according to:

n(zp, T, X, ..) = n(2)m(, T, X, ..) /10y (28)

where n(z) is the the depth-dependence specified by the depth dependent model, n(p, T, X, ...) is
the viscosity calculated from the base model, and 7,4 is the reference viscosity of the “Base model”.
In addition to the specification of the “Base model”, the user must specify the method to be used
to calculate the depth-dependent viscosity 7n(z) as “Material model/Depth dependent model/Depth
dependence method”, which can be chosen among “None—Function—File—List”. Each method and
the associated parameters are as follows:

“Function”: read a user-specified parsed function from the input file in a subsection “Material mod-
el/Depth dependent model/Viscosity depth function”. By default, this function is uniformly equal to

102

http://dx.doi.org/10.1111/j.1365-246X.2006.03131.x
http://dx.doi.org/10.1111/j.1365-246X.2006.03131.x
http://www.perplex.ethz.ch/

1.0e21. Specifying a function that returns a value less than or equal to 0.0 anywhere in the model
domain will produce an error.

“File”: read a user-specified file containing viscosity values at specified depths. The file containing
depth-dependent viscosities is read from a directory specified by the user as “Material model/Depth
dependent model /Data directory”, from a file with name specified as “Material model/Depth dependent
model/Viscosity depth file”. The format of this file is ascii text and contains two columns with one
header line:

example Viscosity depth file:
Depth (m) Viscosity (Pa-s)
0.0000000e+-00 1.0000000e+21
6.7000000e+-05 1.0000000e+-22

Viscosity is interpolated from this file using linear interpolation. “None”: no depth-dependence. Vis-
cosity is taken directly from “Base model”

“List:”: read a comma-separated list of depth values corresponding to the maximum depths of layers
having constant depth-dependence 7(z). The layers must be specified in order of increasing depth, and
the last layer in the list must have a depth greater than or equal to the maximal depth of the model.
The list of layer depths is specified as “Material model/Depth dependent model/Depth list” and the
corresponding list of layer viscosities is specified as “Material model/Depth dependent model/Viscosity
list”

‘diffusion dislocation’: An implementation of a viscous rheology including diffusion and dislocation
creep. Compositional fields can each be assigned individual activation energies, reference densities,
thermal expansivities, and stress exponents. The effective viscosity is defined as

1
(1 n 1
Vet = | — 5 dis
veff /Ueff

_1 omy lomny EX + PV*
i = 05%x A nidm™ '7; n; i i
) * 5 exp (niRT)

where

where d is grain size, ¢ corresponds to diffusion or dislocation creep, ¢ is the square root of the second
invariant of the strain rate tensor, R is the gas constant, T' is temperature, and P is pressure. A; are
prefactors, n; and m; are stress and grain size exponents F; are the activation energies and V; are the
activation volumes.

The ratio of diffusion to dislocation strain rate is found by Newton’s method, iterating to find the
stress which satisfies the above equations. The value for the components of this formula and additional
parameters are read from the parameter file in subsection "Material model/DiffusionDislocation’.

‘drucker prager’: A material model that has constant values for all coefficients but the density and
viscosity. The defaults for all coefficients are chosen to be similar to what is believed to be correct for
Earth’s mantle. All of the values that define this model are read from a section “Material model/-
Drucker Prager” in the input file, see Section ??.Note that the model does not take into account any
dependencies of material properties on compositional fields.

The viscosity is computed according to the Drucker Prager frictional plasticity criterion (non-associative)

based on a user-defined internal friction angle ¢ and cohesion C. In 3D: o, = ﬁ% +

2P sin(¢) where P is the pressure. See for example Zienkiewicz, O. C., Humpheson, C. and

V(3)(3+sin(9))’
Lewis, R. W. (1975), Géotechnique 25, No. 4, 671-689. With this formulation we circumscribe instead
of inscribe the Mohr Coulomb yield surface. In 2D the Drucker Prager yield surface is the same as

103

the Mohr Coulomb surface: o, = Psin(¢) + C cos(¢). Note that in 2D for ¢ = 0, these criteria revert
to the von Mises criterion (no pressure dependence). See for example Thieulot, C. (2011), PEPT 188,
47-68.

Note that we enforce the pressure to be positive to prevent negative yield strengths and viscosities.

We then use the computed yield strength to scale back the viscosity on to the yield surface using
the Viscosity Rescaling Method described in Kachanov, L. M. (2004), Fundamentals of the Theory of
Plasticity, Dover Publications, Inc. (Not Radial Return.)A similar implementation can be found in
GALE (https://geodynamics.org/cig/software/gale/gale-manual.pdf).

To avoid numerically unfavourably large (or even negative) viscosity ranges, we cut off the viscosity
with a user-defined minimum and maximum viscosity: 7. ff = —— T

Note that this model uses the formulation that assumes an incompressible medium despite the fact
that the density follows the law p(T") = po(1 — B(T — Tret))-

‘latent heat’: A material model that includes phase transitions and the possibility that latent heat is
released or absorbed when material crosses one of the phase transitions of up to two different materials
(compositional fields). This model implements a standard approximation of the latent heat terms
following Christensen & Yuen, 1985. The change of entropy is calculated as DeltaS = 7% with

the Clapeyron slope v and the density change Ap of the phase transition being input parameters.
The model employs an analytic phase function in the form X = 0.5 (1 + tanh (ﬁ—;})) with Ap =

D — Prransition — Y (T — Tiransition) and Apg being the pressure difference over the width of the phase
transition (specified as input parameter).

‘latent heat melt’: A material model that includes the latent heat of melting for two materials: peri-
dotite and pyroxenite. The melting model for peridotite is taken from Katz et al., 2003 (A new
parameterization of hydrous mantle melting) and the one for pyroxenite from Sobolev et al., 2011
(Linking mantle plumes, large igneous provinces and environmental catastrophes). The model assumes
a constant entropy change for melting 100% of the material, which can be specified in the input file.
The partial derivatives of entropy with respect to temperature and pressure required for calculating
the latent heat consumption are then calculated as product of this constant entropy change, and the
respective derivative of the function the describes the melt fraction. This is linearly averaged with re-
spect to the fractions of the two materials present. If no compositional fields are specified in the input
file, the model assumes that the material is peridotite. If compositional fields are specified, the model
assumes that the first compositional field is the fraction of pyroxenite and the rest of the material is
peridotite.

Otherwise, this material model has a temperature- and pressure-dependent density and viscosity and
the density and thermal expansivity depend on the melt fraction present. It is possible to extent this
model to include a melt fraction dependence of all the material parameters by calling the function
melt_fraction in the calculation of the respective parameter. However, melt and solid move with the
same velocity and melt extraction is not taken into account (batch melting).

‘multicomponent’: This model is for use with an arbitrary number of compositional fields, where each
field represents a rock type which can have completely different properties from the others. However,
each rock type itself has constant material properties. The value of the compositional field is interpreed
as a volume fraction. If the sum of the fields is greater than one, they are renormalized. If it is less
than one, material properties for “background mantle” make up the rest. When more than one field is
present, the material properties are averaged arithmetically. An exception is the viscosity, where the
averaging should make more of a difference. For this, the user selects between arithmetic, harmonic,
geometric, or maximum composition averaging.

‘simple’: A material model that has constant values for all coefficients but the density and viscosity.
The defaults for all coefficients are chosen to be similar to what is believed to be correct for Earth’s

104

mantle. All of the values that define this model are read from a section “Material model/Simple model”
in the input file, see Section 5.79.

This model uses the following set of equations for the two coefficients that are non-constant:

77(1)7 Tv C) = T(T)C(c)nov (29)

p(p7T7 C) = (1 —OL(T—To)) Po +AP Co, (30)
where ¢ is the first component of the compositional vector ¢ if the model uses compositional fields, or
zero otherwise.

The temperature pre-factor for the viscosity formula above is defined as

1072 ifx < 1072,
r(T)=H (e—W—To)/TO) , H(z)={z if1072 <z <102, (31)
102 ifz > 102,
where 8 corresponds to the input parameter “Thermal viscosity exponent” and Ty to the parameter
“Reference temperature”. If you set Ty = 0 in the input file, the thermal pre-factor 7(T') = 1.

The compositional pre-factor for the viscosity is defined as

C(e) =& (32)
if the model has compositional fields and equals one otherwise. £ corresponds to the parameter “Com-
position viscosity prefactor” in the input file.

Finally, in the formula for the density, a corresponds to the “Thermal expansion coefficient” and Ap
corresponds to the parameter “Density differential for compositional field 1”.

Note that this model uses the formulation that assumes an incompressible medium despite the fact
that the density follows the law p(T) = po(1 — (T — Tref)).

Note: Despite its name, this material model is not exactly “simple”, as indicated by the
formulas above. While it was originally intended to be simple, it has over time acquired
all sorts of temperature and compositional dependencies that weren’t initially intended.
Consequently, there is now a “simpler” material model that now fills the role the current
model was originally intended to fill.

‘simple compressible’: A material model that has constant values for all coefficients but the density.
The defaults for all coefficients are chosen to be similar to what is believed to be correct for Earth’s
mantle. All of the values that define this model are read from a section “Material model/Simple
compressible model” in the input file, see Section 5.78.

This model uses the following equations for the density:
p(p,T) = po (1 — (T — To)) exp B(P — Py)) (33)

‘simpler’: A material model that has constant values except for density, which depends linearly on
temperature:

p,T) = (1 —a(T —Tp)) po- (34)

Note: This material model fills the role the “simple” material model was originally intended
to fill, before the latter acquired all sorts of complicated temperature and compositional
dependencies.

105

Possible values: [Selection Morency and Doin—Steinberger—averaging—composition reaction—depth
dependent—diffusion dislocation—drucker prager—latent heat—latent heat melt—multicomponent—simple—simple
compressible—simpler—unspecified]

5.67 Parameters in section Material model/Averaging

e Parameter name: Averaging operation
Value: none
Default: none
Description: Chose the averaging operation to use.
Possible values: [Selection none—arithmetic average—harmonic average—geometric average—pick
largest—log average—mnwd arithmetic average—nwd harmonic average—nwd geometric average]
e Parameter name: Base model
Value: simple
Default: simple

Description: The name of a material model that will be modified by anaveraging operation. Valid
values for this parameter are the names of models that are also valid for the “Material models/Model
name” parameter. See the documentation for that for more information.

Possible values: [Selection Morency and Doin—Steinberger—averaging—composition reaction—depth
dependent—diffusion dislocation—drucker prager—latent heat—latent heat melt—multicomponent—simple—simple
compressible—simpler]

e Parameter name: Bell shape limit
Value: 1
Default: 1

Description: The limit normalized distance between 0 and 1 where the bell shape becomes zero. See
the manual for a more information.

Possible values: [Double 0...1.79769¢+308 (inclusive)]

5.68 Parameters in section Material model/Composition reaction model

e Parameter name: Composition viscosity prefactor 1
Value: 1.0
Default: 1.0

Description: A linear dependency of viscosity on the first compositional field. Dimensionless prefactor.
With a value of 1.0 (the default) the viscosity does not depend on the composition.

Possible values: [Double 0...1.79769e+308 (inclusive)]

e Parameter name: Composition viscosity prefactor 2
Value: 1.0
Default: 1.0

Description: A linear dependency of viscosity on the second compositional field. Dimensionless pref-
actor. With a value of 1.0 (the default) the viscosity does not depend on the composition.

Possible values: [Double 0...1.79769e+308 (inclusive)]

106

e Parameter name: Density differential for compositional field 1
Value: 0
Default: 0

Description: If compositional fields are used, then one would frequently want to make the density de-
pend on these fields. In this simple material model, we make the following assumptions: if no composi-
tional fields are used in the current simulation, then the density is simply the usual one with its linear
dependence on the temperature. If there are compositional fields, then the density only depends on the
first and the second one in such a way that the density has an additional term of the kind +Ap ¢;(x).
This parameter describes the value of Ap for the first field. Units: kg/m?3/unit change in composition.

Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

e Parameter name: Density differential for compositional field 2
Value: 0
Default: 0

Description: If compositional fields are used, then one would frequently want to make the density
depend on these fields. In this simple material model, we make the following assumptions: if no
compositional fields are used in the current simulation, then the density is simply the usual one
with its linear dependence on the temperature. If there are compositional fields, then the density
only depends on the first and the second one in such a way that the density has an additional
term of the kind +Ap ¢;(x). This parameter describes the value of Ap for the second field. Units:
kg/m3 /unit change in composition.

Possible values: [Double -1.79769e+308...1.79769¢+308 (inclusive)]

o Parameter name: Reaction depth
Value: 0
Default: 0

Description: Above this depth the compositional fields react: The first field gets converted to the
second field. Units: m.

Possible values: [Double 0...1.79769¢+308 (inclusive)]

e Parameter name: Reference density
Value: 3300
Default: 3300
Description: Reference density po. Units: kg/m?3.
Possible values: [Double 0...1.79769e+308 (inclusive)]

e Parameter name: Reference specific heat
Value: 1250
Default: 1250
Description: The value of the specific heat cp. Units: J/kg/K.
Possible values: [Double 0...1.79769e+308 (inclusive)]
o Parameter name: Reference temperature
Value: 293
Default: 293

Description: The reference temperature Ty. Units: K.
Possible values: [Double 0...1.79769e+308 (inclusive)]

107

e Parameter name: Thermal conductivity
Value: 4.7
Default: 4.7
Description: The value of the thermal conductivity k. Units: W/m/K.
Possible values: [Double 0...1.79769e+308 (inclusive)]

o Parameter name: Thermal expansion coefficient
Value: 2e-5
Default: 2e-5
Description: The value of the thermal expansion coefficient 8. Units: 1/K.
Possible values: [Double 0...1.79769¢+308 (inclusive)]

e Parameter name: Thermal viscosity exponent
Value: 0.0
Default: 0.0
Description: The temperature dependence of viscosity. Dimensionless exponent.
Possible values: [Double 0...1.79769e+308 (inclusive)]

e Parameter name: Viscosity
Value: 5e24
Default: 5e24
Description: The value of the constant viscosity. Units: kg/m/s.
Possible values: [Double 0...1.79769e+308 (inclusive)]

5.69 Parameters in section Material model/Depth dependent model

e Parameter name: Base model
Value: simple
Default: simple

Description: The name of a material model that will be modified by a depth dependent viscosity. Valid
values for this parameter are the names of models that are also valid for the “Material models/Model
name” parameter. See the documentation for that for more information.

Possible values: [Selection Morency and Doin—Steinberger—averaging—composition reaction—depth
dependent—diffusion dislocation—drucker prager—latent heat—latent heat melt—multicomponent—simple—simple
compressible—simpler]

e Parameter name: Data directory
Value: ./
Default: ./

Description: The path to the model data. The path may also include the special text ‘SASPECT_SOURCE_DIR’
which will be interpreted as the path in which the ASPECT source files were located when ASPECT

was compiled. This interpretation allows, for example, to reference files located in the ’data/’ subdi-

rectory of ASPECT.

Possible values: [DirectoryName]

108

e Parameter name: Depth dependence method
Value: None
Default: None
Description: Method that is used to specify how the viscosity should vary with depth.

Possible values: [Selection Function—File—List—None |

o Parameter name: Depth list
Value:
Default:

Description: A comma-separated list of depth values for use with the “List” “Depth dependence
method”. The list must be provided in order ofincreasing depth, and the last value must be greater
than or equal to the maximal depth of the model. The depth list is interpreted as a layered viscosity
structure and the depth values specify the maximum depths of each layer.

Possible values: [List list of [Double -1.79769e+308...1.79769e+308 (inclusive)] of length 0...4294967295
(inclusive)]
e Parameter name: Viscosity depth file
Value: visc-depth.txt
Default: visc-depth.txt
Description: The name of the file containing depth-dependent viscosity data.

Possible values: [Anything]

e Parameter name: Viscosity list
Value:
Default:

Description: A comma-separated list of viscosity values, corresponding to the depth values provided in
“Depth list”. The number of viscosity values specified here must be the same as the number of depths
provided in “Depth list”

Possible values: [List list of [Double -1.79769e+308...1.79769e+308 (inclusive)] of length 0...4294967295

(inclusive)]

5.70 Parameters in section Material model/Depth dependent model/Viscosity depth
function
e Parameter name: Function constants
Value:
Default:

Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘varl=valuel, var2=value2, ...".

A typical example would be to set this runtime parameter to ‘pi=3.1415926536’ and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)

Possible values: [Anything]

109

e Parameter name: Function expression
Value: 1.0e21
Default: 1.0e21
Possible values: [Anything]

e Parameter name: Variable names
Value: x,t
Default: x,t

Description: The name of the variables as they will be used in the function, separated by commas. By
default, the names of variables at which the function will be evaluated is ‘x’ (in 1d), ‘x,y’ (in 2d) or
‘x,y,z" (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’” and then use these variable names in your
function expression.

Possible values: [Anything]

5.71 Parameters in section Material model/Diffusion dislocation

o Parameter name: Activation energies for diffusion creep
Value: 375e3
Default: 375e3

Description: List of activation energies, F,, for background mantle and compositional fields, for a total
of N+1 values, where N is the number of compositional fields. If only one values is given, then all use
the same value. Units: J/mol

Possible values: [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]

o Parameter name: Activation energies for dislocation creep
Value: 530e3
Default: 530e3

Description: List of activation energies, E,, for background mantle and compositional fields, for a total
of N+1 values, where N is the number of compositional fields. If only one values is given, then all use
the same value. Units: J/mol

Possible values: [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]

e Parameter name: Activation volumes for diffusion creep
Value: 6e-6
Default: 6e-6

Description: List of activation volumes, V,, for background mantle and compositional fields, for a total
of N+1 values, where N is the number of compositional fields. If only one value is given, then all use
the same value. Units: m?3/mol

Possible values: [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]

110

e Parameter name: Activation volumes for dislocation creep
Value: 1.4e-5
Default: 1.4e-5

Description: List of activation volumes, V,, for background mantle and compositional fields, for a total
of N+1 values, where N is the number of compositional fields. If only one value is given, then all use
the same value. Units: m3/mol

Possible values: [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]

e Parameter name: Densities
Value: 3300.
Default: 3300.

Description: List of densities, p, for background mantle and compositional fields, for a total of N+1
values, where N is the number of compositional fields. If only one values is given, then all use the same
value. Units: kg/m?

Possible values: [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]

e Parameter name: Effective viscosity coefficient
Value: 1.0
Default: 1.0
Description: Scaling coefficient for effective viscosity.
Possible values: [Double 0...1.79769e+308 (inclusive)]

e Parameter name: Grain size
Value: 1e-3
Default: 1e-3
Description: Units: m
Possible values: [Double 0...1.79769¢+308 (inclusive)]

e Parameter name: Grain size exponents for diffusion creep
Value: 3
Default: 3

Description: List of grain size exponents, mgi f fusion, for background mantle and compositional fields,
for a total of N+1 values, where N is the number of compositional fields. If only one values is given,
then all use the same value. Units: None

Possible values: [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]

e Parameter name: Heat capacity
Value: 1.25e3
Default: 1.25e3
Description: Units: J/(K * kg)
Possible values: [Double 0...1.79769e+308 (inclusive)]
o Parameter name: Maximum strain rate ratio iterations
Value: 40
Default: 40
Description: Maximum number of iterations to find the correct diffusion/dislocation strain rate ratio.
Possible values: [Integer range 0...2147483647 (inclusive)]

111

Parameter name: Maximum viscosity

Value: 1e28

Default: 1e28

Description: Upper cutoff for effective viscosity. Units: Pas
Possible values: [Double 0...1.79769¢+4308 (inclusive)]

Parameter name: Minimum strain rate

Value: 1.4e-20

Default: 1.4e-20

Description: Stabilizes strain dependent viscosity. Units: 1/s
Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Minimum viscosity

Value: 1el7

Default: 1el7

Description: Lower cutoff for effective viscosity. Units: Pas
Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Prefactors for diffusion creep
Value: 1.5e-15
Default: 1.5e-15

Description: List of viscosity prefactors, A, for background mantle and compositional fields, for a total
of N+1 values, where N is the number of compositional fields. If only one values is given, then all use
the same value. Units: Pq—"dif fusion ypNdif fusion/Mdif fusion g—1

Possible values: [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]

Parameter name: Prefactors for dislocation creep
Value: 1.1e-16
Default: 1.1e-16

Description: List of viscosity prefactors, A, for background mantle and compositional fields, for a total
of N+1 values, where N is the number of compositional fields. If only one values is given, then all use
the same Value. Unitsc Pa_nd'islocationm”dislocat'ion/mdislocationS_l

Possible values: [List list of [Double 0...1.79769¢+308 (inclusive)] of length 0...4294967295 (inclusive)]

Parameter name: Reference temperature

Value: 293

Default: 293

Description: For calculating density by thermal expansivity. Units: K
Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Reference viscosity

Value: 1e22

Default: 1e22

Description: Reference viscosity for nondimensionalization. Units Pas
Possible values: [Double 0...1.79769e+308 (inclusive)]

112

e Parameter name: Strain rate residual tolerance
Value: 1e-22
Default: 1e-22
Description: Tolerance for correct diffusion/dislocation strain rate ratio.
Possible values: [Double 0...1.79769e+308 (inclusive)]

o Parameter name: Stress exponents for diffusion creep
Value: 1
Default: 1

Description: List of stress exponents, ngif fusion, for background mantle and compositional fields, for
a total of N4-1 values, where N is the number of compositional fields. If only one values is given, then
all use the same value. Units: None

Possible values: [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]

e Parameter name: Stress exponents for dislocation creep
Value: 3.5
Default: 3.5

Description: List of stress exponents, ngislocation, for background mantle and compositional fields,
for a total of N+1 values, where N is the number of compositional fields. If only one values is given,
then all use the same value. Units: None

Possible values: [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]

e Parameter name: Thermal diffusivity

Value: 0.8e-6

Default: 0.8e-6

Description: Units: m?/s

Possible values: [Double 0...1.79769e+308 (inclusive)]
e Parameter name: Thermal expansivities

Value: 3.5e-5

Default: 3.5e-5

Description: List of thermal expansivities for background mantle and compositional fields, for a total
of N+1 values, where N is the number of compositional fields. If only one values is given, then all use
the same value. Units: 1/K

Possible values: [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]

e Parameter name: Viscosity averaging scheme
Value: harmonic
Default: harmonic

Description: When more than one compositional field is present at a point with different viscosities,
we need to come up with an average viscosity at that point. Select a weighted harmonic, arithmetic,
geometric, or maximum composition.

Possible values: [Selection arithmetic—harmonic—geometric—maximum composition |

113

5.72 Parameters in section Material model/Drucker Prager

Parameter name: Reference density

Value: 3300

Default: 3300

Description: The reference density pg. Units: kg/m3.
Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Reference specific heat

Value: 1250

Default: 1250

Description: The value of the specific heat ¢p. Units: J/kg/K.
Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Reference temperature
Value: 293
Default: 293

Description: The reference temperature Ty. The reference temperature is used in the density calcula-
tion. Units: K.

Possible values: [Double 0...1.79769¢+308 (inclusive)]

Parameter name: Reference viscosity

Value: 1e22

Default: 1e22

Description: The value of the reference viscosity ng. Units: kg/m/s.
Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Thermal conductivity

Value: 4.7

Default: 4.7

Description: The value of the thermal conductivity k. Units: W/m/K.
Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Thermal expansion coefficient

Value: 2e-5

Default: 2e-5

Description: The value of the thermal expansion coefficient 5. Units: 1/K.
Possible values: [Double 0...1.79769e+308 (inclusive)]

114

5.73 Parameters in section Material model/Drucker Prager/Viscosity

e Parameter name: Angle of internal friction
Value: 0
Default: 0

Description: The value of the angle of internal friction ¢. For a value of zero, in 2D the von Mises
criterion is retrieved. Angles higher than 30 degrees are harder to solve numerically. Units: degrees.

Possible values: [Double 0...1.79769e+308 (inclusive)]

e Parameter name: Cohesion
Value: 2e7
Default: 2e7
Description: The value of the cohesion C. Units: Pa.
Possible values: [Double 0...1.79769¢+308 (inclusive)]

e Parameter name: Maximum viscosity
Value: 1e24
Default: 1e24
Description: The value of the maximum viscosity cutoff n,,ax. Units: Pa s.
Possible values: [Double 0...1.79769e+308 (inclusive)]

e Parameter name: Minimum viscosity
Value: 1el19
Default: 1e19
Description: The value of the minimum viscosity cutoff 7,,in. Units: Pa s.
Possible values: [Double 0...1.79769e+308 (inclusive)]

o Parameter name: Reference strain rate
Value: 1le-15
Default: 1e-15

Description: The value of the initial strain rate prescribed during the first nonlinear iteration é,.ef.
Units: 1/s.
Possible values: [Double 0...1.79769¢+308 (inclusive)]

5.74 Parameters in section Material model/Latent heat

e Parameter name: Composition viscosity prefactor
Value: 1.0
Default: 1.0
Description: A linear dependency of viscosity on composition. Dimensionless prefactor.
Possible values: [Double 0...1.79769e+308 (inclusive)]
e Parameter name: Compressibility
Value: 5.124e-12
Default: 5.124e-12

Description: The value of the compressibility . Units: 1/Pa.
Possible values: [Double 0...1.79769e+308 (inclusive)]

115

e Parameter name: Corresponding phase for density jump
Value:
Default:
Description: A list of phases, which correspond to the Phase transition density jumps. The density
jumps occur only in the phase that is given by this phase value. 0 stands for the 1st compositional

fields, 1 for the second compositional field and -1 for none of them. List must have the same number
of entries as Phase transition depths. Units: Pa/K.

Possible values: [List list of [Integer range 0...2147483647 (inclusive)] of length 0...4294967295 (inclu-
sive)]
e Parameter name: Define transition by depth instead of pressure
Value: true
Default: true

Description: Whether to list phase transitions by depth or pressure. If this parameter is true,then the
input file will use Phase transitions depths and Phase transition widthsto define the phase transition. If
it is false, the parameter file will read inphase transition data from Phase transition pressures andPhase
transition pressure widths.

Possible values: [Bool]

e Parameter name: Density differential for compositional field 1
Value: 0
Default: 0
Description: If compositional fields are used, then one would frequently want to make the density
depend on these fields. In this simple material model, we make the following assumptions: if no
compositional fields are used in the current simulation, then the density is simply the usual one with
its linear dependence on the temperature. If there are compositional fields, then the density only

depends on the first one in such a way that the density has an additional term of the kind +Ap ¢ (x).
This parameter describes the value of Ap. Units: kg/m?/unit change in composition.

Possible values: [Double -1.79769e+308...1.79769¢+308 (inclusive)]

o Parameter name: Phase transition Clapeyron slopes
Value:
Default:

Description: A list of Clapeyron slopes for each phase transition. A positive Clapeyron slope indicates
that the phase transition will occur in a greater depth, if the temperature is higher than the one given
in Phase transition temperatures and in a smaller depth, if the temperature is smaller than the one
given in Phase transition temperatures. For negative slopes the other way round. List must have the
same number of entries as Phase transition depths. Units: Pa/K.

Possible values: [List list of [Double -1.79769e+308...1.79769e+308 (inclusive)] of length 0...4294967295
(inclusive)]
e Parameter name: Phase transition density jumps
Value:
Default:

Description: A list of density jumps at each phase transition. A positive value means that the density
increases with depth. The corresponding entry in Corresponding phase for density jump determines

116

if the density jump occurs in peridotite, eclogite or none of them.List must have the same number of
entries as Phase transition depths. Units: kg/m3.

Possible values: [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]

Parameter name: Phase transition depths
Value:
Default:

Description: A list of depths where phase transitions occur. Values must monotonically increase.
Units: m.

Possible values: [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]

Parameter name: Phase transition pressure widths
Value:
Default:

Description: A list of widths for each phase transition, in terms of pressure. The phase functions are
scaled with these values, leading to a jump betwen phases for a value of zero and a gradual transition
for larger values. List must have the same number of entries as Phase transition pressures. Define
transition by depth instead of pressure must be set to falseto use this parameter.Units: Pa.

Possible values: [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]

Parameter name: Phase transition pressures
Value:
Default:

Description: A list of pressures where phase transitions occur. Values must monotonically increase.
Define transition by depth instead ofpressure must be set to false to use this parameter.Units: Pa.

Possible values: [List list of [Double 0...1.79769e¢+308 (inclusive)] of length 0...4294967295 (inclusive)]

Parameter name: Phase transition temperatures
Value:
Default:

Description: A list of temperatures where phase transitions occur. Higher or lower temperatures lead to
phase transition ocurring in smaller or greater depths than given in Phase transition depths, depending
on the Clapeyron slope given in Phase transition Clapeyron slopes. List must have the same number
of entries as Phase transition depths. Units: K.

Possible values: [List list of [Double 0...1.79769¢+308 (inclusive)] of length 0...4294967295 (inclusive)]

Parameter name: Phase transition widths
Value:
Default:

Description: A list of widths for each phase transition, in terms of depth. The phase functions are
scaled with these values, leading to a jump betwen phases for a value of zero and a gradual transition
for larger values. List must have the same number of entries as Phase transition depths. Units: m.

Possible values: [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]

117

Parameter name: Reference density

Value: 3300

Default: 3300

Description: Reference density po. Units: kg/m?3.
Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Reference specific heat

Value: 1250

Default: 1250

Description: The value of the specific heat ¢p. Units: J/kg/K.
Possible values: [Double 0...1.79769¢+308 (inclusive)]

Parameter name: Reference temperature

Value: 293

Default: 293

Description: The reference temperature Ty. Units: K.
Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Thermal conductivity

Value: 2.38

Default: 2.38

Description: The value of the thermal conductivity k. Units: W/m/K.
Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Thermal expansion coefficient

Value: 4e-5

Default: 4e-5

Description: The value of the thermal expansion coefficient 8. Units: 1/K.
Possible values: [Double 0...1.79769¢+308 (inclusive)]

Parameter name: Thermal viscosity exponent

Value: 0.0

Default: 0.0

Description: The temperature dependence of viscosity. Dimensionless exponent.
Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Viscosity

Value: 5e24

Default: 5e24

Description: The value of the constant viscosity. Units: kg/m/s.
Possible values: [Double 0...1.79769e+308 (inclusive)]

118

Parameter name: Viscosity prefactors
Value:
Default:

Description: A list of prefactors for the viscosity for each phase. The reference viscosity will be
multiplied by this factor to get the corresponding viscosity for each phase. List must have one more
entry than Phase transition depths. Units: non-dimensional.

Possible values: [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]

5.75 Parameters in section Material model/Latent heat melt

Parameter name: Al
Value: 1085.7
Default: 1085.7

Description: Constant parameter in the quadratic function that approximates the solidus of peridotite.
Units: C.

Possible values: [Double -1.79769e+308...1.79769¢+308 (inclusive)]

Parameter name: A2
Value: 1.329¢e-7
Default: 1.329e-7

Description: Prefactor of the linear pressure term in the quadratic function that approximates the
solidus of peridotite. Units: C/Pa.

Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

Parameter name: A3
Value: -5.1e-18
Default: -5.1e-18

Description: Prefactor of the quadratic pressure term in the quadratic function that approximates the
solidus of peridotite. Units: C/(Pa?).

Possible values: [Double -1.79769e+308...1.79769¢+308 (inclusive)]

Parameter name: B1
Value: 1475.0
Default: 1475.0

Description: Constant parameter in the quadratic function that approximates the lherzolite liquidus
used for calculating the fraction of peridotite-derived melt. Units: C.

Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

Parameter name: B2
Value: 8.0e-8
Default: 8.0e-8

Description: Prefactor of the linear pressure term in the quadratic function that approximates the
lherzolite liquidus used for calculating the fraction of peridotite-derived melt. Units: C'/Pa.

Possible values: [Double -1.79769e+308...1.79769¢+308 (inclusive)]

119

Parameter name: B3
Value: -3.2e-18
Default: -3.2e-18

Description: Prefactor of the quadratic pressure term in the quadratic function that approximates the
lherzolite liquidus used for calculating the fraction of peridotite-derived melt. Units: C/(Pa?).

Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

Parameter name: C1
Value: 1780.0
Default: 1780.0

Description: Constant parameter in the quadratic function that approximates the liquidus of peridotite.
Units: C.

Possible values: [Double -1.79769e+308...1.79769¢+308 (inclusive)]

Parameter name: C2
Value: 4.50e-8
Default: 4.50e-8

Description: Prefactor of the linear pressure term in the quadratic function that approximates the
liquidus of peridotite. Units: C'/Pa.

Possible values: [Double -1.79769¢+308...1.79769¢+308 (inclusive)]

Parameter name: C3
Value: -2.0e-18
Default: -2.0e-18

Description: Prefactor of the quadratic pressure term in the quadratic function that approximates the
liquidus of peridotite. Units: C/(Pa?).

Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

Parameter name: Composition viscosity prefactor

Value: 1.0

Default: 1.0

Description: A linear dependency of viscosity on composition. Dimensionless prefactor.
Possible values: [Double 0...1.79769e¢+308 (inclusive)]

Parameter name: Compressibility

Value: 5.124e-12

Default: 5.124e-12

Description: The value of the compressibility «. Units: 1/Pa.
Possible values: [Double 0...1.79769¢+4308 (inclusive)]

Parameter name: D1
Value: 976.0
Default: 976.0

Description: Constant parameter in the quadratic function that approximates the solidus of pyroxenite.
Units: C.

Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

120

e Parameter name: D2
Value: 1.329¢-7
Default: 1.329e-7

Description: Prefactor of the linear pressure term in the quadratic function that approximates the
solidus of pyroxenite. Note that this factor is different from the value given in Sobolev, 2011, because
they use the potential temperature whereas we use the absolute temperature. Units: C/Pa.

Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

e Parameter name: D3
Value: -5.1e-18
Default: -5.1e-18

Description: Prefactor of the quadratic pressure term in the quadratic function that approximates the
solidus of pyroxenite. Units: C/(Pa?).

Possible values: [Double -1.79769e+308...1.79769¢+308 (inclusive)]

e Parameter name: Density differential for compositional field 1
Value: 0
Default: 0

Description: If compositional fields are used, then one would frequently want to make the density
depend on these fields. In this simple material model, we make the following assumptions: if no
compositional fields are used in the current simulation, then the density is simply the usual one with
its linear dependence on the temperature. If there are compositional fields, then the density only
depends on the first one in such a way that the density has an additional term of the kind +Ap ¢;(x).
This parameter describes the value of Ap. Units: kg/m3/unit change in composition.

Possible values: [Double -1.79769¢+308...1.79769e+308 (inclusive)]

e Parameter name: E1
Value: 663.8
Default: 663.8

Description: Prefactor of the linear depletion term in the quadratic function that approximates the
melt fraction of pyroxenite. Units: C/Pa.

Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

e Parameter name: E2
Value: -611.4
Default: -611.4

Description: Prefactor of the quadratic depletion term in the quadratic function that approximates
the melt fraction of pyroxenite. Units: C/(Pa?).

Possible values: [Double -1.79769e+308...1.79769¢+308 (inclusive)]

o Parameter name: Mass fraction cpx
Value: 0.15
Default: 0.15
Description: Mass fraction of clinopyroxene in the peridotite to be molten. Units: non-dimensional.
Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

121

Parameter name: Maximum pyroxenite melt fraction
Value: 0.5429
Default: 0.5429

Description: Maximum melt fraction of pyroxenite in this parameterization. At higher temperatures
peridotite begins to melt.

Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

Parameter name: Peridotite melting entropy change
Value: -300
Default: -300

Description: The entropy change for the phase transition from solid to melt of peridotite. Units:
J/(kgK).
Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

Parameter name: Pyroxenite melting entropy change
Value: -400
Default: -400

Description: The entropy change for the phase transition from solid to melt of pyroxenite. Units:
J/(kgK).
Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

Parameter name: Reference density

Value: 3300

Default: 3300

Description: Reference density pg. Units: kg/m3.
Possible values: [Double 0...1.79769¢+308 (inclusive)]

Parameter name: Reference specific heat

Value: 1250

Default: 1250

Description: The value of the specific heat cp. Units: J/kg/K.
Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Reference temperature

Value: 293

Default: 293

Description: The reference temperature Ty. Units: K.
Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Relative density of melt
Value: 0.9
Default: 0.9

Description: The relative density of melt compared to the solid material. This means, the density
change upon melting is this parameter times the density of solid material.Units: non-dimensional.

Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

122

Parameter name: Thermal conductivity

Value: 2.38

Default: 2.38

Description: The value of the thermal conductivity k. Units: W/m/K.
Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Thermal expansion coefficient

Value: 4e-5

Default: 4e-5

Description: The value of the thermal expansion coefficient «s. Units: 1/K.
Possible values: [Double 0...1.79769¢+308 (inclusive)]

Parameter name: Thermal expansion coefficient of melt

Value: 6.8e-5

Default: 6.8e-5

Description: The value of the thermal expansion coefficient ay. Units: 1/K.
Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Thermal viscosity exponent

Value: 0.0

Default: 0.0

Description: The temperature dependence of viscosity. Dimensionless exponent.
Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Viscosity

Value: 5e24

Default: 5e24

Description: The value of the constant viscosity. Units: kg/m/s.
Possible values: [Double 0...1.79769¢+308 (inclusive)]

Parameter name: beta
Value: 1.5
Default: 1.5

Description: Exponent of the melting temperature in the melt fraction calculation. Units: non-
dimensional.

Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

Parameter name: ri
Value: 0.5
Default: 0.5

Description: Constant in the linear function that approximates the clinopyroxene reaction coefficient.
Units: non-dimensional.

Possible values: [Double -1.79769e¢+308...1.79769¢+308 (inclusive)]

123

Parameter name: r2
Value: 8e-11
Default: 8e-11

Description: Prefactor of the linear pressure term in the linear function that approximates the clinopy-
roxene reaction coefficient. Units: 1/Pa.

Possible values: [Double -1.79769e¢+308...1.79769¢+308 (inclusive)]

5.76 Parameters in section Material model/Morency and Doin

Parameter name: Activation energies
Value: 500
Default: 500

Description: List of activation energies, F,, for background mantle and compositional fields,for a total
of N+1 values, where N is the number of compositional fields.If only one values is given, then all use
the same value. Units: k.J/mol

Possible values: [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]

Parameter name: Activation volume

Value: 6.4e-6

Default: 6.4e-6

Description: (V,). Units: m?/mol

Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Coefficient of yield stress increase with depth
Value: 0.25

Default: 0.25

Description: (). Units: None

Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Cohesive strength of rocks at the surface
Value: 117

Default: 117

Description: (19). Units: Pa

Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Densities
Value: 3300.
Default: 3300.

Description: List of densities, p, for background mantle and compositional fields,for a total of N+1
values, where N is the number of compositional fields.If only one values is given, then all use the same
value. Units: kg/m?

Possible values: [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]

124

Parameter name: Heat capacity

Value: 1.25e3

Default: 1.25e3

Description: Units: J/(K * kg)

Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Minimum strain rate

Value: 1.4e-20

Default: 1.4e-20

Description: Stabilizes strain dependent viscosity. Units: 1/s
Possible values: [Double 0...1.79769¢+308 (inclusive)]

Parameter name: Preexponential constant for viscous rheology law
Value: 1.24e14

Default: 1.24el4

Description: (B). Units: None

Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Reference strain rate

Value: 6.4e-16

Default: 6.4e-16

Description: (éref). Units: 1/s

Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Reference temperature

Value: 293

Default: 293

Description: For calculating density by thermal expansivity. Units: K
Possible values: [Double 0...1.79769¢+308 (inclusive)]

Parameter name: Reference viscosity

Value: 1e22

Default: 1e22

Description: Reference viscosity for nondimensionalization.
Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Stress exponents for plastic rheology
Value: 30
Default: 30

Description: List of stress exponents, n,, for background mantle and compositional fields,for a total
of N+1 values, where N is the number of compositional fields.If only one values is given, then all use
the same value. Units: None

Possible values: [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]

125

e Parameter name: Stress exponents for viscous rheology
Value: 3
Default: 3

Description: List of stress exponents, n,, for background mantle and compositional fields,for a total
of N+1 values, where N is the number of compositional fields.If only one values is given, then all use
the same value. Units: None

Possible values: [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]

e Parameter name: Thermal diffusivity

Value: 0.8e-6

Default: 0.8e-6

Description: Units: m?/s

Possible values: [Double 0...1.79769e+308 (inclusive)]
e Parameter name: Thermal expansivities

Value: 3.5e-5

Default: 3.5e-5

Description: List of thermal expansivities for background mantle and compositional fields,for a total
of N+1 values, where N is the number of compositional fields.If only one values is given, then all use
the same value. Units: 1/K

Possible values: [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]

5.77 Parameters in section Material model/Multicomponent

e Parameter name: Densities
Value: 3300.
Default: 3300.

Description: List of densities for background mantle and compositional fields,for a total of N-+1 values,
where N is the number of compositional fields.If only one value is given, then all use the same value.
Units: kg/m?

Possible values: [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]

e Parameter name: Reference temperature
Value: 293
Default: 293
Description: The reference temperature Ty. Units: K.
Possible values: [Double 0...1.79769e+308 (inclusive)]

e Parameter name: Specific heats
Value: 1250.
Default: 1250.

Description: List of specific heats for background mantle and compositional fields,for a total of N+1
values, where N is the number of compositional fields.If only one value is given, then all use the same
value. Units: J/kg/K

Possible values: [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]

126

e Parameter name: Thermal conductivities
Value: 4.7
Default: 4.7

Description: List of thermal conductivities for background mantle and compositional fields,for a total
of N+1 values, where N is the number of compositional fields.If only one value is given, then all use
the same value. Units: W/m/K

Possible values: [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]

e Parameter name: Thermal expansivities
Value: 4.e-5
Default: 4.e-5

Description: List of thermal expansivities for background mantle and compositional fields,for a total
of N+1 values, where N is the number of compositional fields.If only one value is given, then all use
the same value. Units: 1/K

Possible values: [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]

e Parameter name: Viscosities
Value: 1.e21
Default: 1.e21

Description: List of viscosities for background mantle and compositional fields,for a total of N+1
values, where N is the number of compositional fields.If only one value is given, then all use the same
value. Units: Pas

Possible values: [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]

e Parameter name: Viscosity averaging scheme
Value: harmonic
Default: harmonic

Description: When more than one compositional field is present at a point with different viscosities,
we need to come up with an average viscosity at that point. Select a weighted harmonic, arithmetic,
geometric, or maximum composition.

Possible values: [Selection arithmetic—harmonic—geometric—maximum composition]

5.78 Parameters in section Material model/Simple compressible model

e Parameter name: Reference compressibility
Value: 4e-12
Default: 4e-12
Description: The value of the reference compressibility. Units: 1/Pa.
Possible values: [Double 0...1.79769e+308 (inclusive)]

o Parameter name: Reference density
Value: 3300
Default: 3300
Description: Reference density po. Units: kg/m?3.
Possible values: [Double 0...1.79769¢+308 (inclusive)]

127

e Parameter name: Reference specific heat
Value: 1250
Default: 1250
Description: The value of the specific heat ¢p. Units: J/kg/K.
Possible values: [Double 0...1.79769e+308 (inclusive)]

e Parameter name: Thermal conductivity
Value: 4.7
Default: 4.7
Description: The value of the thermal conductivity k. Units: W/m/K.
Possible values: [Double 0...1.79769¢+308 (inclusive)]

e Parameter name: Thermal expansion coefficient
Value: 2e-5
Default: 2e-5
Description: The value of the thermal expansion coefficient «. Units: 1/K.
Possible values: [Double 0...1.79769e+308 (inclusive)]

e Parameter name: Viscosity
Value: 1e21
Default: 1e21
Description: The value of the constant viscosity 79. Units: kg/m/s.
Possible values: [Double 0...1.79769e+308 (inclusive)]

5.79 Parameters in section Material model/Simple model

o Parameter name: Composition viscosity prefactor
Value: 1.0
Default: 1.0

Description: A linear dependency of viscosity on the first compositional field. Dimensionless prefactor.
With a value of 1.0 (the default) the viscosity does not depend on the composition. See the general
documentation of this model for a formula that states the dependence of the viscosity on this factor,
which is called £ there.

Possible values: [Double 0...1.79769e+308 (inclusive)]

o Parameter name: Density differential for compositional field 1
Value: 0
Default: 0

Description: If compositional fields are used, then one would frequently want to make the density
depend on these fields. In this simple material model, we make the following assumptions: if no
compositional fields are used in the current simulation, then the density is simply the usual one with
its linear dependence on the temperature. If there are compositional fields, then the density only
depends on the first one in such a way that the density has an additional term of the kind +Ap c¢;(x).
This parameter describes the value of Ap. Units: kg/m3/unit change in composition.

Possible values: [Double -1.79769e¢+308...1.79769¢+308 (inclusive)]

128

Parameter name: Reference density

Value: 3300

Default: 3300

Description: Reference density pg. Units: kg/m3.
Possible values: [Double 0...1.79769¢+308 (inclusive)]

Parameter name: Reference specific heat

Value: 1250

Default: 1250

Description: The value of the specific heat ¢p. Units: J/kg/K.
Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Reference temperature
Value: 293
Default: 293

Description: The reference temperature T;. The reference temperature is used in both the density and
viscosity formulas. Units: K.

Possible values: [Double 0...1.79769¢+308 (inclusive)]

Parameter name: Thermal conductivity

Value: 4.7

Default: 4.7

Description: The value of the thermal conductivity k. Units: W/m/K.
Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Thermal expansion coefficient

Value: 2e-5

Default: 2e-5

Description: The value of the thermal expansion coefficient «. Units: 1/K.
Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Thermal viscosity exponent
Value: 0.0
Default: 0.0

Description: The temperature dependence of viscosity. Dimensionless exponent. See the general
documentation of this model for a formula that states the dependence of the viscosity on this factor,
which is called /3 there.

Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Viscosity
Value: 5e24
Default: 5e24

Description: The value of the constant viscosity 7y. This viscosity may be modified by both tempera-
ture and compositional dependencies. Units: kg/m/s.

Possible values: [Double 0...1.79769e+308 (inclusive)]

129

5.80 Parameters in section Material model/Simpler model

Parameter name: Reference density

Value: 3300

Default: 3300

Description: Reference density pg. Units: kg/m3.
Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Reference specific heat

Value: 1250

Default: 1250

Description: The value of the specific heat ¢p. Units: J/kg/K.
Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Reference temperature
Value: 293
Default: 293

Description: The reference temperature Ty. The reference temperature is used in the density formula.
Units: K.

Possible values: [Double 0...1.79769¢+308 (inclusive)]

Parameter name: Thermal conductivity

Value: 4.7

Default: 4.7

Description: The value of the thermal conductivity k. Units: W/m/K.
Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Thermal expansion coefficient

Value: 2e-5

Default: 2e-5

Description: The value of the thermal expansion coefficient 5. Units: 1/K.
Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Viscosity

Value: 5e24

Default: 5e24

Description: The value of the viscosity n. Units: kg/m/s.
Possible values: [Double 0...1.79769e+308 (inclusive)]

130

5.81 Parameters in section Material model/Steinberger model

o Parameter name: Bilinear interpolation
Value: true
Default: true

Description: Whether to use bilinear interpolation to compute material properties (slower but more
accurate).

Possible values: [Bool]

e Parameter name: Compressible
Value: false
Default: false

Description: Whether to include a compressible material description.For a description see the manual
section.

Possible values: [Bool]

e Parameter name: Data directory
Value: SASPECT_SOURCE_DIR/data/material-model/steinberger/
Default: $ASPECT_SOURCE_DIR/data/material-model/steinberger/

Description: The path to the model data. The path may also include the special text 'SASPECT_SOURCE_DIR’
which will be interpreted as the path in which the ASPECT source files were located when ASPECT

was compiled. This interpretation allows, for example, to reference files located in the ’data/’ subdi-

rectory of ASPECT.

Possible values: [DirectoryName]

e Parameter name: Latent heat
Value: false
Default: false

Description: Whether to include latent heat effects in the calculation of thermal expansivity and
specific heat. Following the approach of Nakagawa et al. 2009.

Possible values: [Bool]

e Parameter name: Lateral viscosity file name
Value: temp-viscosity-prefactor.txt
Default: temp-viscosity-prefactor.txt
Description: The file name of the lateral viscosity data.

Possible values: [Anything)

e Parameter name: Material file names
Value: pyr-ringwood88.txt
Default: pyr-ringwood88.txt

Description: The file names of the material data. List with as many components as active compositional
fields (material data is assumed to be in order with the ordering of the fields).

Possible values: [List list of [Anything] of length 0...4294967295 (inclusive)]

131

Parameter name: Maximum lateral viscosity variation
Value: 1e2
Default: 1e2

Description: The relative cutoff value for lateral viscosity variations caused by temperature deviations.
The viscosity may vary laterally by this factor squared.

Possible values: [Double 0...1.79769¢+308 (inclusive)]

Parameter name: Maximum viscosity
Value: 1e23
Default: 1e23

Description: The maximum viscosity that is allowed in the viscosity calculation. Larger values will be
cut off.

Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Minimum viscosity
Value: 1e19
Default: 1e19

Description: The minimum viscosity that is allowed in the viscosity calculation. Smaller values will
be cut off.

Possible values: [Double 0...1.79769¢+308 (inclusive)]

Parameter name: Radial viscosity file name
Value: radial-visc.txt

Default: radial-visc.txt

Description: The file name of the radial viscosity data.

Possible values: [Anything]

Parameter name: Reference viscosity

Value: 1e23

Default: 1e23

Description: The reference viscosity that is used for pressure scaling.
Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Use lateral average temperature for viscosity
Value: true
Default: true

Description: Whether to use to use the laterally averaged temperature instead of the adiabatic tem-
perature for the viscosity calculation. This ensures that the laterally averaged viscosities remain more
or less constant over the model runtime. This behaviour might or might not be desired.

Possible values: [Bool]

132

5.82 Parameters in section Mesh refinement

Parameter name: Additional refinement times
Value:
Default:

Description: A list of times so that if the end time of a time step is beyond this time, an additional
round of mesh refinement is triggered. This is mostly useful to make sure we can get through the
initial transient phase of a simulation on a relatively coarse mesh, and then refine again when we are
in a time range that we are interested in and where we would like to use a finer mesh. Units: Each
element of the list has units years if the 'Use years in output instead of seconds’ parameter is set;
seconds otherwise.

Possible values: [List list of [Double 0...1.79769e¢+308 (inclusive)] of length 0...4294967295 (inclusive)]

Parameter name: Coarsening fraction

Value: 0.05

Default: 0.05

Description: The fraction of cells with the smallest error that should be flagged for coarsening.

Possible values: [Double 0...1 (inclusive)]

Parameter name: Initial adaptive refinement
Value: 2
Default: 2

Description: The number of adaptive refinement steps performed after initial global refinement but
while still within the first time step.

Possible values: [Integer range 0...2147483647 (inclusive)]

Parameter name: Initial global refinement
Value: 2
Default: 2

Description: The number of global refinement steps performed on the initial coarse mesh, before the
problem is first solved there.

Possible values: [Integer range 0...2147483647 (inclusive)]

Parameter name: Minimum refinement level
Value: 0
Default: 0

Description: The minimum refinement level each cell should have, and that can not be exceeded by
coarsening. Should not be higher than the ’Initial global refinement’ parameter.

Possible values: [Integer range 0...2147483647 (inclusive)]

Parameter name: Normalize individual refinement criteria
Value: true
Default: true

Description: If multiple refinement criteria are specified in the “Strategy” parameter, then they need
to be combined somehow to form the final refinement indicators. This is done using the method
described by the “Refinement criteria merge operation” parameter which can either operate on the

133

raw refinement indicators returned by each strategy (i.e., dimensional quantities) or using normalized
values where the indicators of each strategy are first normalized to the interval [0, 1] (which also makes
them non-dimensional). This parameter determines whether this normalization will happen.

Possible values: [Bool]

Parameter name: Refinement criteria merge operation
Value: max
Default: max

Description: If multiple mesh refinement criteria are computed for each cell (by passing a list of
more than element to the Strategy parameter in this section of the input file) then one will have to
decide which one should win when deciding which cell to refine. The operation that selects from these
competing criteria is the one that is selected here. The options are:

— plus: Add the various error indicators together and refine those cells on which the sum of indi-
cators is largest.

— max: Take the maximum of the various error indicators and refine those cells on which the maximal
indicators is largest.

The refinement indicators computed by each strategy are modified by the “Normalize individual re-
finement criteria” and “Refinement criteria scale factors” parameters.

Possible values: [Selection plus—max]

Parameter name: Refinement criteria scaling factors
Value:
Default:

Description: A list of scaling factors by which every individual refinement criterion will be multiplied
by. If only a single refinement criterion is selected (using the “Strategy” parameter, then this parameter
has no particular meaning. On the other hand, if multiple criteria are chosen, then these factors are
used to weigh the various indicators relative to each other.

If “Normalize individual refinement criteria” is set to true, then the criteria will first be normalized to
the interval [0, 1] and then multiplied by the factors specified here. You will likely want to choose the
factors to be not too far from 1 in that case, say between 1 and 10, to avoid essentially disabling those
criteria with small weights. On the other hand, if the criteria are not normalized to [0, 1] using the
parameter mentioned above, then the factors you specify here need to take into account the relative
numerical size of refinement indicators (which in that case carry physical units).

You can experimentally play with these scaling factors by choosing to output the refinement indicators
into the graphical output of a run.

If the list of indicators given in this parameter is empty, then this indicates that they should all be
chosen equal to one. If the list is not empty then it needs to have as many entries as there are indicators
chosen in the “Strategy” parameter.

Possible values: [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]

Parameter name: Refinement fraction

Value: 0.3

Default: 0.3

Description: The fraction of cells with the largest error that should be flagged for refinement.

Possible values: [Double 0...1 (inclusive)]

134

e Parameter name: Run postprocessors on initial refinement
Value: false
Default: false

Description: Whether or not the postproccessors should be run at the end of each of ths initial adaptive
refinement cycles at the of the simulation start.

Possible values: [Bool]

o Parameter name: Strategy
Value: thermal energy density
Default: thermal energy density

Description: A comma separated list of mesh refinement criteria that will be run whenever mesh
refinement is required. The results of each of these criteria, i.e., the refinement indicators they produce
for all the cells of the mesh will then be normalized to a range between zero and one and the results
of different criteria will then be merged through the operation selected in this section.

The following criteria are available:

‘boundary’: A class that implements a mesh refinement criterion which always flags all cells on specified
boundaries for refinement. This is useful to provide high accuracy for processes at or close to the edge
of the model domain.

To use this refinement criterion, you may want to combine it with other refinement criteria, setting
the 'Normalize individual refinement criteria’ flag and using the 'max’ setting for 'Refinement criteria
merge operation’.

‘composition’: A mesh refinement criterion that computes refinement indicators from the compositional
fields. If there is more than one compositional field, then it simply takes the sum of the indicators
computed from each of the compositional field.

‘density’: A mesh refinement criterion that computes refinement indicators from a field that describes
the spatial variability of the density, p. Because this quantity may not be a continuous function (p
and C}, may be discontinuous functions along discontinuities in the medium, for example due to phase
changes), we approximate the gradient of this quantity to refine the mesh. The error indicator defined
here takes the magnitude of the approximate gradient and scales it by h?d/ ? where hy is the diameter
of each cell and d is the dimension. This scaling ensures that the error indicators converge to zero
as hx — 0 even if the energy density is discontinuous, since the gradient of a discontinuous function

grows like 1/h.

‘maximum refinement function’> A mesh refinement criterion that ensures a maximum refinement
level described by an explicit formula with the depth or position as argument. Which coordinate
representation is used is determined by an input parameter. Whatever the coordinate system chosen,
the function you provide in the input file will by default depend on variables 'x’, 'y’ and 'z’ (if in
3d). However, the meaning of these symbols depends on the coordinate system. In the Cartesian
coordinate system, they simply refer to their natural meaning. If you have selected 'depth’ for the
coordinate system, then ’x’ refers to the depth variable and 'y’ and 'z’ will simply always be zero. If
you have selected a spherical coordinate system, then ’x’ will refer to the radial distance of the point
to the origin, 'y’ to the azimuth angle and 'z’ to the polar angle measured positive from the north
pole. Note that the order of spherical coordinates is r,phi,theta and not r,theta,phi, since this allows
for dimension independent expressions. Each coordinate system also includes a final ’t’ variable which
represents the model time, evaluated in years if the 'Use years in output instead of seconds’ parameter
is set, otherwise evaluated in seconds. After evaluating the function, its values are rounded to the
nearest integer.

The format of these functions follows the syntax understood by the muparser library, see Section 5.1.3.

135

‘minimum refinement function’ A mesh refinement criterion that ensures a minimum refinement level
described by an explicit formula with the depth or position as argument. Which coordinate representa-
tion is used is determined by an input parameter. Whatever the coordinate system chosen, the function
you provide in the input file will by default depend on variables 'x’, 'y’ and 'z’ (if in 3d). However, the
meaning of these symbols depends on the coordinate system. In the Cartesian coordinate system, they
simply refer to their natural meaning. If you have selected ’depth’ for the coordinate system, then x’
refers to the depth variable and 'y’ and 'z’ will simply always be zero. If you have selected a spherical
coordinate system, then 'x’ will refer to the radial distance of the point to the origin, y’ to the azimuth
angle and 'z’ to the polar angle measured positive from the north pole. Note that the order of spherical
coordinates is r,phi,theta and not r,theta,phi, since this allows for dimension independent expressions.
Each coordinate system also includes a final ’t’ variable which represents the model time, evaluated in
years if the 'Use years in output instead of seconds’ parameter is set, otherwise evaluated in seconds.
After evaluating the function, its values are rounded to the nearest integer.

The format of these functions follows the syntax understood by the muparser library, see Section 5.1.3.

‘nonadiabatic temperature’: A mesh refinement criterion that computes refinement indicators from the
excess temperature(difference between temperature and adiabatic temperature.

‘particle density’: A mesh refinement criterion that computes refinement indicators based on the density
of particles. In practice this plugin equilibrates the number of particles per cell, leading to fine cells in
high particle density regions and coarse cells in low particle density regions. This plugin is mostly useful
for models with inhomogeneous particle density, e.g. when tracking an initial interface with a high
particle density, or when the spatial particle density denotes the region of interest. Additionally, this
plugin tends to balance the computational load between processes in parallel computations, because
the particle and mesh density is more aligned.

‘slope’: A class that implements a mesh refinement criterion intended for use with a free surface. It
calculates a local slope based on the angle between the surface normal and the local gravity vector.
Cells with larger angles are marked for refinement.

To use this refinement criterion, you may want to combine it with other refinement criteria, setting
the 'Normalize individual refinement criteria’ flag and using the 'max’ setting for 'Refinement criteria
merge operation’.

‘strain rate’: A mesh refinement criterion that computes therefinement indicators equal to the strain
rate norm computed at the center of the elements.

‘temperature’: A mesh refinement criterion that computes refinement indicators from the temperature

field.

‘thermal energy density’: A mesh refinement criterion that computes refinement indicators from a field
that describes the spatial variability of the thermal energy density, pC,T. Because this quantity may
not be a continuous function (p and C), may be discontinuous functions along discontinuities in the
medium, for example due to phase changes), we approximate the gradient of this quantity to refine the
mesh. The error indicator defined here takes the magnitude of the approximate gradient and scales it
by hi5 where hi is the diameter of each cell. This scaling ensures that the error indicators converge
to zero as hx — 0 even if the energy density is discontinuous, since the gradient of a discontinuous
function grows like 1/h.

‘topography’: A class that implements a mesh refinement criterion, which always flags all cells in the
uppermost layer for refinement. This is useful to provide high accuracy for processes at or close to the
surface.

To use this refinement criterion, you may want to combine it with other refinement criteria, setting
the 'Normalize individual refinement criteria’ flag and using the 'max’ setting for 'Refinement criteria
merge operation’.

‘velocity’: A mesh refinement criterion that computes refinement indicators from the velocity field.

136

‘viscosity’: A mesh refinement criterion that computes refinement indicators from a field that describes
the spatial variability of the logarithm of the viscosity, logn. (We choose the logarithm of the viscosity
because it can vary by orders of magnitude.)Because this quantity may not be a continuous function
(n may be a discontinuous function along discontinuities in the medium, for example due to phase

changes), we approximate the gradient of this quantity to refine the mesh. The error indicator defined

here takes the magnitude of the approximate gradient and scales it by h?d/ % where h K is the diameter

of each cell and d is the dimension. This scaling ensures that the error indicators converge to zero
as hx — 0 even if the energy density is discontinuous, since the gradient of a discontinuous function
grows like 1/hk.

Possible values: [MultipleSelection boundary—composition—density—maximum refinement function—minimum
refinement function—nonadiabatic temperature—particle density—slope—strain rate—temperature—thermal
energy density—topography—velocity—viscosity |

o Parameter name: Time steps between mesh refinement
Value: 10
Default: 10

Description: The number of time steps after which the mesh is to be adapted again based on computed
error indicators. If O then the mesh will never be changed.

Possible values: [Integer range 0...2147483647 (inclusive)]

5.83 Parameters in section Mesh refinement/Boundary

e Parameter name: Boundary refinement indicators
Value:
Default:

Description: A comma separated list of names denoting those boundaries where there should be mesh
refinement.

The names of the boundaries listed here can either be numbers (in which case they correspond to the
numerical boundary indicators assigned by the geometry object), or they can correspond to any of the
symbolic names the geometry object may have provided for each part of the boundary. You may want
to compare this with the documentation of the geometry model you use in your model.

Possible values: [List list of [Anything] of length 0...4294967295 (inclusive)]

5.84 Parameters in section Mesh refinement/Composition

e Parameter name: Compositional field scaling factors

Value:
Default:

Description: A list of scaling factors by which every individual compositional field will be multiplied
by. If only a single compositional field exists, then this parameter has no particular meaning. On the
other hand, if multiple criteria are chosen, then these factors are used to weigh the various indicators
relative to each other.

If the list of scaling factors given in this parameter is empty, then this indicates that they should all
be chosen equal to one. If the list is not empty then it needs to have as many entries as there are
compositional fields.

Possible values: [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]

137

5.85 Parameters in section Mesh refinement/Maximum refinement function

e Parameter name: Coordinate system
Value: depth
Default: depth

Description: A selection that determines the assumed coordinate system for the function variables.
Allowed values are ’depth’, ’cartesian’ and ’spherical’. ’depth’ will create a function, in which only the
first variable is non-zero, which is interpreted to be the depth of the point. ’spherical’ coordinates are
interpreted as r,phi or r,phi,theta in 2D /3D respectively with theta being the polar angle.

Possible values: [Selection depth—cartesian—spherical |

e Parameter name: Function constants
Value:
Default:

Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘varl=valuel, var2=value2, ...".

A typical example would be to set this runtime parameter to ‘pi=3.1415926536" and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)

Possible values: [Anything]

e Parameter name: Function expression
Value: 0
Default: 0

Description: The formula that denotes the function you want to evaluate for particular values of
the independent variables. This expression may contain any of the usual operations such as addition
or multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may
contain expressions like ‘if(x;0, 1, -1)” where the expression evaluates to the second argument if the
first argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.

If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.

Possible values: [Anything]

e Parameter name: Variable names
Value: x,y,t
Default: x,y,t

Description: The name of the variables as they will be used in the function, separated by commas. By
default, the names of variables at which the function will be evaluated is ‘x’ (in 1d), ‘x,y’ (in 2d) or
‘x,y,2 (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’” and then use these variable names in your
function expression.

Possible values: [Anything]

138

5.86 Parameters in section Mesh refinement/Minimum refinement function

e Parameter name: Coordinate system
Value: depth
Default: depth

Description: A selection that determines the assumed coordinate system for the function variables.
Allowed values are ’depth’, ’cartesian’ and ’spherical’. ’depth’ will create a function, in which only the
first variable is non-zero, which is interpreted to be the depth of the point. ’spherical’ coordinates are
interpreted as r,phi or r,phi,theta in 2D /3D respectively with theta being the polar angle.

Possible values: [Selection depth—cartesian—spherical |

e Parameter name: Function constants
Value:
Default:

Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘varl=valuel, var2=value2, ...".

A typical example would be to set this runtime parameter to ‘pi=3.1415926536" and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)

Possible values: [Anything]

e Parameter name: Function expression
Value: 0
Default: 0

Description: The formula that denotes the function you want to evaluate for particular values of
the independent variables. This expression may contain any of the usual operations such as addition
or multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may
contain expressions like ‘if(x;0, 1, -1)” where the expression evaluates to the second argument if the
first argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.

If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.

Possible values: [Anything]

e Parameter name: Variable names
Value: x,y,t
Default: x,y,t

Description: The name of the variables as they will be used in the function, separated by commas. By
default, the names of variables at which the function will be evaluated is ‘x’ (in 1d), ‘x,y’ (in 2d) or
‘x,y,2 (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’” and then use these variable names in your
function expression.

Possible values: [Anything]

139

5.87 Parameters in section Model settings

e Parameter name: Fixed composition boundary indicators
Value:
Default:

Description: A comma separated list of names denoting those boundaries on which the composition is
fixed and described by the boundary composition object selected in its own section of this input file.
All boundary indicators used by the geometry but not explicitly listed here will end up with no-flux
(insulating) boundary conditions.

The names of the boundaries listed here can either by numbers (in which case they correspond to the
numerical boundary indicators assigned by the geometry object), or they can correspond to any of the
symbolic names the geometry object may have provided for each part of the boundary. You may want
to compare this with the documentation of the geometry model you use in your model.

This parameter only describes which boundaries have a fixed composition, but not what composition
should hold on these boundaries. The latter piece of information needs to be implemented in a plugin
in the BoundaryComposition group, unless an existing implementation in this group already provides
what you want.

Possible values: [List list of [Anything] of length 0...4294967295 (inclusive)]

e Parameter name: Fixed temperature boundary indicators
Value:
Default:

Description: A comma separated list of names denoting those boundaries on which the temperature is
fixed and described by the boundary temperature object selected in its own section of this input file.
All boundary indicators used by the geometry but not explicitly listed here will end up with no-flux
(insulating) boundary conditions.

The names of the boundaries listed here can either by numbers (in which case they correspond to the
numerical boundary indicators assigned by the geometry object), or they can correspond to any of the
symbolic names the geometry object may have provided for each part of the boundary. You may want
to compare this with the documentation of the geometry model you use in your model.

This parameter only describes which boundaries have a fixed temperature, but not what temperature
should hold on these boundaries. The latter piece of information needs to be implemented in a plugin
in the BoundaryTemperature group, unless an existing implementation in this group already provides
what you want.

Possible values: [List list of [Anything] of length 0...4294967295 (inclusive)]

e Parameter name: Free surface boundary indicators
Value:
Default:

Description: A comma separated list of names denoting those boundaries where there is a free surface.
Set to nothing to disable all free surface computations.

The names of the boundaries listed here can either by numbers (in which case they correspond to the
numerical boundary indicators assigned by the geometry object), or they can correspond to any of the
symbolic names the geometry object may have provided for each part of the boundary. You may want
to compare this with the documentation of the geometry model you use in your model.

Possible values: [List list of [Anything] of length 0...4294967295 (inclusive)]

140

e Parameter name: Include adiabatic heating
Value: false
Default: false

Description: Whether to include adiabatic heating into the model or not. From a physical viewpoint,
adiabatic heating should always be used but may be undesirable when comparing results with known
benchmarks that do not include this term in the temperature equation.Warning: deprecated! Add
‘adiabatic heating’ to the ’List of model names’ instead.

Possible values: [Bool]

e Parameter name: Include latent heat
Value: false
Default: false

Description: Whether to include the generation of latent heat at phase transitions into the model
or not. From a physical viewpoint, latent heat should always be used but may be undesirable when
comparing results with known benchmarks that do not include this term in the temperature equation
or when dealing with a model without phase transitions.Warning: deprecated! Add ’latent heat’ to
the "List of model names’ instead.

Possible values: [Bool]

e Parameter name: Include shear heating
Value: false
Default: false

Description: Whether to include shear heating into the model or not. From a physical viewpoint, shear
heating should always be used but may be undesirable when comparing results with known benchmarks
that do not include this term in the temperature equation. Warning: deprecated! Add ’shear heating’
to the ’List of model names’ instead.

Possible values: [Bool]

e Parameter name: Prescribed traction boundary indicators
Value:
Default:

Description: A comma separated list denoting those boundaries on which a traction force is prescribed,
i.e., where known external forces act, resulting in an unknown velocity. This is often used to model
“open” boundaries where we only know the pressure. This pressure then produces a force that is
normal to the boundary and proportional to the pressure.

The format of valid entries for this parameter is that of a map given as “keyl [selector]: valuel, key2
[selector]: value2, key3: value3, ...” where each key must be a valid boundary indicator (which is
either an integer or the symbolic name the geometry model in use may have provided for this part of
the boundary) and each value must be one of the currently implemented boundary traction models.
“selector” is an optional string given as a subset of the letters 'xyz’ that allows you to apply the
boundary conditions only to the components listed. As an example, 1 y: function’ applies the type
function’ to the y component on boundary 1. Without a selector it will affect all components of the
traction.

Possible values: [Map map of [Anything]:[Selection function—zero traction | of length 0...4294967295
(inclusive)]

141

e Parameter name: Prescribed velocity boundary indicators
Value:
Default:

Description: A comma separated list denoting those boundaries on which the velocity is prescribed,
i.e., where unknown external forces act to prescribe a particular velocity. This is often used to prescribe
a velocity that equals that of overlying plates.

The format of valid entries for this parameter is that of a map given as “keyl [selector]: valuel, key?2
[selector]: value2, key3: value3, ...” where each key must be a valid boundary indicator (which is
either an integer or the symbolic name the geometry model in use may have provided for this part of
the boundary) and each value must be one of the currently implemented boundary velocity models.
“selector” is an optional string given as a subset of the letters 'xyz’ that allows you to apply the
boundary conditions only to the components listed. As an example, 1 y: function’ applies the type
function’ to the y component on boundary 1. Without a selector it will affect all components of the
velocity.

Note that the no-slip boundary condition is a special case of the current one where the prescribed
velocity happens to be zero. It can thus be implemented by indicating that a particular boundary is
part of the ones selected using the current parameter and using “zero velocity” as the boundary values.
Alternatively, you can simply list the part of the boundary on which the velocity is to be zero with the
parameter “Zero velocity boundary indicator” in the current parameter section.

Note that when “Use years in output instead of seconds” is set to true, velocity should be given in
m/yr.
Possible values: [Map map of [Anything]:[Selection ascii data—function—gplates—zero velocity | of
length 0...4294967295 (inclusive)]

o Parameter name: Remove nullspace
Value:
Default:

Description: Choose none, one or several from

— net rotation

— angular momentum
— net translation

— linear momentum
— net x translation

— net y translation

— net z translation

— linear x momentum
— linear y momentum

— linear z momentum

These are a selection of operations to remove certain parts of the nullspace from the velocity after
solving. For some geometries and certain boundary conditions the velocity field is not uniquely de-
termined but contains free translations and/or rotations. Depending on what you specify here, these
non-determined modes will be removed from the velocity field at the end of the Stokes solve step.

The “angular momentum” option removes a rotation such that the net angular momentum is zero. The
“linear * momentum” options remove translations such that the net momentum in the relevant direction

142

is zero. The “net rotation” option removes the net rotation of the domain, and the “net * translation”
options remove the net translations in the relevant directions. For most problems there should not be
a significant difference between the momentum and rotation/translation versions of nullspace removal,
although the momentum versions are more physically motivated. They are equivalent for constant
density simulations, and approximately equivalent when the density variations are small.

Note that while more than one operation can be selected it only makes sense to pick one rotational
and one translational operation.

Possible values: [MultipleSelection net rotation—angular momentum—net translation—linear momen-
tum—mnet x translation—mnet y translation—mnet z translation—linear x momentum—linear y momen-
tum—Iinear z momentum |

e Parameter name: Tangential velocity boundary indicators
Value:
Default:

Description: A comma separated list of names denoting those boundaries on which the velocity is tan-
gential and unrestrained, i.e., free-slip where no external forces act to prescribe a particular tangential
velocity (although there is a force that requires the flow to be tangential).

The names of the boundaries listed here can either by numbers (in which case they correspond to the
numerical boundary indicators assigned by the geometry object), or they can correspond to any of the
symbolic names the geometry object may have provided for each part of the boundary. You may want
to compare this with the documentation of the geometry model you use in your model.

Possible values: [List list of [Anything] of length 0...4294967295 (inclusive)]

e Parameter name: Zero velocity boundary indicators
Value:
Default:
Description: A comma separated list of names denoting those boundaries on which the velocity is zero.

The names of the boundaries listed here can either by numbers (in which case they correspond to the
numerical boundary indicators assigned by the geometry object), or they can correspond to any of the
symbolic names the geometry object may have provided for each part of the boundary. You may want
to compare this with the documentation of the geometry model you use in your model.

Possible values: [List list of [Anything] of length 0...4294967295 (inclusive)]

5.88 Parameters in section Postprocess

o Parameter name: List of postprocessors
Value:
Default:

Description: A comma separated list of postprocessor objects that should be run at the end of each
time step. Some of these postprocessors will declare their own parameters which may, for example,
include that they will actually do something only every so many time steps or years. Alternatively,
the text ’all’ indicates that all available postprocessors should be run after each time step.

The following postprocessors are available:

‘Stokes residual’: A postprocessor that outputs the Stokes residuals during the iterative solver algorithm
into a file stokes_residuals.txt in the output directory.

‘basic statistics’: A postprocessor that computes some simplified statistics like the Rayleigh number
and other quantities that only make sense in certain model setups.

143

‘boundary densities’: A postprocessor that computes the laterally averaged density at the top and
bottom of the domain.

‘boundary pressures’: A postprocessor that computes the laterally averaged pressure at the top and
bottom of the domain.

‘command’: A postprocessor that executes a command line process.

‘composition statistics’: A postprocessor that computes some statistics about the compositional fields,
if present in this simulation. In particular, it computes maximal and minimal values of each field, as
well as the total mass contained in this field as defined by the integral m;(t) = [, ¢i(x,t) dz.

‘depth average’: A postprocessor that computes depth averaged quantities and writes them into a
file <depth_average.ext> in the output directory, where the extension of the file is determined by the
output format you select. In addition to the output format, a number of other parameters also influence
this postprocessor, and they can be set in the section Postprocess/Depth average in the input file.

In the output files, the z-value of each data point corresponds to the depth, whereas the y-value
corresponds to the simulation time. The time is provided in seconds or, if the global “Use years in
output instead of seconds” parameter is set, in years.

‘dynamic topography’: A postprocessor that computes a measure of dynamic topography based on the
stress at the surface. The data is written into text files named ’dynamic_topography. NNNNN’ in the
output directory, where NNNNN is the number of the time step.

The exact approach works as follows: At the centers of all cells that sit along the top surface, we
evaluate the stress and evaluate the component of it in the direction in which gravity acts. In other
words, we compute oy, = §7 (2ne(u) — 1(div u)I)j — pa where § = g/||g| is the direction of the gravity
vector g and pg = p — p, is the dynamic pressure computed by subtracting the adiabatic pressure p,
from the total pressure p computed as part of the Stokes solve. From this, the dynamic topography is
computed using the formula h = 25~ where p is the density at the cell center. The file format then

lelle
consists of lines with Euclidiean coordinates followed by the corresponding topography value.

(As a side note, the postprocessor chooses the cell center instead of the center of the cell face at the
surface, where we really are interested in the quantity, since this often gives better accuracy. The
results should in essence be the same, though.)

‘heat flux statistics’: A postprocessor that computes some statistics about the (conductive) heat flux
across boundaries. For each boundary indicator (see your geometry description for which boundary
indicators are used), the heat flux is computed in outward direction, i.e., from the domain to the
outside, using the formula fF kVT -n where I'; is the part of the boundary with indicator ¢, k is the
thermal conductivity as reported by the material model, T is the temperature, and n is the outward
normal. Note that the quantity so computed does not include any energy transported across the
boundary by material transport in cases where u - n # 0.

As stated, this postprocessor computes the outbound heat flux. If you are interested in the opposite
direction, for example from the core into the mantle when the domain describes the mantle, then you
need to multiply the result by -1.

‘heating statistics’: A postprocessor that computes some statistics about heating, averaged by volume.

‘mass flux statistics’: A postprocessor that computes some statistics about the mass flux across bound-
aries. For each boundary indicator (see your geometry description for which boundary indicators are
used), the mass flux is computed in outward direction, i.e., from the domain to the outside, using the
formula fFi pv - n where I'; is the part of the boundary with indicator i, p is the density as reported
by the material model, v is the velocity, and n is the outward normal.

As stated, this postprocessor computes the outbound mass flux. If you are interested in the opposite
direction, for example from the core into the mantle when the domain describes the mantle, then you
need to multiply the result by -1.

144

‘point values’: A postprocessor that evaluates the solution (i.e., velocity, pressure, temperature, and
compositional fields along with other fields that are treated as primary variables) at the end of every
time step at a given set of points and then writes this data into the file jpoint_values.txt; in the
output directory. The points at which the solution should be evaluated are specified in the section
Postprocess/Point values in the input file.

In the output file, data is organized as (i) time, (ii) the 2 or 3 coordinates of the evaluation points, and
(iii) followed by the values of the solution vector at this point. The time is provided in seconds or, if
the global “Use years in output instead of seconds” parameter is set, in years. In the latter case, the
velocity is also converted to meters/year, instead of meters/second.

Note: Evaluating the solution of a finite element field at arbitrarily chosen points is an
expensive process. Using this postprocessor will only be efficient if the number of evaluation
points is relatively small. If you need a very large number of evaluation points, you should
consider extracting this information from the visualization program you use to display the
output of the ’visualization’ postprocessor.

‘pressure statistics’: A postprocessor that computes some statistics about the pressure field.
‘spherical velocity statistics’: A postprocessor that computes radial, tangential and total RMS velocity.
‘temperature statistics’: A postprocessor that computes some statistics about the temperature field.

‘topography’: A postprocessor intended for use with a free surface. After every step, it loops over all
the vertices on the top surface and determines the maximum and minimum topography relative to a
reference datum (initial box height for a box geometry model or initial radius for a sphere/spherical
shell geometry model). Outputs topography in meters

‘tracers’: A Postprocessor that creates tracer particles that follow the velocity field of the simulation.
The particles can be generated and propagated in various ways and they can carry a number of constant
or time-varying properties. The postprocessor can write output positions and properties of all tracers
at chosen intervals, although this is not mandatory. It also allows other parts of the code to query the
tracers for information.

‘velocity boundary statistics’> A postprocessor that computes some statistics about the velocity along
the boundaries. For each boundary indicator (see your geometry description for which boundary
indicators are used), the min and max velocity magnitude is computed.

‘velocity statistics’: A postprocessor that computes some statistics about the velocity field.

‘viscous dissipation statistics’: A postprocessor that computes the viscous dissipationfor the whole
domain as: 3 [, 0 :édV = [,(—pV - u+2pué:é — 2(V - u)?)dV.

The information produced by this postprocessor is a subset of what is generated by the ’heating
statistics’ postprocessor.

‘visualization’: A postprocessor that takes the solution and writes it into files that can be read by a
graphical visualization program. Additional run time parameters are read from the parameter subsec-

tion 'Visualization’.

Possible values: [MultipleSelection Stokes residual—basic statistics—boundary densities—boundary
pressures—command—composition statistics—depth average—dynamic topography—heat flux statis-
tics—heating statistics—mass flux statistics—point values—pressure statistics—spherical velocity statis-
tics—temperature statistics—topography—tracers—velocity boundary statistics—velocity statistics—viscous
dissipation statistics—visualization |

145

5.89 Parameters in section Postprocess/Command

o Parameter name: Command
Value:
Default:
Description: Command to execute.

Possible values: [Anything]

e Parameter name: Run on all processes
Value: false
Default: false
Description: Whether to run command from all processes (true), or only on process 0 (false).

Possible values: [Bool]

e Parameter name: Terminate on failure
Value: false
Default: false
Description: Select whether ASPECT should terminate if the command returns a non-zero exit status.

Possible values: [Bool]

5.90 Parameters in section Postprocess/Depth average

o Parameter name: List of output variables
Value: all
Default: all

Description: A comma separated list which specifies which quantites to average in each depth slice. It
defaults to averaging all availabe quantities, but this can be an expensive operation, so you may want
to select only a few.

Possible values: [MultipleSelection all—temperature—composition—adiabatic temperature—velocity
magnitude—sinking velocity—Vs—Vp—rviscosity—vertical heat flux]
e Parameter name: Number of zones
Value: 10
Default: 10

Description: The number of zones in depth direction within which we are to compute averages. By
default, we subdivide the entire domain into 10 depth zones and compute temperature and other
averages within each of these zones. However, if you have a very coarse mesh, it may not make much
sense to subdivide the domain into so many zones and you may wish to choose less than this default.
It may also make computations slightly faster. On the other hand, if you have an extremely highly
resolved mesh, choosing more zones might also make sense.

Possible values: [Integer range 1...2147483647 (inclusive)]

e Parameter name: Output format
Value: gnuplot
Default: gnuplot

146

Description: The format in which the output shall be produced. The format in which the output is
generated also determines the extension of the file into which data is written.

Possible values: [Selection none—dx—ucd—gnuplot—povray—eps—gmv—tecplot—tecplot_binary—vtk—vtu—hdf5—
intermediate—txt]
e Parameter name: Time between graphical output
Value: 1e8
Default: 1e8

Description: The time interval between each generation of graphical output files. A value of zero
indicates that output should be generated in each time step. Units: years if the "Use years in output
instead of seconds’ parameter is set; seconds otherwise.

Possible values: [Double 0...1.79769¢+308 (inclusive)]

5.91 Parameters in section Postprocess/Dynamic Topography

e Parameter name: Subtract mean of dynamic topography
Value: false
Default: false

Description: Option to remove the mean dynamic topography in the outputted data file (not visual-
ization). ’true’ subtracts the mean, 'false’ leaves the calculated dynamic topography as is.

Possible values: [Bool]

5.92 Parameters in section Postprocess/Point values

e Parameter name: Evaluation points
Value:
Default:

Description: The list of points at which the solution should be evaluated. Points need to be separated
by semicolons, and coordinates of each point need to be separated by commas.

Possible values: [List list of [List list of [Double -1.79769e+308...1.79769e+308 (inclusive)] of length
2...2 (inclusive)| of length 0...4294967295 (inclusive) separated by j;¢]

5.93 Parameters in section Postprocess/Tracers

o Parameter name: Data output format
Value: vtu
Default: vtu

Description: File format to output raw particle data in. If you select 'none’ no output will be writ-
ten.Select one of the following models:

‘ascii’; This particle output plugin writes particle positions and properties into space separated ascii
files.

‘hdf5’: This particle output plugin writes particle positions and properties into hdf5 files.
‘vtu’: This particle output plugin writes particle positions and properties into vtu files.

Possible values: [Selection ascii—hdf5—vtu—none |

147

e Parameter name: Integration scheme
Value: k2
Default: rk2

Description: This parameter is used to decide which method to use to solve the equation that describes
the position of particles, i.e., £x;(t) = u(xj(t),t), where k is an index that runs over all particles, and
u(x,t) is the velocity field that results from the Stokes equations.

In practice, the exact velocity u(x,t) is of course not available, but only a numerical approximation
up(x,t). Furthermore, this approximation is only available at discrete time steps, u"(x) = u(x,t"),
and these need to be interpolated between time steps if the integrator for the equation above requires
an evaluation at time points between the discrete time steps. If we denote this interpolation in time
by ﬁh(x,dt) where 1, (x,t") = u”(x), then the equation the differential equation solver really tries to

solve is 5Xp,(t) = Up(xx(t),1).

As a consequence of these considerations, if you try to assess convergence properties of an ODE
integrator — for example to verify that the RK4 integator converges with forth order —, it is important
to recall that the integrator may not solve the equation you think it solves. If, for example, we call the
numerical solution of the ODE Xy, 5, (t), then the error will typically satisfy a relationship like

[%k(T) — Xx, 0 (T)|| < C(T)ALP

where At is the time step and p the convergence order of the method, and C'(T') is a (generally unknown)
constant that depends on the end time T at which one compares the solutions. On the other hand,
an analytically computed trajectory would likely use the ezact velocity, and one may be tempted to
compute ||xg(T) — Xg,n(T)||, but this quantity will, in the best case, only satisfy an estimate of the
form

1%k (T) = Xin(T)|| < CLT)AL + Co(T) [u = up[| + C3(T)[[up, — s

with appropriately chosen norms for the second and third term. These second and third terms typically
converge to zero at relatively low rates (compared to the order p of the integrator, which can often be
chosen relatively high) in the mesh size h and the time step size

Deltat, limiting the overall accuracy of the ODE integrator.

Select one of the following models:

‘euler’: Explicit Euler scheme integrator, where y,+1 = ¥y, + dt * v(y,). This requires only one
integration substep per timestep.

‘rk2’: Second Order Runge Kutta integrator y,+1 = Yy, + dt * v(th/g,yn + 0.5 % kq) where ky =
Yn + 0.5 % dt x v(ty, yn)

‘rk4’: Runge Kutta fourth order integrator, where yp,+1 = yn+(1/6)xk14+(1/3)xko+(1/3)xks+(1/6)*ky4
and ki, ko, k3, k4 are defined as usual.

Possible values: [Selection euler—rk2—rk4 |

o Parameter name: Interpolation scheme
Value: first particle
Default: first particle
Description: Select one of the following models:
‘first particle’: Return the properties of the first tracer in the given cell.

Possible values: [Selection first particle]

o Parameter name: List of tracer properties

Value:

148

Default:

Description: A comma separated list of tracer properties that should be tracked. By default none is
selected, which means only position, velocity and id of the tracers are output.

The following properties are available:

‘function’: Implementation of a model in which the tracer property is set by evaluating an explicit
function at the initial position of each particle. The function is defined in the parameters in section
“Tracers—Function”. The format of these functions follows the syntax understood by the muparser
library, see Section 5.1.3.

‘initial composition’: Implementation of a plugin in which the tracer property is given as the ini-
tial composition at the particle’s initial position. The tracer gets as many properties as there are
compositional fields.

‘initial position’: Implementation of a plugin in which the tracer property is given as the initial position
of the tracer.

‘pT path’: Implementation of a plugin in which the tracer property is defined as the current pressure
and temperature at this position. This can be used to generate pressure-temperature paths of material
points over time.

‘position’: Implementation of a plugin in which the tracer property is defined as the current position.

‘velocity’: Implementation of a plugin in which the tracer property is defined as the recent velocity at
this position.

Possible values: [MultipleSelection function—initial composition—initial position—pT path—position—velocity
}

Parameter name: Load balancing strategy

Value: none

Default: none

Description: Strategy that is used to balance the computationalload across processors for adaptive
meshes.

Possible values: [Selection none—remove particles—remove and add particles—repartition]

Parameter name: Maximum tracers per cell
Value: 100
Default: 100

Description: Upper limit for particle number per cell. This limit is useful for adaptive meshes to prevent
coarse cells from slowing down the whole model. It will be checked and enforced after mesh refinement,
after MPI transfer of particles and after particle movement. If there are n_number_of particles >
max_particles_per_cell particles in one cell then n_number_of _particles - max_particles_per_cell
particles in this cell are randomly chosen and destroyed.

Possible values: [Integer range 0...2147483647 (inclusive)]

Parameter name: Minimum tracers per cell
Value: 0
Default: 0

Description: Lower limit for particle number per cell. This limit is useful for adaptive meshes to prevent
fine cells from being empty of particles. It will be checked and enforced after mesh refinement and
after particle movement. If there are n_number_of particles < min particles_per_cell particles in
one cell then min_particles_per_cell - n_number_of_particles particles are generated and randomly

149

placed in this cell. If the particles carry properties the individual property plugins control how the
properties of the new particles are initialized.

Possible values: [Integer range 0...2147483647 (inclusive)]

Parameter name: Number of tracers
Value: 1000
Default: 1000

Description: Total number of tracers to create (not per processor or per element). The number is
parsed as a floating point number (so that one can specify, for example, 'led’ particles) but it is
interpreted as an integer, of course.

Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Particle generator name
Value: random uniform

Default: random uniform

Description: Select one of the following models:

‘ascii file’: Generates a distribution of tracers from coordinates specified in an Ascii data file. The file
format is a simple text file, with as many columns as spatial dimensions and as many lines as tracers
to be generated. Initial comment lines starting with ‘#’ will be discarded.All of the values that define
this generator are read from a section “Particle generator/Ascii file” in the input file, see Section ?7.

‘probability density function’: Generate a random distribution of particles over the entire simulation
domain. The probability density is prescribed in the form of a user-prescribed function. The format
of this function follows the syntax understood by the muparser library, see Section 5.1.3. The return
value of the function is always checked to be a non-negative probability density but it can be zero
inparts of the domain.

‘random uniform’: Generates a random uniform distribution of particles over the entire simulation
domain.

‘uniform box’: Generate a uniform distribution of particles over a rectangular domain in 2D or 3D.
Uniform here means the particles will be generated with an equal spacing in each spatial dimension.
Note that in order to produce a regular distribution the number of generated tracers might not exactly
match the one specified in the input file.

‘uniform radial’: Generate a uniform distribution of particlesover a spherical domain in 2D or 3D.
Uniform here means the particles will be generated with an equal spacing in each spherical spatial
dimension, i.e., the particles are created at positions that increase linearly with equal spacing in
radius, colatitude and longitude around a certain center point. Note that in order to produce a regular

distribution the number of generated tracers might not exactly match the one specified in the input
file.

Possible values: [Selection ascii file—probability density function—random uniform—uniform box—uniform
radial |

Parameter name: Time between data output

Value: 1e8

Default: 1e8

Description: The time interval between each generation of output files. A value of zero indicates that
output should be generated every time step.

Units: years if the 'Use years in output instead of seconds’ parameter is set; seconds otherwise.
Possible values: [Double 0...1.79769e+308 (inclusive)]

150

e Parameter name: Tracer weight
Value: 10
Default: 10

Description: Weight that is associated with the computational load of a single particle. The sum of
tracer weights will be added to the sum of cell weights to determine the partitioning of the mesh. Every
cell without tracers is associated with a weight of 1000.

Possible values: [Integer range 0...2147483647 (inclusive)]

5.94 Parameters in section Postprocess/Tracers/Function

e Parameter name: Function constants
Value:
Default:

Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘varl=valuel, var2=value2, ...".

A typical example would be to set this runtime parameter to ‘pi=3.1415926536" and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)

Possible values: [Anything]

e Parameter name: Function expression
Value: 0
Default: 0

Description: The formula that denotes the function you want to evaluate for particular values of
the independent variables. This expression may contain any of the usual operations such as addition
or multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may
contain expressions like ‘if(x;0, 1, -1)” where the expression evaluates to the second argument if the
first argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.

If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.

Possible values: [Anything]

o Parameter name: Variable names
Value: x,y,t
Default: x,y,t

Description: The name of the variables as they will be used in the function, separated by commas. By
default, the names of variables at which the function will be evaluated is ‘x’ (in 1d), ‘x,y’ (in 2d) or
‘x,y,z" (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’” and then use these variable names in your
function expression.

Possible values: [Anything]

151

5.95 Parameters in section Postprocess/Tracers/Generator

5.96 Parameters in section Postprocess/Tracers/Generator/Ascii file

e Parameter name: Data directory
Value: $ASPECT_SOURCE_DIR/data/particle/generator/ascii/
Default: $ASPECT_SOURCE_DIR/data/particle/generator/ascii/

Description: The name of a directory that contains the tracer data. This path may either be absolute
(if starting with a ’/’) or relative to the current directory. The path may also include the special text
"$ASPECT_SOURCE_DIR’ which will be interpreted as the path in which the ASPECT source files
were located when ASPECT was compiled. This interpretation allows, for example, to reference files
located in the ’data/’ subdirectory of ASPECT.

Possible values: [DirectoryName|

e Parameter name: Data file name
Value: tracer.dat
Default: tracer.dat
Description: The name of the tracer file.

Possible values: [Anything]

5.97 Parameters in section Postprocess/Tracers/Generator/Probability density
function
e Parameter name: Function constants
Value:
Default:

Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘varl=valuel, var2=value2, ...".

A typical example would be to set this runtime parameter to ‘pi=3.1415926536’ and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)

Possible values: [Anything]

e Parameter name: Function expression
Value: 0
Default: 0

Description: The formula that denotes the function you want to evaluate for particular values of
the independent variables. This expression may contain any of the usual operations such as addition
or multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may
contain expressions like ‘if(x;0, 1, -1)” where the expression evaluates to the second argument if the
first argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.

If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.

Possible values: [Anything]

152

Parameter name: Variable names
Value: x,y,t
Default: x,y,t

Description: The name of the variables as they will be used in the function, separated by commas. By
default, the names of variables at which the function will be evaluated is ‘x’ (in 1d), ‘x,y’ (in 2d) or
‘x,y,2" (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’” and then use these variable names in your
function expression.

Possible values: [Anything]

5.98 Parameters in section Postprocess/Tracers/Generator/Uniform box

Parameter name: Maximum x

Value: 1

Default: 1

Description: Maximum x coordinate for the region of tracers.

Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

Parameter name: Maximum y

Value: 1

Default: 1

Description: Maximum y coordinate for the region of tracers.
Possible values: [Double -1.79769¢+308...1.79769e+308 (inclusive)]

Parameter name: Maximum z

Value: 1

Default: 1

Description: Maximum z coordinate for the region of tracers.
Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

Parameter name: Minimum x

Value: 0

Default: 0

Description: Minimum x coordinate for the region of tracers.
Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

Parameter name: Minimum y

Value: 0

Default: 0

Description: Minimum y coordinate for the region of tracers.
Possible values: [Double -1.79769e+308...1.79769¢+308 (inclusive)]

153

e Parameter name: Minimum z
Value: 0
Default: 0
Description: Minimum z coordinate for the region of tracers.
Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

5.99 Parameters in section Postprocess/Tracers/Generator/Uniform radial

e Parameter name: Center x
Value: 0
Default: 0
Description: x coordinate for the center of the spherical region, where tracers are generated.
Possible values: [Double -1.79769e+308...1.79769¢+308 (inclusive)]

e Parameter name: Center y
Value: 0
Default: 0
Description: y coordinate for the center of the spherical region, where tracers are generated.
Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

e Parameter name: Center z
Value: 0
Default: 0
Description: z coordinate for the center of the spherical region, where tracers are generated.
Possible values: [Double -1.79769e+308...1.79769¢+308 (inclusive)]

e Parameter name: Maximum latitude
Value: 3.1415
Default: 3.1415

Description: Maximum latitude coordinate for the region of tracers in degrees. Measured from the
center position.

Possible values: [Double 0...180 (inclusive)]

e Parameter name: Maximum longitude
Value: 3.1415
Default: 3.1415

Description: Maximum longitude coordinate for the region of tracers in degrees. Measured from the
center position.

Possible values: [Double 0...360 (inclusive)]

o Parameter name: Maximum radius
Value: 1
Default: 1
Description: Maximum radial coordinate for the region of tracers. Measured from the center position.
Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

154

e Parameter name: Minimum latitude
Value: 0
Default: 0

Description: Minimum latitude coordinate for the region of tracers in degrees. Measured from the
center position.

Possible values: [Double 0...180 (inclusive)]

e Parameter name: Minimum longitude
Value: 0
Default: 0

Description: Minimum longitude coordinate for the region of tracers in degrees. Measured from the
center position.

Possible values: [Double 0...360 (inclusive)]

e Parameter name: Minimum radius
Value: 0
Default: 0
Description: Minimum radial coordinate for the region of tracers. Measured from the center position.
Possible values: [Double 0...1.79769e+308 (inclusive)]

o Parameter name: Radial layers
Value: 1
Default: 1
Description: The number of radial shells of particles that will be generatedaround the central point.

Possible values: [Integer range 1...2147483647 (inclusive)]

5.100 Parameters in section Postprocess/Visualization

e Parameter name: Interpolate output
Value: false
Default: false

Description: deal Il offers the possibility to linearly interpolate output fields of higher order elements
to a finer resolution. This somewhat compensates the fact that most visualization software only offers
linear interpolation between grid points and therefore the output file is a very coarse representation of
the actual solution field. Activating this option increases the spatial resolution in each dimension by a
factor equal to the polynomial degree used for the velocity finite element (usually 2). In other words,
instead of showing one quadrilateral or hexahedron in the visualization per cell on which ASPECT
computes, it shows multiple (for quadratic elements, it will describe each cell of the mesh on which we
compute as 2 x 2 or 2 X 2 x 2 cells in 2d and 3d, respectively; correspondingly more subdivisions are
used if you use cubic, quartic, or even higher order elements for the velocity).

The effect of using this option can be seen in the following picture showing a variation of the output
produced with the input files from Section 6.3.1:

155

Here, the left picture shows one visualization cell per computational cell (i.e., the option is switch off,
as is the default), and the right picture shows the same simulation with the option switched on. The
images show the same data, demonstrating that interpolating the solution onto bilinear shape functions
as is commonly done in visualizing data loses information.

Of course, activating this option also greatly increases the amount of data ASPECT will write to disk:
approximately by a factor of 4 in 2d, and a factor of 8 in 3d, when using quadratic elements for the
velocity, and correspondingly more for even higher order elements.

Possible values: [Bool]

Parameter name: List of output variables
Value:
Default:

Description: A comma separated list of visualization objects that should be run whenever writing
graphical output. By default, the graphical output files will always contain the primary variables
velocity, pressure, and temperature. However, one frequently wants to also visualize derived quantities,
such as the thermodynamic phase that corresponds to a given temperature-pressure value, or the
corresponding seismic wave speeds. The visualization objects do exactly this: they compute such
derived quantities and place them into the output file. The current parameter is the place where you
decide which of these additional output variables you want to have in your output file.

The following postprocessors are available:

‘“Vp anomaly’: A visualization output object that generates output showing the anomaly in the seismic
compression wave speed V, as a spatially variable function with one value per cell. This anomaly is
shown as a percentage change relative to the average value of V}, at the depth of this cell.

‘Vs anomaly’: A visualization output object that generates output showing the anomaly in the seismic
shear wave speed V; as a spatially variable function with one value per cell. This anomaly is shown as
a percentage change relative to the average value of V; at the depth of this cell.

‘artificial viscosity’: A visualization output object that generates output showing the value of the
artificial viscosity on each cell.

‘boundary indicators’: A visualization output object that generates output about the used boundary
indicators. In a loop over the active cells, if a cell lies at a domain boundary, the boundary indicator
of the face along the boundary is requested. In case the cell does not lie along any domain boundary,
the cell is assigned the value of the largest used boundary indicator plus one. When a cell is situated
in one of the corners of the domain, multiple faces will have a boundary indicator. This postprocessor
returns the value of the first face along a boundary that is encountered in a loop over all the faces.

156

‘compositional vector’: A visualization output object that outputs vectors whose components are
derived from compositional fields. Input parameters for this postprocessor are defined in section Post-
process/Visualization/Compositional fields as vectors

‘density’: A visualization output object that generates output for the density.

‘depth’: A visualization output postprocessor that outputs the depth for all points inside the domain,
as determined by the geometry model.

‘dynamic topography’: A visualization output object that generates output for the dynamic topog-
raphy. The approach to determine the dynamic topography requires us to compute the stress tensor
and evaluate the component of it in the direction in which gravity acts. In other words, we compute

r = §7(2ne(u) — $(div u)l)§ — pqg where § = g/||g| is the direction of the gravity vector g and
P4 = P — Pq is the dynamic pressure computed by subtracting the adiabatic pressure p, from the total
pressure p computed as part of the Stokes solve. From this, the dynamic topography is computed using

the formula h = f’i where p is the density at the cell center.

lglle
Strictly speaking, the dynamic topography is of course a quantity that is only of interest at the surface.
However, we compute it everywhere to make things fit into the framework within which we produce
data for visualization. You probably only want to visualize whatever data this postprocessor generates
at the surface of your domain and simply ignore the rest of the data generated.

‘error indicator’: A visualization output object that generates output showing the estimated error or
other mesh refinement indicator as a spatially variable function with one value per cell.

‘friction heating’: A visualization output object that generates output for the amount of friction heating
often referred to as 7 : e. More concisely, in the incompressible case, the quantity that is output is
defined as ne(u) : e(u) where 7 is itself a function of temperature, pressure and strain rate. In the
compressible case, the quantity that’s computed is nle(u) — & (tr e(u))I] : [e(u) — 3 (tr e(u))I].

‘gravity’: A visualization output object that outputs the gravity vector.

‘heating’: A visualization output object that generates output for all the heating terms used in the
energy equation.

‘material properties’: A visualization output object that generates output for the material properties
given by the material model.There are a number of other visualization postprocessors that offer to
write individual material properties. However, they all individually have to evaluate the material
model. This is inefficient if one wants to output more than just one or two of the fields provided by
the material model. The current postprocessor allows to output a (potentially large) subset of all of
the information provided by material models at once, with just a single material model evaluation per
output point.

‘melt fraction’: A visualization output object that generates output for the melt fraction at the tem-
perature and pressure of the current point (batch melting). Does not take into account latent heat.
If there are no compositional fields, this postprocessor will visualize the melt fraction of peridotite
(calculated using the anhydrous model of Katz, 2003). If there is at least one compositional field, the
postprocessor assumes that the first compositional field is the content of pyroxenite, and will visualize
the melt fraction for a mixture of peridotite and pyroxenite (using the melting model of Sobolev, 2011
for pyroxenite). All the parameters that were used in these calculations can be changed in the input
file, the most relevant maybe being the mass fraction of Cpx in peridotite in the Katz melting model
(Mass fraction cpx), which right now has a default of 15%. The corresponding p-T-diagrams can be
generated by running the tests melt_postprocessor_peridotite and melt_postprocessor_pyroxenite.

‘nonadiabatic pressure’: A visualization output object that generates output for the non-adiabatic
component of the pressure.

‘nonadiabatic temperature’: A visualization output object that generates output for the non-adiabatic
component of the pressure.

157

‘particle count’: A visualization output object that generates output about the number of particles per
cell.

‘partition’: A visualization output object that generates output for the parallel partition that every
cell of the mesh is associated with.

‘seismic vp’: A visualization output object that generates output for the seismic P-wave speed.
‘seismic vs’: A visualization output object that generates output for the seismic S-wave speed.

‘shear stress’: A visualization output object that generates output for the 3 (in 2d) or 6 (in 3d)
components of the shear stress tensor, i.e., for the components of the tensor 2ne(u) in the incompressible
case and 27 [e(u) — £(tr £(u))I] in the compressible case. The shear stress differs from the full stress
tensor by the absence of the pressure.

‘specific heat’: A visualization output object that generates output for the specific heat C,,.
‘strain rate’: A visualization output object that generates output for the norm of the strain rate, i.e., for

the quantity /c(u) : €(u) in the incompressible case and \/[5(u) — 2(tre(u)I] : [e(u) — & (tr £(u))I]
in the compressible case.

‘stress’: A visualization output object that generates output for the 3 (in 2d) or 6 (in 3d) components
of the stress tensor, i.e., for the components of the tensor 2ne(u) 4+ pI in the incompressible case and
2n [e(u) — £(tr e(u))I] + pI in the compressible case.

‘thermal conductivity’: A visualization output object that generates output for the thermal conduc-
tivity k.
‘thermal diffusivity’: A visualization output object that generates output for the thermal diffusivity

n:£7 with k the thermal conductivity.

‘thermal expansivity’: A visualization output object that generates output for the thermal expansivity.

‘thermodynamic phase’: A visualization output object that generates output for the integer number
of the phase that is thermodynamically stable at the temperature and pressure of the current point.

‘vertical heat flux’: A visualization output object that generates output for the heat flux in the vertical
direction, which is the sum of the advective and the conductive heat flux, with the sign convention of
positive flux upwards.

‘viscosity’: A visualization output object that generates output for the viscosity.

‘viscosity ratio’: A visualization output object that generates output for the ratio between dislocation
viscosity and diffusion viscosity.

Possible values: [MultipleSelection Vp anomaly—Vs anomaly—artificial viscosity—boundary indi-
cators—compositional vector—density—depth—dynamic topography—error indicator—friction heat-
ing—gravity—heating—material properties—melt fraction—nonadiabatic pressure—nonadiabatic tem-
perature—particle count—partition—seismic vp—seismic vs—shear stress—specific heat—strain rate—stress—thermal
conductivity—thermal diffusivity—thermal expansivity—thermodynamic phase—vertical heat flux—viscosity—viscosit;
ratio]

Parameter name: Number of grouped files
Value: 0
Default: 0

Description: VTU file output supports grouping files from several CPUs into a given number of files
using MPII/0O when writing on a parallel filesystem. Select 0 for no grouping. This will disable parallel
file output and instead write one file per processor. A value of 1 will generate one big file containing
the whole solution, while a larger value will create that many files (at most as many as there are mpi
ranks).

Possible values: [Integer range 0...2147483647 (inclusive)]

158

e Parameter name: Output format
Value: vtu
Default: vtu
Description: The file format to be used for graphical output.
Possible values: [Selection none—dx—ucd—gnuplot—povray—eps—gmv—tecplot—tecplot_binary—vtk—vtu—hdf5—
intermediate |
o Parameter name: Output mesh velocity
Value: false
Default: false

Description: For free surface computations Aspect uses an Arbitrary-Lagrangian-Eulerian formulation
to handle deforming the domain, so the mesh has its own velocity field. This may be written as an
output field by setting this parameter to true.

Possible values: [Bool]

e Parameter name: Temporary output location
Value:
Default:

Description: On large clusters it can be advantageous to first write the output to a temporary file on a
local file system and later move this file to a network file system. If this variable is set to a non-empty
string it will be interpreted as a temporary storage location.

Possible values: [Anything)

e Parameter name: Time between graphical output
Value: 1e8
Default: 1e8

Description: The time interval between each generation of graphical output files. A value of zero
indicates that output should be generated in each time step. Units: years if the "Use years in output
instead of seconds’ parameter is set; seconds otherwise.

Possible values: [Double 0...1.79769¢+4308 (inclusive)]

o Parameter name: Write in background thread
Value: false
Default: false

Description: File operations can potentially take a long time, blocking the progress of the rest of the
model run. Setting this variable to ’true’ moves this process into a background thread, while the rest
of the model continues.

Possible values: [Bool]

5.101 Parameters in section Postprocess/Visualization/Compositional fields as
vectors

e Parameter name: Names of fields
Value:
Default:

159

Description: A list of sets of compositional fields which should be output as vectors. Sets are separated
from each other by semicolons and vector components within each set are separated by commas (e.g.
vecl,, vecly ; vec2,, vec2,) where each name must be a defined named compositional field. If only
one name is given in a set, it is interpreted as the first in a sequence of dim consecutive compositional

fields.
Possible values: [Anything]

e Parameter name: Names of vectors
Value:
Default:
Description: Names of vectors as they will appear in the output.
Possible values: [List list of [Anything] of length 0...4294967295 (inclusive)]

5.102 Parameters in section Postprocess/Visualization/Dynamic Topography

e Parameter name: Subtract mean of dynamic topography
Value: false
Default: false

Description: Option to remove the mean dynamic topography in the outputted data file (not visual-
ization). ’true’ subtracts the mean, 'false’ leaves the calculated dynamic topography as is.

Possible values: [Bool]

5.103 Parameters in section Postprocess/Visualization/Material properties

e Parameter name: List of material properties
Value: density,thermal expansivity,specific heat,viscosity
Default: density,thermal expansivity,specific heat,viscosity

Description: A comma separated list of material properties that should be written whenever writ-
ing graphical output. By default, the material properties will always contain the density, thermal
expansivity, specific heat and viscosity. The following material properties are available:

viscosity—density—thermal expansivity—specific heat—thermal conductivity—thermal diffusivity—compressibility—e
derivative temperature—entropy derivative pressure—reaction terms

Possible values: [MultipleSelection viscosity—density—thermal expansivity—specific heat—thermal
conductivity—thermal diffusivity—compressibility—entropy derivative temperature—entropy deriva-
tive pressure—reaction terms]

5.104 Parameters in section Postprocess/Visualization/Melt fraction

o Parameter name: Al
Value: 1085.7
Default: 1085.7

Description: Constant parameter in the quadratic function that approximates the solidus of peridotite.
Units: C.

Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

160

Parameter name: A2
Value: 1.329¢-7
Default: 1.329e-7

Description: Prefactor of the linear pressure term in the quadratic function that approximates the
solidus of peridotite. Units: C'/Pa.

Possible values: [Double -1.79769e¢+308...1.79769¢+308 (inclusive)]

Parameter name: A3
Value: -5.1e-18
Default: -5.1e-18

Description: Prefactor of the quadratic pressure term in the quadratic function that approximates the
solidus of peridotite. Units: C/(Pa?).

Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

Parameter name: B1
Value: 1475.0
Default: 1475.0

Description: Constant parameter in the quadratic function that approximates the lherzolite liquidus
used for calculating the fraction of peridotite-derived melt. Units: C.

Possible values: [Double -1.79769¢+308...1.79769e+308 (inclusive)]

Parameter name: B2
Value: 8.0e-8
Default: 8.0e-8

Description: Prefactor of the linear pressure term in the quadratic function that approximates the
lherzolite liquidus used for calculating the fraction of peridotite-derived melt. Units: C'/Pa.

Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

Parameter name: B3
Value: -3.2¢-18
Default: -3.2e-18

Description: Prefactor of the quadratic pressure term in the quadratic function that approximates the
lherzolite liquidus used for calculating the fraction of peridotite-derived melt. Units: C/(Pa?).

Possible values: [Double -1.79769¢+308...1.79769e+308 (inclusive)]

Parameter name: C1

Value: 1780.0

Default: 1780.0

Description: Constant parameter in the quadratic function that approximates the liquidus of peridotite.
Units: C.

Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

Parameter name: C2

Value: 4.50e-8

Default: 4.50e-8

161

Description: Prefactor of the linear pressure term in the quadratic function that approximates the
liquidus of peridotite. Units: C'/Pa.

Possible values: [Double -1.79769e+308...1.79769¢+308 (inclusive)]

Parameter name: C3
Value: -2.0e-18
Default: -2.0e-18

Description: Prefactor of the quadratic pressure term in the quadratic function that approximates the
liquidus of peridotite. Units: C/(Pa?).

Possible values: [Double -1.79769¢+308...1.79769¢+308 (inclusive)]

Parameter name: D1
Value: 976.0
Default: 976.0

Description: Constant parameter in the quadratic function that approximates the solidus of pyroxenite.
Units: C.

Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

Parameter name: D2
Value: 1.329e-7
Default: 1.329e-7

Description: Prefactor of the linear pressure term in the quadratic function that approximates the
solidus of pyroxenite. Note that this factor is different from the value given in Sobolev, 2011, because
they use the potential temperature whereas we use the absolute temperature. Units: C/Pa.

Possible values: [Double -1.79769e+308...1.79769¢+308 (inclusive)]

Parameter name: D3
Value: -5.1e-18
Default: -5.1e-18

Description: Prefactor of the quadratic pressure term in the quadratic function that approximates the
solidus of pyroxenite. Units: C'/(Pa?).

Possible values: [Double -1.79769e¢+308...1.79769¢+308 (inclusive)]

Parameter name: E1
Value: 663.8
Default: 663.8

Description: Prefactor of the linear depletion term in the quadratic function that approximates the
melt fraction of pyroxenite. Units: C/Pa.

Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

Parameter name: E2
Value: -611.4
Default: -611.4

Description: Prefactor of the quadratic depletion term in the quadratic function that approximates
the melt fraction of pyroxenite. Units: C/(Pa?).

Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

162

e Parameter name: Mass fraction cpx
Value: 0.15
Default: 0.15
Description: Mass fraction of clinopyroxene in the peridotite to be molten. Units: non-dimensional.
Possible values: [Double -1.79769e+308...1.79769¢+308 (inclusive)]

e Parameter name: beta
Value: 1.5
Default: 1.5

Description: Exponent of the melting temperature in the melt fraction calculation. Units: non-
dimensional.

Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

e Parameter name: rl
Value: 0.5
Default: 0.5

Description: Constant in the linear function that approximates the clinopyroxene reaction coefficient.
Units: non-dimensional.

Possible values: [Double -1.79769e+308...1.79769¢+308 (inclusive)]

e Parameter name: r2
Value: 8e-11
Default: 8e-11

Description: Prefactor of the linear pressure term in the linear function that approximates the clinopy-
roxene reaction coefficient. Units: 1/Pa.

Possible values: [Double -1.79769e+308...1.79769e+308 (inclusive)]

5.105 Parameters in section Prescribed Stokes solution

e Parameter name: Model name
Value: unspecified
Default: unspecified
Description: Select one of the following models:

‘ascii data’: Implementation of a model in which the velocityis derived from files containing data in
ascii format. Note the required format of the input data: The first lines may contain any number of
comments if they begin with ’#’, but one of these lines needs to contain the number of grid points in

DA S))

each dimension as for example '# POINTS: 3 3’. The order of the data columns has to be ’x’, ’y’, v,
, vy’ in a 2d model and 'x’, 'y’, ’z’, 'v,’, vy’ , v, in a 3d model. Note that the data in the input files
need to be sorted in a specific order: the first coordinate needs to ascend first, followed by the second
and the third at last in order to assign the correct data to the prescribed coordinates. If you use a
spherical model, then the data will still be handled as Cartesian, however the assumed grid changes.
x” will be replaced by the radial distance of the point to the bottom of the model, 'y’ by the azimuth
angle and 'z’ by the polar angle measured positive from the north pole. The grid will be assumed to
be a latitude-longitude grid. Note that the order of spherical coordinates is ’r’, 'phi’, 'theta’ and not

'r’, 'theta’, 'phi’, since this allows for dimension independent expressions.

163

‘circle’: This value describes a vector field that rotates around the z-axis with constant angular velocity
(i.e., with a velocity that increases with distance from the axis). The pressure is set to zero.

‘function’: This plugin allows to prescribe the Stokes solution for the velocity and pressure field in
terms of an explicit formula. The format of these functions follows the syntax understood by the
muparser library, see Section 5.1.3.

Possible values: [Selection ascii data—circle—function—unspecified |

5.106 Parameters in section Prescribed Stokes solution/Ascii data model

e Parameter name: Data directory
Value: SASPECT_SOURCE_DIR/data/prescribed-stokes-solution/
Default: SASPECT_SOURCE_DIR/data/prescribed-stokes-solution/

Description: The name of a directory that contains the model data. This path may either be absolute
(if starting with a ’/’) or relative to the current directory. The path may also include the special text
"$ASPECT_SOURCE_DIR’ which will be interpreted as the path in which the ASPECT source files
were located when ASPECT was compiled. This interpretation allows, for example, to reference files
located in the ’data/’ subdirectory of ASPECT.

Possible values: [DirectoryName]

e Parameter name: Data file name
Value: box_2d.txt
Default: box_2d.txt

Description: The file name of the material data. Provide file in format: (Velocity file name).%s%d
where %s is a string specifying the boundary of the model according to the names of the boundary
indicators (of a box or a spherical shell).%d is any sprintf integer qualifier, specifying the format of the
current file number.

Possible values: [Anything]

e Parameter name: Scale factor
Value: 1
Default: 1

Description: Scalar factor, which is applied to the boundary velocity. You might want to use this to
scale the velocities to a reference model (e.g. with free-slip boundary) or another plate reconstruction.
Another way to use this factor is to convert units of the input files. The unit is assumed to bem/s or
m/yr depending on the "Use years in output instead of seconds’ flag. If you provide velocities in cm/yr
set this factor to 0.01.

Possible values: [Double 0...1.79769e+308 (inclusive)]

5.107 Parameters in section Prescribed Stokes solution/Pressure function

e Parameter name: Function constants
Value:
Default:

Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘varl=valuel, var2=value2, ...".

164

A typical example would be to set this runtime parameter to ‘pi=3.1415926536" and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)

Possible values: [Anything]

e Parameter name: Function expression
Value: 0
Default: 0

Description: The formula that denotes the function you want to evaluate for particular values of
the independent variables. This expression may contain any of the usual operations such as addition
or multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may
contain expressions like ‘if(x;0, 1, -1)” where the expression evaluates to the second argument if the
first argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.

If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.

Possible values: [Anything]

e Parameter name: Variable names
Value: x,y,t
Default: x,y,t

Description: The name of the variables as they will be used in the function, separated by commas. By
default, the names of variables at which the function will be evaluated is ‘x’ (in 1d), ‘x,y’ (in 2d) or
‘x,y,2 (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’” and then use these variable names in your
function expression.

Possible values: [Anything]

5.108 Parameters in section Prescribed Stokes solution/Velocity function

e Parameter name: Function constants
Value:
Default:

Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘varl=valuel, var2=value2, ...".

A typical example would be to set this runtime parameter to ‘pi=3.1415926536’ and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)

Possible values: [Anything]

o Parameter name: Function expression
Value: 0; 0
Default: 0; 0

165

Description: The formula that denotes the function you want to evaluate for particular values of
the independent variables. This expression may contain any of the usual operations such as addition
or multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may
contain expressions like ‘if(x;0, 1, -1)” where the expression evaluates to the second argument if the
first argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.

If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.

Possible values: [Anything]

e Parameter name: Variable names
Value: x,y.t
Default: x,y,t

Description: The name of the variables as they will be used in the function, separated by commas. By
default, the names of variables at which the function will be evaluated is ‘x’ (in 1d), ‘x,y’ (in 2d) or
‘x,y,z" (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’” and then use these variable names in your
function expression.

Possible values: [Anything]

5.109 Parameters in section Termination criteria

e Parameter name: Checkpoint on termination
Value: false
Default: false
Description: Whether to checkpoint the simulation right before termination.

Possible values: [Bool]

o Parameter name: End step
Value: 100
Default: 100
Description: Terminate the simulation once the specified timestep has been reached.

Possible values: [Integer range 0...2147483647 (inclusive)]

o Parameter name: Termination criteria
Value: end time
Default: end time

Description: A comma separated list of termination criteria that will determine when the simulation
should end. Whether explicitly stated or not, the “end time” termination criterion will always be
used.The following termination criteria are available:

‘end step’: Terminate the simulation once the specified timestep has been reached.

‘end time’: Terminate the simulation once the end time specified in the input file has been reached.
Unlike all other termination criteria, this criterion is always active, whether it has been explicitly

166

selected or not in the input file (this is done to preserve historical behavior of ASPECT, but it also
likely does not inconvenience anyone since it is what would be selected in most cases anyway).

‘steady state velocity’: A criterion that terminates the simulation when the RMS of the velocity field
stays within a certain range for a specified period of time.

‘user request’: Terminate the simulation gracefully when a file with a specified name appears in the
output directory. This allows the user to gracefully exit the simulation at any time by simply creating
such a file using, for example, touch output/terminate. The file’s location is chosen to be in the
output directory, rather than in a generic location such as the Aspect directory, so that one can run
multiple simulations at the same time (which presumably write to different output directories) and can
selectively terminate a particular one.

Possible values: [MultipleSelection end step—end time—steady state velocity—user request]

5.110 Parameters in section Termination criteria/Steady state velocity

e Parameter name: Maximum relative deviation

Value: 0.05
Default: 0.05

Description: The maximum relative deviation of the RMS in recent simulation time for the system to
be considered in steady state. If the actual deviation is smaller than this number, then the simulation
will be terminated.

Possible values: [Double 0...1.79769e+308 (inclusive)]

Parameter name: Time in steady state
Value: le7
Default: 1e7

Description: The minimum length of simulation time that the system should be in steady state before
termination.Units: years if the "Use years in output instead of seconds’ parameter is set; seconds
otherwise.

Possible values: [Double 0...1.79769e+308 (inclusive)]

5.111 Parameters in section Termination criteria/User request

6

e Parameter name: File name

Value: terminate-aspect
Default: terminate-aspect

Description: The name of a file that, if it exists in the output directory (whose name is also specified
in the input file) will lead to termination of the simulation. The file’s location is chosen to be in the
output directory, rather than in a generic location such as the Aspect directory, so that one can run
multiple simulations at the same time (which presumably write to different output directories) and can
selectively terminate a particular one.

Possible values: [FileName (Type: input)]

Cookbooks

In this section, let us present a number of “cookbooks” — examples of how to use ASPECT in typical or
less typical ways. As discussed in Sections 4 and 5, ASPECT is driven by run-time parameter files, and so
setting up a particular situation primarily comes down to creating a parameter file that has the right entries.

167

Provide ap
proximate
run-times fo
each of thes
cookbooks.

Thus, the subsections below will discuss in detail what parameters to set and to what values. Note that
parameter files need not specify all parameters — of which there is a bewildering number — but only those
that are relevant to the particular situation we would like to model. All parameters not listed explicitly in
the input file are simply left at their default value (the default values are also documented in Section 5).

Of course, there are situations where what you want to do is not covered by the models already im-
plemented. Specifically, you may want to try a different geometry, a different material or gravity model,
or different boundary conditions. In such cases, you will need to implement these extensions in the actual
source code. Section 7 provides information on how to do that.

The remainder of this section shows a number of applications of ASPECT. They are grouped into three
categories: Simple setups of examples that show thermal convection (Section 6.2), setups that try to model
geophysical situations (Section 6.3) and setups that are used to benchmark ASPECT to ensure correctness
or to test accuracy of our solvers (Section 6.4). Before we get there, however, we will review how one usually
approaches setting up computations in Section 6.1.

Note: The input files discussed in the following sections can generally be found in the cookbooks/
directory of your ASPECT installation.

6.1 How to set up computations

ASPECT’s computations are controlled by input parameter files such as those we will discuss in the following
sections.'® Basically, these are just regular text files you can edit with programs like gedit, kurite or kate
when working on Linux, or something as simple as NotePad on Windows. When setting up these input files,
you basically have to describe everything that characterizes the computation you want to do. In particular,
this includes the following:

e What internal forces act on the medium (the equation)?

e What external forces do we have (the right hand side)

e What is the domain (geometry)?

e What happens at the boundary for each variable involved (boundary conditions)?
e How did it look at the beginning (initial conditions)?

For each of these questions, there are one or more input parameters (sometimes grouped into sections) that
allow you to specify what you want. For example, to choose a geometry, you will typically have a block like
this in your input file:

set Dimension = 2
subsection Geometry model
set Model name = box

subsection Box

set X extent = 1
set Y extent =1
end
end

This indicates that you want to do a computation in 2d, using a rectangular geometry (a “box”) with edge
length equal to one in both the z- and y-directions. Of course, there are other geometries you can choose
from for the Model name parameter, and consequently other subsections that specify the details of these
geometries.

Similarly, you describe boundary conditions using parameters such as this:

15You can also extend ASPECT using plugins — i.e., pieces of code you compile separately and either link into the ASPECT
executable itself, or reference from the input file. This is discussed in Section 7.

168

subsection Model settings

set Fixed temperature boundary indicators = bottom, top

set Zero velocity boundary indicators =

set Prescribed velocity boundary indicators =

set Tangential velocity boundary indicators = left, right, bottom, top
end

This snippet describes which of the four boundaries of the two-dimensional box we have selected above
should have a prescribed temperature or an insulating boundary, and at which parts of the boundary we
want zero, tangential or prescribed velocities.'®

If you go down the list of questions about the setup above, you have already done the majority of the
work describing your computation. The remaining parameters you will typically want to specify have to
do with the computation itself. For example, what variables do you want to output and how often? What
statistics do you want to compute. The following sections will give ample examples for all of this, but using
the questions above as a guideline is already a good first step.

Note: It is of course possible to set up input files for computations completely from scratch.
However, in practice, it is often simpler to go through the list of cookbooks already provided and
find one that comes close to what you want to do. You would then modify this cookbook until it
does what you want to do. The advantage is that you can start with something you already know
works, and you can inspect how each change you make — changing the details of the geometry,
changing the material model, or changing what is being computed at the end of each time step —
affects what you get.

6.2 Simple setups
6.2.1 Convection in a 2d box

In this first example, let us consider a simple situation: a 2d box of dimensions [0, 1] x [0, 1] that is heated
from below, insulated at the left and right, and cooled from the top. We will also consider the simplest
model, the incompressible Boussinesq approximation with constant coefficients n, po, g, Cpk, for this testcase.
Furthermore, we assume that the medium expands linearly with temperature. This leads to the following
set of equations:

—V - 2ne(u)] + Vp=po(1 — (T — Tp))g in 0, (35)
V-u=0 in Q, (36)
po(l — (T — Tp))C,y (aaf +u-VT) —V-kVT =0 in Q. (37)

It is well known that we can non-dimensionalize this set of equations by introducing the Raleigh number
Ra = ‘Z]—z. Formally, we can obtain the non-dimensionalized equations by using the above form and setting
coefficients in the following way:

po=Cy=k=a=n=1, Tp=0, g=Ra,

16nternally, the geometry models ASPECT uses label every part of the boundary with what is called a boundary indicator
— a number that identifies pieces of the boundary. If you know which number each piece has, you can list these numbers on
the right hand sides of the assignments of boundary types above. For example, the left boundary of the box has boundary
indicator zero (see Section 5.32), and using this number instead of the left would have been equally valid. However, numbers
are far more difficult to remember than names, and consequently every geometry model provides string aliases such as “left”
for each boundary indicator describing parts of the boundary. These symbolic aliases are specific to the geometry — for the box,
they are “left”, “right”, “bottom”, etc., whereas for a spherical shell they are “inner” and “outer” — but are described in the
documentation of every geometry model, see Section 5.32.

169

where g = —ge, is the gravity vector in negative z-direction. While this would be a valid description of the
problem, it is not what one typically finds in the literature because there the density in the temperature
equation is chosen as pg rather than p(1 — a(T — Tp)) as used by ASPECT. However, we can mimic this
by choosing a very small value for o — small enough to ensure that for all reasonable temperatures, the
density used here is equal to py for all practical purposes —, and instead making g correspondingly larger.
Consequently, in this cookbook we will use the following set of parameters:

po=Cp=To=k=n=1, To =0, a=10"1°, g = 10*°Ra.

We will see all of these values again in the input file discussed below. The problem is completed by stating
the velocity boundary conditions: tangential flow along all four of the boundaries of the box.

This situation describes a well-known benchmark problems for which a lot is known and against which
we can compare our results. For example, the following is well understood:

e For values of the Rayleigh number less than a critical number Ra, =~ 780, thermal diffusion dominates
convective heat transport and any movement in the fluid is damped exponentially. If the Rayleigh
number is moderately larger than this threshold then a stable convection pattern forms that transports
heat from the bottom to the top boundaries. The simulations we will set up operates in this regime.
Specifically, we will choose Ra = 10%.

On the other hand, if the Rayleigh number becomes even larger, a serious of period doublings starts
that makes the system become more and more unstable. We will investigate some of this behavior at
the end of this section.

e For certain values of the Rayleigh number, very accurate values for the heat flux through the bottom
and top boundaries are available in the literate. For example, Blankenbach et al. report a non-
dimensional heat flux of 4.884409 + 0.00001, see [BBCT89]. We will compare our results against this
value below.

With this said, let us consider how to represent this situation in practice.

The input file. The verbal description of this problem can be translated into an ASPECT input file in
the following way (see Section 5 for a description of all of the parameters that appear in the following input
file, and the indices at the end of this manual if you want to find a particular parameter; you can find the
input file to run this cookbook example in cookbooks/convection-box.prm):

At the top, we define the number of space dimensions we would like to
work in:
set Dimension =2

There are several global wvariables that have to do with what
time system we want to work in and what the end time is. We
also designate an output directory.

set Use years in output instead of seconds = false

set End time = 0.5

set Output directory

output

Then there are wvariables that describe the tolerance of

the linear solver as well as how the pressure should

be normalized. Here, we choose a zero average pressure

at the surface of the domain (for the current geometry, the
surface ts defined as the top boundary).

set Linear solver tolerance = le-7

set Temperature solver tolerance le-10

H OB R KRR

set Pressure normalization surface

170

cookbooks/convection-box.prm

set Surface pressure =0

Then come a number of sections that deal with the setup
of the problem to solve. The first one deals with the
geometry of the domain within which we want to solve.
The sections that follow all have the same basic setup
where we select the name of a particular model (here,
the box geometry) and then, in a further subsection,
set the parameters that are specific to this particular
model.

subsection Geometry model

set Model name = box

H oW R OR R R R R

subsection Box

set X extent =1
set Y extent =1
end
end

The next section deals with the initial conditions for the
temperature (there are no initial conditions for the
velocity wvariable since the velocity is assumed to always
be in a static equilibrium with the temperature field).
There are a number of models with the ’function’ model
a generic one that allows us to enter the actual initial
conditions in the form of a formula that can contain
constants. We choose a linear temperature profile that
matches the boundary conditions defined below plus
a small perturbation:
subsection Initial conditions

set Model name = function

subsection Function
set Variable names =X,z
set Function constants = p=0.01, L=1, pi=3.1415926536, k=1
set Function expression = (1.0-z) - p*cos(kxpi*x/L)*sin(pi*z)

end
end
Then follows a section that describes the boundary conditions
for the temperature. The model we choose is called ’boz’ and
allows to set a constant temperature on each of the four sides
of the box geometry. In our case, we choose something that is
heated from below and cooled from above. (As will be seen
in the next section, the actual temperature prescribed here
at the left and right does not matter.)

subsection Boundary temperature model
set Model name = box

subsection Box

set Bottom temperature = 1
set Left temperature =0
set Right temperature = 0

171

set Top temperature =0

end
end
We then also have to prescribe several other parts of the model
such as which boundaries actually carry a prescribed boundary
temperature (as described in the documentation of the ‘box’
geometry, boundaries 2 and 3 are the bottom and top boundaries)
whereas all other parts of the boundary are insulated (i.e.,
no heat flux through these boundaries; this is also often used
to specify symmetry boundaries).

subsection Model settings
set Fixed temperature boundary indicators = bottom, top

The next parameters then describe on which parts of the

boundary we prescribe a zero or nonzero velocity and

on which parts the flow is allowed to be tangential.

Here, all four sides of the boxz allow tangential

unrestricted flow but with a zero nmormal component:

set Zero velocity boundary indicators =

set Prescribed velocity boundary indicators =

set Tangential velocity boundary indicators = left, right, bottom, top

The final part of this section describes whether we

want to include adiabatic heating (from a small

compressibility of the medium) or from shear friction,
as well as the rate of internal heating. We do not

want to use any of these options here:

set Include adiabatic heating = false

set Include shear heating = false

end

The following two sections describe first the
direction (vertical) and magnitude of gravity and the
material model (i.e., density, viscosity, etc). We have
discussed the settings used here in the introduction to
this cookbook in the manual already.
subsection Gravity model

set Model name = vertical

subsection Vertical
set Magnitude = 1el4 # = Ra / Thermal expansion coefficient
end
end

subsection Material model
set Model name = simple # default:

subsection Simple model
set Reference density =
set Reference specific heat =
set Reference temperature =
set Thermal conductivity =

= O KR .

172

set Thermal expansion coefficient = 1le-10

set Viscosity =1

end
end
The settings above all pertain to the description of the
continuous partial differential equations we want to solwve.
The following section deals with the discretization of
this problem, namely the kind of mesh we want to compute
on. We here use a globally refined mesh without
adaptive mesh refinement.
subsection Mesh refinement

set Initial global refinement =4

set Initial adaptive refinement =0

set Time steps between mesh refinement =0
end
The final part is to specify what ASPECT should do with the
soluttion once computed at the end of every time step. The
process of evaluating the solution is called ‘postprocessing’
and we choose to compute velocity and temperature statistics,
statistics about the heat flux through the boundaries of the
domain, and to gemerate graphical output files for later
visualization. These output files are created every time
a time step crosses time points separated by 0.01. Given
our start time (zero) and final time (0.5) this means that
we will obtain 50 output files.

subsection Postprocess
set List of postprocessors = velocity statistics, temperature statistics,
. heat flux statistics, visualization

subsection Visualization
set Time between graphical output = 0.01
end
end

Running the program. When you run this program for the first time, you are probably still running
ASPECT in debug mode (see Section 4.3) and you will get output like the following:

Number of active cells: 256 (on 5 levels)
Number of degrees of freedom: 3,556 (2,178+289+1,089)

**x* Timestep 0: t=0 seconds

Solving temperature system... O iteratioms.
Rebuilding Stokes preconditioner...
Solving Stokes system... 30+5 iterations.
... ...]
x Timestep 1077: t=0.499901 seconds
Solving temperature system... 9 iteratioms.
Solving Stokes system... 5 iteratioms.

173

Postprocessing:
RMS, max velocity: 43.1 m/s, 69.8 m/s
Temperature min/avg/max: 0K, 0.5 K, 1K
Heat fluxes through boundary parts: 0.02056 W, -0.02061 W, -4.931 W, 4.931 W

+-—- e —+- —+- -+
| Total wallclock time elapsed since start | 454s |

| | | |
| Section | no. calls | wall time | % of total |
+-—= -—- -—- Fmmmm +- —+- -+
Assemble Stokes system	1078	19.2s	4.2%
Assemble temperature system	1078	329s	72%
Build Stokes preconditioner	1] 0.0995s	0.022%	
Build temperature preconditioner	1078	5.84s	1.3%
Solve Stokes system	1078	15.6s	3.47%
Solve temperature system	1078	3.72s	0.82%
Initialization	2	0.0474s	0.01%
Postprocessing	1078	61.9s	147
Setup dof systems	1] 0.221s	0.0497%	
o pomm e e +

If you've read up on the difference between debug and optimized mode (and you should before you
switch!) then consider disabling debug mode. If you run the program again, every number should look
exactly the same (and it does, in fact, as I am writing this) except for the timing information printed every
hundred time steps and at the end of the program:

o= -—- e Fommm e Fmmmm e +
Total wallclock time elapsed since start	48.3s		
Section	no. calls	wall time	% of total
o pomm o o +			
Assemble Stokes system	1078	1.68s	3.5%
Assemble temperature system	1078	26.3s	547
Build Stokes preconditioner	1	0.0401s	0.083%
Build temperature preconditioner	1078	4.87s	10%
Solve Stokes system	1078	6.76s	147
Solve temperature system	1078	1.76s	3.7%
Initialization [2	0.0241s	0.05%	
Postprocessing	1078	4.99s	10%
Setup dof systems	1	0.0394s	0.082Y%
+-—- -—- -—- + + —+- -+

In other words, the program ran about 10 times faster than before. Not all operations became faster to
the same degree: assembly, for example, is an area that traverses a lot of code both in ASPECT and in
DEAL.IT and so encounters a lot of verification code in debug mode. On the other hand, solving linear systems
primarily requires lots of matrix vector operations. Overall, the fact that in this example, assembling linear
systems and preconditioners takes so much time compared to actually solving them is primarily a reflection
of how simple the problem is that we solve in this example. This can also be seen in the fact that the number
of iterations necessary to solve the Stokes and temperature equations is so low. For more complex problems
with non-constant coefficients such as the viscosity, as well as in 3d, we have to spend much more work
solving linear systems whereas the effort to assemble linear systems remains the same.

Visualizing results. Having run the program, we now want to visualize the numerical results we got.
ASPECT can generate graphical output in formats understood by pretty much any visualization program

174

Figure 6: Convection in a box: Initial temperature and velocity field (left) and final state (right).

(see the parameters described in Section 5.100) but we will here follow the discussion in Section 4.4 and use
the default VTU output format to visualize using the Visit program.

In the parameter file we have specified that graphical output should be generated every 0.01 time units.
Looking through these output files, we find that the flow and temperature fields quickly converge to a
stationary state. Fig. 6 shows the initial and final states of this simulation.

There are many other things we can learn from the output files generated by ASPECT, specifically
from the statistics file that contains information collected at every time step and that has been discussed
in Section 4.4.2. In particular, in our input file, we have selected that we would like to compute velocity,
temperature, and heat flux statistics. These statistics, among others, are listed in the statistics file whose
head looks like this for the current input file:

: Time step number

: Time (seconds)

: Number of mesh cells

: Number of Stokes degrees of freedom

: Number of temperature degrees of freedom

: Iterations for temperature solver

: Iterations for Stokes solver

Time step size (seconds)

: RMS wvelocity (m/s)

: Max. velocity (m/s)

: Minimal temperature (K)

: Average temperature (K)

: Mazimal temperature (K)

: Average nondimensional temperature (K)

: Outward heat fluz through boundary with indicator 0 (W)
: Outward heat flux through boundary with indicator 1 (W)
: Outward heat fluz through boundary with indicator 2 (W)
: Outward heat fluz through boundary with indicator 3 (W)
19: Visualization file name

. lots of numbers arranged in columns ...

B IDOh o

[
N O LD RO

HOH R OR R R W W oW oW OB R OR R R W W W W
~
[o4]

Fig. 7 shows the results of visualizing the data that can be found in columns 2 (the time) plotted against
columns 9 and 10 (root mean square and maximal velocities). Plots of this kind can be generated with
Gnuplot by typing (see Section 4.4.2 for a more thorough discussion):

plot "output/statistics" using 2:9 with lines

175

140 T T — T 10 T T y T
Root mean square velocity —— = Boundary 0 ——
120 | Maximal velocity ——— 1 3 Boundary 1
[y
100 ; 3 °7
2 Boundary 3
2 80 8 5
8 S 0
= o
g o 1 £
40 1 53 5|
20 g gI‘rj
O 1 1 1 _10 1 1 1 1
0 0.1 0.2 0.3 0.4 05 0 01 0.2 0.3 0.4 05
Time Time

Figure 7: Conwvection in a box: Root mean square and maximal velocity as a function of simulation time
(left). Heat flux through the four boundaries of the box (right).

Fig. 7 shows clearly that the simulation enters a steady state after about ¢ ~ 0.1 and then changes very little.
This can also be observed using the graphical output files from which we have generated Fig. 6. One can look
further into this data to find that the flux through the top and bottom boundaries is not exactly the same
(up to the obvious difference in sign, given that at the bottom boundary heat flows into the domain and at
the top boundary out of it) at the beginning of the simulation until the fluid has attained its equilibrium.
However, after t ~ 0.2, the fluxes differ by only 5-107?, i.e., by less than 0.001% of their magnitude.'” The
flux we get at the last time step, 4.931, is less than 1% away from the value reported in [BBC189] although
we compute on a 16 X 16 mesh and the values reported by Blankenbach are extrapolated from meshes of size
up to 72 x 72. This shows the accuracy that can be obtained using a higher order finite element. Secondly,
the fluxes through the left and right boundary are not exactly zero but small. Of course, we have prescribed
boundary conditions of the form ‘g—i = 0 along these boundaries, but this is subject to discretization errors.
It is easy to verify that the heat flux through these two boundaries disappears as we refine the mesh further.

Furthermore, ASPECT automatically also collects statistics about many of its internal workings. Fig. 8
shows the number of iterations required to solve the Stokes and temperature linear systems in each time
step. It is easy to see that these are more difficult to solve in the beginning when the solution still changes
significant from time step to time step. However, after some time, the solution remains mostly the same and
solvers then only need 9 or 10 iterations for the temperature equation and 4 or 5 iterations for the Stokes
equations because the starting guess for the linear solver — the previous time step’s solution — is already
pretty good. If you look at any of the more complex cookbooks, you will find that one needs many more
iterations to solve these equations.

Play time 1: Different Rayleigh numbers. After showing you results for the input file as it can be
found in cookbooks/convection-box.prm, let us end this section with a few ideas on how to play with it and
what to explore. The first direction one could take this example is certainly to consider different Rayleigh
numbers. As mentioned above, for the value Ra = 10* for which the results above have been produced, one
gets a stable convection pattern. On the other hand, for values Ra < Ra,. = 780, any movement of the fluid
dies down exponentially and we end up with a situation where the fluid doesn’t move and heat is transported
from the bottom to the top only through heat conduction. This can be explained by considering that the
Rayleigh number in a box of unit extent is defined as Ra = %—z. A small Rayleigh number means that the
viscosity is too large (i.e., the buoyancy given by the product of the magnitude of gravity times the thermal
expansion coefficient is not strong enough to overcome friction forces within the fluid).

On the other hand, if the Rayleigh number is large (i.e., the viscosity is small or the buoyancy large)
then the fluid develops an unsteady convection period. As we consider fluids with larger and larger Ra, this

17This difference is far smaller than the numerical error in the heat flux on the mesh this data is computed on.

176

cookbooks/convection-box.prm

60 T T T
Stokes solver

50 - Temperature solver J

40 |

30 1

Number of iterations

10 f s L -

0 0.1 0.2 0.3 0.4 0.5
Time

Figure 8: Convection in a box: Number of linear iterations required to solve the Stokes and temperature
equations in each time step.

0.2 0.4 0.6 0.8 .
X-Axis X-Axis

Figure 9: Conwvection in a box: Temperature fields at the end of a simulation for Ra = 10% where thermal
diffusion dominates (left) and Ra = 10° where convective heat transport dominates (right). The mesh on the
right is clearly too coarse to resolve the structure of the solution.

pattern goes through a sequence of period-doubling events until flow finally becomes chaotic. The structures
of the flow pattern also become smaller and smaller.

We illustrate these situations in Fig.s 9 and 10. The first shows the temperature field at the end of a
simulation for Ra = 10? (below Ra.) and at Ra = 10%. Obviously, for the right picture, the mesh is not fine
enough to accurately resolve the features of the flow field and we would have to refine it more. The second
of the figures shows the velocity and heatflux statistics for the computation with Ra = 106; it is obvious
here that the flow no longer settles into a steady state but has a periodic behavior. This can also be seen by
looking at movies of the solution.

To generate these results, remember that we have chosen o = 107!° and ¢ = 10'°Ra in our input file. In
other words, changing the input file to contain the parameter setting

subsection Gravity model
subsection Vertical
set Magnitude = 1e16 # = Ra / Thermal expansion coefficient
end
end

177

1400 T T — T 25 T T T T
Hloot mean square velocity —— 50 Boundary 2 |
1200 Maximal velocity ——— 1 15]
1000 10 J
2 800 3 5 .
s} Z ot |
= 1]
g €00 % 5 | J
400 -10 1
_15 4
200 20 (m__wmm
O 1 1 1 1 _25 1 1 1 1
0 001 002 003 004 005 0 001 002 002 004 005
Time Time

Figure 10: Convection in a box: Velocities (left) and heat flux across the top and bottom boundaries (right)
as a function of time at Ra = 109,

will achieve the desired effect of computing with Ra = 10°.

Play time 2: Thinking about finer meshes. In our computations for Ra = 10* we used a 16 x 16 mesh
and obtained a value for the heat flux that differed from the generally accepted value from Blankenbach et al.
[BBC*89] by less than 1%. However, it may be interesting to think about computing even more accurately.
This is easily done by using a finer mesh, for example. In the parameter file above, we have chosen the mesh
setting as follows:

subsection Mesh refinement

set Initial global refinement =4

set Initial adaptive refinement =0

set Time steps between mesh refinement =0
end

We start out with a box geometry consisting of a single cell that is refined four times. Each time we split
each cell into its 4 children, obtaining the 16 x 16 mesh already mentioned. The other settings indicate that
we do not want to refine the mesh adaptively at all in the first time step, and a setting of zero for the last
parameter means that we also never want to adapt the mesh again at a later time. Let us stick with the
never-changing, globally refined mesh for now (we will come back to adaptive mesh refinement again at a
later time) and only vary the initial global refinement. In particular, we could choose the parameter Initial
global refinement to be 5, 6, or even larger. This will get us closer to the exact solution albeit at the
expense of a significantly increased computational time.

A better strategy is to realize that for Ra = 10%, the flow enters a steady state after settling in during
the first part of the simulation (see, for example, the graphs in Fig. 7). Since we are not particularly
interested in this initial transient process, there is really no reason to spend CPU time using a fine mesh and
correspondingly small time steps during this part of the simulation (remember that each refinement results
in four times as many cells in 2d and a time step half as long, making reaching a particular time at least 8
times as expensive, assuming that all solvers in ASPECT scale perfectly with the number of cells). Rather,
we can use a parameter in the ASPECT input file that let’s us increase the mesh resolution at later times.
To this end, let us use the following snippet for the input file:

subsection Mesh refinement
set Initial global refinement =
set Initial adaptive refinement =
set Time steps between mesh refinement =
set Additional refinement times
set Refinement fraction =

= O O O W

.2, 0.3, 0.4
0

178

100000 T T T T 7

2 61
=
e 10000] 5t
D =
5 = 4
5 5
3z 1000 | ; T 3}
£
Z 2t
100 1 1 1 1 l 1 1 1 1
0 01 02 03 04 05 0 0L 02 03 04 05
Time Time

Figure 11: Convection in a box: Refinement in stages. Total number of unknowns in each time step, including
all velocity, pressure and temperature unknowns (left) and heat fluz across the top boundary (right).

set Coarsening fraction 0.0

end

What this does is the following: We start with an 8 x 8 mesh (3 times globally refined) but then at
times ¢t = 0.2,0.3 and 0.4 we refine the mesh using the default refinement indicator (which one this is is not
important because of the next statement). Each time, we refine, we refine a fraction 1.0 of the cells, i.e., all
cells and we coarsen a fraction of 0.0 of the cells, i.e. no cells at all. In effect, at these additional refinement
times, we do another global refinement, bringing us to refinement levels 4, 5 and finally 6.

Fig. 11 shows the results. In the left panel, we see how the number of unknowns grows over time (note
the logscale for the y-axis). The right panel displays the heat flux. The jumps in the number of cells is
clearly visible in this picture as well. This may be surprising at first but remember that the mesh is clearly
too coarse in the beginning to really resolve the flow and so we should expect that the solution changes
significantly if the mesh is refined. This effect becomes smaller with every additional refinement and is
barely visible at the last time this happens, indicating that the mesh before this refinement step may already
have been fine enough to resolve the majority of the dynamics.

In any case, we can compare the heat fluxes we obtain at the end of these computations: With a globally
four times refined mesh, we get a value of 4.931 (an error of approximately 1% against the accepted value
from Blankenbach, 4.884409 + 0.00001). With a globally five times refined mesh we get 4.914 (an error of
0.6%) and with the mesh generated using the procedure above we get 4.895 with the four digits printed on
the screen'® (corresponding to an error of 0.2%). In other words, our simple procedure of refining the mesh
during the simulation run yields an accuracy of three times smaller than using the globally refined approach
even though the compute time is not much larger than that necessary for the 5 times globally refined mesh.

Play time 3: Changing the finite element in use. Another way to increase the accuracy of a finite
element computation is to use a higher polynomial degree for the finite element shape functions. By default,
ASPECT uses quadratic shape functions for the velocity and the temperature and linear ones for the
pressure. However, this can be changed with a single number in the input file.

Before doing so, let us consider some aspects of such a change. First, looking at the pictures of the
solution in Fig. 6, one could surmise that the quadratic elements should be able to resolve the velocity field
reasonably well given that it is rather smooth. On the other hand, the temperature field has a boundary
layer at the top and bottom. One could conjecture that the temperature polynomial degree is therefore the
limiting factor and not the polynomial degree for the flow variables. We will test this conjecture below.
Secondly, given the nature of the equations, increasing the polynomial degree of the flow variables increases

18The statistics file gives this value to more digits: 4.89488768. However, these are clearly more digits than the result is
accurate.

179

the cost to solve these equations by a factor of 2—92 in 2d (you can get this factor by counting the number of
degrees of freedom uniquely associated with each cell) but leaves the time step size and the cost of solving
the temperature system unchanged. On the other hand, increasing the polynomial degree of the temperature
variable from 2 to 3 requires % times as many degrees of freedom for the temperature and also requires us to
reduce the size of the time step by a factor of % Because solving the temperature system is not a dominant
factor in each time step (see the timing results shown at the end of the screen output above), the reduction
in time step is the only important factor. Overall, increasing the polynomial degree of the temperature
variable turns out to be the cheaper of the two options.
Following these considerations, let us add the following section to the parameter file:

subsection Discretization
set Stokes velocity polynomial degree =2
set Temperature polynomial degree =3
end

This leaves the velocity and pressure shape functions at quadratic and linear polynomial degree but
increases the polynomial degree of the temperature from quadratic to cubic. Using the original, four times
globally refined mesh, we then get the following output:

Number of active cells: 256 (on 5 levels)
Number of degrees of freedom: 4,868 (2,178+289+2,401)

x Timestep O: t=0 seconds

Solving temperature system... O iteratioms.
Rebuilding Stokes preconditioner...
Solving Stokes system... 30+5 iteratioms.
... ...]
**x* Timestep 1619: t=0.499807 seconds
Solving temperature system... 8 iteratioms.
Solving Stokes system... 5 iterationms.
Postprocessing:
RMS, max velocity: 42.9 m/s, 69.5 m/s
Temperature min/avg/max: 0K, 0.5K, 1K

Heat fluxes through boundary parts: -0.004622 W, 0.004624 W, -4.878 W, 4.878 W

o= -—- e Fommm e Fommm e +
| Total wallclock time elapsed since start | 127s |

| | | |
| Section | no. calls | wall time | % of total |
T pommm +- —+- -+
Assemble Stokes system	1620	3.03s	2.4%
Assemble temperature system	1620	75.7s	60%
Build Stokes preconditioner	11 0.0422s	0.033%	
Build temperature preconditioner	1620	21.7s	17%
Solve Stokes system	1620	10.3s	8.1%
Solve temperature system	1620	4.9s	3.8%
Initialization	2	0.0246s	0.019%
Postprocessing	1620	8.05s	6.3%
Setup dof systems	11 0.0438s	0.034%	
+-—= -—- -—- + + —+- -+

Note here that the heat flux through the top and bottom boundaries is now computed as 4.878, an error
of 0.13%. This is 4 times more accurate than the once more globally refined mesh with the original quadratic

180

elements, at a cost significantly smaller. Furthermore, we can of course combine this with the mesh that is
gradually refined as simulation time progresses, and we then get a heat flux that is equal to 4.8843, only
0.002% away from the accepted value!

As a final remark, to test our hypothesis that it was indeed the temperature polynomial degree that
was the limiting factor, we can increase the Stokes polynomial degree to 3 while leaving the temperature
polynomial degree at 2. A quick computation shows that in that case we get a heat flux of 4.931 — exactly
the same value as we got initially with the lower order Stokes element. In other words, at least for this
testcase, it really was the temperature variable that limits the accuracy.

6.2.2 Convection in a 3d box

The world is not two-dimensional. While the previous section introduced a number of the knobs one can
play with with ASPECT, things only really become interesting once one goes to 3d. The setup from the
previous section is easily adjusted to this and in the following, let us walk through some of the changes we
have to consider when going from 2d to 3d. The full input file that contains these modifications and that was
used for the simulations we will show subsequently can be found at cookbooks/convection-box-3d.prm.

The first set of changes has to do with the geometry: it is three-dimensional, and we will have to address
the fact that a box in 3d has 6 sides, not the 4 we had previously. The documentation of the “box” geometry
(see Section 5.32) states that these sides are numbered as follows: “in 3d, boundary indicators 0 through
5 indicate left, right, front, back, bottom and top boundaries.” Recalling that we want tangential flow all
around and want to fix the temperature to known values at the bottom and top, the following will make
sense:

set Dimension =3

subsection Geometry model
set Model name = box

subsection Box
set X extent =1

set Y extent = 1
set Z extent =1
end
end

subsection Boundary temperature model
set Model name = box

subsection Box
set Bottom temperature = 1
set Top temperature
end
end

subsection Model settings
set Fixed temperature boundary indicators

bottom, top

set Zero velocity boundary indicators =

set Prescribed velocity boundary indicators =

set Tangential velocity boundary indicators = left, right, front, back, bottom, top
end

The next step is to describe the initial conditions. As before, we will use an instably layered medium but
the perturbation now needs to be both in z- and y-direction

T

181

cookbooks/convection-box-3d.prm

subsection Initial conditions
set Model name = function

subsection Function
set Variable names = X,¥,Z
set Function constants p=0.01, L=1, pi=3.1415926536, k=1
set Function expression = (1.0-z) - p*cos(kxpixx/L)*sin(pix*z)*y~3
end
end

The third issue we need to address is that we can likely not afford a mesh as fine as in 2d. We choose a
mesh that is refined 3 times globally at the beginning, then 3 times adaptively, and is then adapted every
15 time steps. We also allow one additional mesh refinement in the first time step following ¢t = 0.003 once
the initial instability has given way to a more stable pattern:

subsection Mesh refinement

set Initial global refinement =3

set Initial adaptive refinement =3

set Time steps between mesh refinement = 15

set Additional refinement times = 0.003
end

Finally, as we have seen in the previous section, a computation with Ra = 10* does not lead to a
simulation that is exactly exciting. Let us choose Ra = 10° instead (the mesh chosen above with up to 7
refinement levels after some time is fine enough to resolve this). We can achieve this in the same way as in
the previous section by choosing o = 10710 and setting

subsection Gravity model
set Model name = vertical

subsection Vertical
set Magnitude = 1e16 # = Ra / Thermal expansion coefficient
end
end

This has some interesting implications. First, a higher Rayleigh number makes time scales correspondingly
smaller; where we generated graphical output only once every 0.01 time units before, we now need to choose
the corresponding increment smaller by a factor of 100:

subsection Postprocess
set List of postprocessors = velocity statistics, temperature statistics,
...heat flux statistics, visualization

subsection Visualization
set Time between graphical output = 0.0001
end
end

Secondly, a simulation like this — in 3d, with a significant number of cells, and for a significant number of time
steps — will likely take a good amount of time. The computations for which we show results below was run
using 64 processors by running it using the command mpirun -n 64 ./aspect convection-box-3d.prm.
If the machine should crash during such a run, a significant amount of compute time would be lost if we had
to run everything from the start. However, we can avoid this by periodically checkpointing the state of the
computation:

subsection Checkpointing

182

set Steps between checkpoint = 50
end

If the computation does crash (or if a computation runs out of the time limit imposed by a scheduling
system), then it can be restarted from such checkpointing files (see the parameter Resume computation in
Section 5.2).

Running with this input file requires a bit of patience'® since the number of degrees of freedom is just so
large: it starts with a bit over 330,000. ..

Running with 64 MPI tasks.
Number of active cells: 512 (on 4 levels)
Number of degrees of freedom: 20,381 (14,739+729+4,913)

*xx Timestep 0: t=0 seconds
Solving temperature system... O iteratioms.
Rebuilding Stokes preconditioner...
Solving Stokes system... 18 iterations.

Number of active cells: 1,576 (on 5 levels)
Number of degrees of freedom: 63,391 (45,909+2,179+15,303)

**x* Timestep 0: t=0 seconds
Solving temperature system... O iteratioms.
Rebuilding Stokes preconditioner...
Solving Stokes system... 19 iteratioms.

Number of active cells: 3,249 (on 5 levels)
Number of degrees of freedom: 122,066 (88,500+4,066+29,500)

x Timestep O: t=0 seconds
Solving temperature system... O iteratioms.
Rebuilding Stokes preconditioner...
Solving Stokes system... 20 iterations.

Number of active cells: 8,968 (on 5 levels)
Number of degrees of freedom: 331,696 (240,624+10,864+80,208)

*xx Timestep 0: t=0 seconds
Solving temperature system... O iteratioms.
Rebuilding Stokes preconditiomer...
Solving Stokes system... 21 iterations.

[...]

...but then increases quickly to around 2 million as the solution develops some structure and, after time
t = 0.003 where we allow for an additional refinement, increases to over 10 million where it then hovers
between 8 and 14 million with a maximum of 15,147,534. Clearly, even on a reasonably quick machine,
this will take some time: running this on a machine bought in 2011, doing the 10,000 time steps to get to
t = 0.0219 takes approximately 484,000 seconds (about five and a half days).

The structure or the solution is easiest to grasp by looking at isosurfaces of the temperature. This is
shown in Fig. 12 and you can find a movie of the motion that ensues from the heating at the bottom at
http://www.youtube.com/watch?v=_bKqU_P4j48. The simulation uses adaptively changing meshes that
are fine in rising plumes and sinking blobs and are coarse where nothing much happens. This is most easily
seen in the movie at http://www.youtube.com/watch?v=CzCKYyR-cmg. Fig. 13 shows some of these meshes,

19For computations of this size, one should test a few time steps in debug mode but then, of course, switch to running the
actual computation in optimized mode — see Section 4.3.

183

http://www.youtube.com/watch?v=_bKqU_P4j48
http://www.youtube.com/watch?v=CzCKYyR-cmg

Figure 12: Conwvection in a 3d box: Temperature isocontours and some velocity vectors at the first time step
after times t = 0.001,0.004,0.006 (top row, left to right) an t = 0.01,0.013,0.018 (bottom row).

though still pictures do not do the evolving nature of the mesh much justice. The effect of increasing the
Rayleigh number is apparent when comparing the size of features with, for example, the picture at the right
of Fig. 6. In contrast to that picture, the simulation is also clearly non-stationary.

As before, we could analyze all sorts of data from the statistics file but we will leave this to those interested
in specific data. Rather, Fig. 14 only shows the upward heat flux through the bottom and top boundaries
of the domain as a function of time.2’ The figure reinforces a pattern that can also be seen by watching
the movie of the temperature field referenced above, namely that the simulation can be subdivided into
three distinct phases. The first phase corresponds to the initial overturning of the instable layering of the
temperature field and is associated with a large spike in heat flux as well as large velocities (not shown here).
The second phase, until approximately ¢ = 0.01 corresponds to a relative lull: some plumes rise up, but not
very fast because the medium is now stably layered but not fully mixed. This can be seen in the relatively
low heat fluxes, but also in the fact that there are almost horizontal temperature isosurfaces in the second
of the pictures in Fig. 12. After that, the general structure of the temperature field is that the interior of
the domain is well mixed with a mostly constant average temperature and thin thermal boundary layers at
the top and bottom from which plumes rise and sink. In this regime, the average heat flux is larger but also
more variable depending on the number of plumes currently active. Many other analyses would be possible
by using what is in the statistics file or by enabling additional postprocessors.

20Note that the statistics file actually contains the outward heat flux for each of the six boundaries, which corresponds to
the negative of upward flux for the bottom boundary. The figure therefore shows the negative of the values available in the
statistics file.

184

Figure 13: Convection in a 3d box: Meshes and large-scale velocity field for the third, fourth and sixth of the
snapshots shown in Fig. 12.

40 . \] !
Upward heat flux through bottom ——

35 L Upward heat flux through top ———

25 H g
20 H —

15 H 1

Heat flux [W]

10 g

0 L L L L .
0 0.005 0.01 0.015 0.02 0.025

Time [s]

Figure 14: Convection in a 3d box: Upward heat flux through the bottom and top boundaries as a function
of time.

185

6.2.3 Convection in a box with prescribed, variable velocity boundary conditions

A similarly simple setup to the ones considered in the previous subsections is to equip the model we had
with a different set of boundary conditions. There, we used slip boundary conditions, i.e., the fluid can flow
tangentially along the four sides of our box but this tangential velocity is unspecified. On the other hand, in
many situations, one would like to actually prescribe the tangential flow velocity as well. A typical application
would be to use boundary conditions at the top that describe experimentally determined velocities of plates.
This cookbook shows a simple version of something like this. To make it slightly more interesting, we choose
a 2 x 1 domain in 2d.

Like for many other things, ASPECT has a set of plugins for prescribed velocity boundary values (see
Sections 5.20 and 7.3.6). These plugins allow one to write sophisticated models for the boundary velocity
on parts or all of the boundary, but there is also one simple implementation that just takes a formula for
the components of the velocity.

To illustrate this, let us consider the cookbooks/platelike-boundary.prm input file. It essentially
extends the input file considered in the previous example. The part of this file that we are particularly
interested in in the current context is the selection of the kind of boundary conditions on the four sides of
the box geometry, which we do using a section like this:

subsection Model settings
set Fixed temperature boundary indicators = bottom, top
set Zero velocity boundary indicators =
set Tangential velocity boundary indicators = left, right, bottom
set Prescribed velocity boundary indicators = top: function
end

Following the convention for numbering boundaries described in the previous section, this means that we
prescribe a fixed temperature at the bottom and top sides of the box (boundary numbers two and three).
We use tangential flow at boundaries zero, one and two (left, right and bottom). Finally, the last entry
above is a comma separated list (here with only a single element) of pairs consisting of the number of a
boundary and the name of the prescribed velocity boundary model to be used on this boundary. Here, we
use the function boundary model, which allows us to provide a function-like notation for the components
of the velocity vector at the boundary.

The second part we need is that we actually describe the function that sets the velocity. We do this as
follows:

subsection Boundary velocity model
subsection Function
set Variable names = x,z,t
set Function constants pi=3.1415926
set Function expression = if (x>1+sin(0.5%pi*t), 1, -1); 0
end
end

The first of these gives names to the components of the position vector (here, we are in 2d and we use x and
z as spatial variable names) and the time. We could have left this entry at its default, x,y,t, but since we
often think in terms of “depth” as the vertical direction, let us use z for the second coordinate. In the second
parameter we define symbolic constants that can be used in the formula for the velocity that is specified
in the last parameter. This formula needs to have as many components as there are space dimensions,
separated by semicolons. As stated, this means that we prescribe the (horizontal) a-velocity and set the
vertical velocity to zero. The horizontal component is here either 1 or —1, depending on whether we are to
the right or the left of the point 1+ sin(nt/2) that is moving back and forth with time once every four time
units. The if statement understood by the parser we use for these formulas has the syntax if (condition,
value-if-true, value-if-false).

186

cookbooks/platelike-boundary.prm

Note: While you can enter most any expression into the parser for these velocity boundary
conditions, not all make sense. In particular, if you use an incompressible medium like we do
here, then you need to make sure that either the flow you prescribe is indeed tangential, or that
at least the flow into and out of the boundary this function applies to is balanced so that in sum
the amount of material in the domain stays constant.
It is in general not possible for ASPECT to verify that a given input is sensible. However,
you will quickly find out if it isn’t: The linear solver for the Stokes equations will simply not
converge. For example, if your function expression in the input file above read
if (x>1+sin(0.5%pi*t), 1, -1); 1
then at the time of writing this you would get the following error message:
*xx Timestep 0: t=0 seconds
Solving temperature system... O iteratioms.
Rebuilding Stokes preconditioner...
Solving Stokes system...

...some timing output

Exception on processing:
Iterative method reported convergence failure in step 9539 with residual 6.0552
Aborting!

The reason is, of course, that there is no incompressible (divergence free) flow field that allows
for a constant vertical outflow component along the top boundary without corresponding inflow

anywhere else.

Is there a rea

The remainder of the setup is described in the following, complete input file: son that this i
HHRAERAAARRAAAE Global parameters not a listing
environment?
set Dimension =2
set Start time =0
set End time = 20
set Use years in output instead of seconds = false
set Output directory = output

HRRBBBBRARARAAE Parameters describing the model

L

#
#
#
#

subsection Geometry model
set Model name = box

subsection Box

end

end

where we fix the temperature at the bottom and top,
allow free slip along the bottom, left and right,
and prescribe the wvelocity along the top using the
‘function’ description.

et us here choose again a box domain of size 2zl

]
= N

set X extent
set Y extent

187

subsection Model settings
set Fixed temperature boundary indicators = bottom, top
set Zero velocity boundary indicators =
set Tangential velocity boundary indicators
set Prescribed velocity boundary indicators
end

left, right, bottom
top: function

We then set the temperature to one at the bottom and zero
at the top:
subsection Boundary temperature model

set Model name = box

subsection Box
set Bottom temperature = 1
set Top temperature
end
end

The velocity along the top boundary models a spreading
center that ts moving left and right:
subsection Boundary velocity model
subsection Function
set Variable names = x,z,t
set Function constants pi=3.1415926
set Function expression = if(x>1+sin(0.5*pi*t), 1, -1); 0
end
end

We then choose a wvertical gravity model and describe the
initial temperature with a vertical gradient. The default
strength for gravity is one. The material model s the
same as before.
subsection Gravity model

set Model name = vertical
end

subsection Initial conditions
set Model name = function

subsection Function

set Variable names = X,z
set Function expression = (1-z)
end

end

subsection Material model
set Model name = simple

subsection Simple model
set Thermal conductivity = le-6

188

Figure 15: Variable velocity boundary conditions: Temperature and velocity fields at the initial time (top left)
and at various other points in time during the simulation.

set Thermal expansion coefficient = le-4
set Viscosity =1
end
end

The final part of this input file describes how many times the
mesh 1s refined and what to do with the solution once computed
subsection Mesh refinement

set Initial adaptive refinement =0

set Initial global refinement =5

set Time steps between mesh refinement = 0O
end

subsection Postprocess
set List of postprocessors = visualization, temperature statistics, heat flux statistics

subsection Visualization
set Time between graphical output = 0.1
end
end

This model description yields a setup with a Rayleigh number of 200 (taking into account that the domain
has size 2). It would, thus, be dominated by heat conduction rather than convection if the prescribed velocity
boundary conditions did not provide a stirring action. Visualizing the results of this simulation®! yields
images like the ones shown in Fig. 15.

6.2.4 Using passive and active compositional fields

One frequently wants to track where material goes, either because one simply wants to see where stuff ends
up (e.g., to determine if a particular model yields mixing between the lower and upper mantle) or because the
material model in fact depends not only pressure, temperature and location but also on the mass fractions of
certain chemical or other species. We will refer to the first case as passive and the latter as active to indicate

211n fact, the pictures are generated using a twice more refined mesh to provide adequate resolution. We keep the default
setting of five global refinements in the parameter file as documented above to keep compute time reasonable when using the
default settings.

189

the role of the additional quantities whose distribution we want to track. We refer to the whole process as
compositional since we consider quantities that have the flavor of something that denotes the composition
of the material at any given point.

There are basically two ways to achieve this: one can advect a set of particles (“tracers”) along with the
velocity field, or one can advect along a field. In the first case, where the closest particle came from indicates
the value of the concentration at any given position. In the latter case, the concentration(s) at any given
position is simply given by the value of the field(s) at this location.

ASPECT implements both strategies, at least to a certain degree. In this cookbook, we will follow the
route of advected fields.

The passive case. We will consider the exact same situation as in the previous section but we will ask
where the material that started in the bottom 20% of the domain ends up, as well as the material that started
in the top 20%. For the moment, let us assume that there is no material between the materials at the bottom,
the top, and the middle. The way to describe this situation is to simply add the following block of definitions
to the parameter file (you can find the full parameter file in cookbooks/compositional-passive.prm:

This is the new part: We declare that there will
be two compositional fields that will be
advected along. Their initial conditions are given by
a function that is one for the lowermost 0.2 height
units of the domain and zero otherwise in the first case,
and one in the top most 0.2 height untits in the latter.
subsection Compositional fields

set Number of fields = 2
end

H oW R R KRR

subsection Compositional initial conditions
set Model name = function

subsection Function

set Variable names = X,y
set Function expression = if(y<0.2, 1, 0) ; if(y>0.8, 1, 0)
end

end

Running this simulation yields results such as the ones shown in Fig. 16 where we show the values of the
functions ¢1(x,t) and co(x,t) at various times in the simulation. Because these fields were one only inside
the lowermost and uppermost parts of the domain, zero everywhere else, and because they have simply been
advected along with the flow field, the places where they are larger than one half indicate where material
has been transported to so far.??

Fig. 16 shows one aspect of compositional fields that occasionally makes them difficult to use for very long
time computations. The simulation shown here runs for 20 time units, where every cycle of the spreading
center at the top moving left and right takes 4 time units, for a total of 5 such cycles. While this is certainly
no short-term simulation, it is obviously visible in the figure that the interface between the materials has
diffused over time. Fig. 17 shows a zoom into the center of the domain at the final time of the simulation.
The figure only shows values that are larger than 0.5, and it looks like the transition from red or blue to the
edge of the shown region is no wider than 3 cells. This means that the computation is not overly diffusive
but it is nevertheless true that this method has difficulty following long and thin filaments.?? This is an area
in which ASPECT may see improvements in the future.

220f course, this interpretation suggests that we could have achieved the same goal by encoding everything into a single
function — that would, for example, have had initial values one, zero and minus one in the three parts of the domain we are
interested in.

23We note that this is no different for tracers where the position of tracers has to be integrated over time and is subject to
numerical error. In simulations, their location is therefore not the exact one but also subject to a diffusive process resulting

190

cookbooks/compositional-passive.prm

Figure 16: Passive compositional fields: The figures show, at different times in the simulation, the velocity
field along with those locations where the first compositional field is larger than 0.5 (in red, indicating the
locations where material from the bottom of the domain has gone) as well as where the second compositional
field is larger than 0.5 (in blue, indicating material from the top of the domain. The results were obtained
with two more global refinement steps compared to the cookbooks/ compositional-passive. prm input file.

Figure 17: Passive compositional fields: A later image of the simulation corresponding to the sequence shown

TR

T

i

in Fig. 16 (left) and zoom-in on the center, also showing the mesh (right).

15

05

Figure 18: Passive compositional fields: Minimum and maximum of the first compositional variable over
time, as well as the mass my(t) = [, c1(x,t) stored in this variable.

Min. compo'sition
Max. composition
Mass

Time

191

10

cookbooks/compositional-passive.prm

A different way of looking at the quality of compositional fields as opposed to tracers is to ask whether they
conserve mass. In the current context, the mass contained in the ith compositional field is m;(t) = fQ ci(x,t).
This can easily be achieve in the following way, by adding the composition statistics postprocessor:

subsection Postprocess
set List of postprocessors = visualization, temperature statistics, composition statistics
end

While the scheme we use to advect the compositional fields is not strictly conservative, it is almost
perfectly so in practice. For example, in the computations shown in this section (using two additional global
mesh refinements over the settings in the parameter file cookbooks/compositional-passive.prm), Fig. 18
shows the maximal and minimal values of the first compositional fields over time, along with the mass m (¢)
(these are all tabulated in columns of the statistics file, see Sections 4.1 and 4.4.2). While the maximum
and minimum fluctuate slightly due to the instability of the finite element method in resolving discontinuous
functions, the mass appears stable at a value of 0.403646 (the exact value, namely the area that was initially
filled by each material, is 0.4; the difference is a result of the fact that we can’t exactly represent the step
function on our mesh with the finite element space). In fact, the maximal difference in this value between
time steps 1 and 500 is only 1.1 - 1075. In other words, these numbers show that the compositional field
approach is almost exactly mass conservative.

The active case. The next step, of course, is to make the flow actually depend on the composition. After
all, compositional fields are not only intended to indicate where material come from, but also to indicate the
properties of this material. In general, the way to achieve this is to write material models where the density,
viscosity, and other parameters depend on the composition, taking into account what the compositional fields
actually denote (e.g., if they simply indicate the origin of material, or the concentration of things like olivine,
perovskite, ...). The construction of material models is discussed in much greater detail in Section 7.3.1;
we do not want to revisit this issue here and instead choose — once again — the simplest material model that
is implemented in ASPECT: the simple model.

The place where we are going to hook in a compositional dependence is the density. In the simple
model, the density is fundamentally described by a material that expands linearly with the temperature; for
small density variations, this corresponds to a density model of the form p(T) = po(1 — a(T — Tp)). This
is, by virtue of its simplicity, the most often considered density model. But the simple model also has a
hook to make the density depend on the first compositional field ¢;(x,t), yielding a dependence of the form
o(T) = po(1 — a(T — Tp)) + ye1. Here, let us choose pg = 1, = 0.01,7T5 = 0,y = 100. The rest of our
model setup will be as in the passive case above. Because the temperature will be between zero and one, the
temperature induced density variations will be restricted to 0.01, whereas the density variation by origin of
the material is 100. This should make sure that dense material remains at the bottom despite the fact that
it is hotter than the surrounding material.?*

This setup of the problem can be described using an input file that is almost completely unchanged from
the passive case. The only difference is the use of the following section (the complete input file can be found
in cookbooks/compositional-active.prm:

subsection Material model
set Model name = simple

subsection Simple model
set Thermal conductivity = le-6

from numerical inaccuracies. Furthermore, in long thin filaments, the number of tracers per cell often becomes too small and
new tracers have to be inserted; their properties are then interpolated from the surrounding tracers, a process that also incurs

a smoothing penalty.

24The actual values do not matter as much here. They are chosen in such a way that the system — previously driven primarily
by the velocity boundary conditions at the top — now also feels the impact of the density variations. To have an effect, the
buoyancy induced by the density difference between materials must be strong enough to balance or at least approach the forces
exerted by whatever is driving the velocity at the top.

192

cookbooks/compositional-passive.prm
cookbooks/compositional-active.prm

Figure 19: Active compositional fields: Compositional field 1 at the time t = 0,10,20. Compared to the
results shown in Fig. 16 it is clear that the heavy material stays at the bottom of the domain now. The effect
of the density on the velocity field is also clearly visible by noting that at all three times the spreading center
at the top boundary is in exactly the same position; this would result in exactly the same velocity field if the
density and temperature were constant.

Figure 20: Active compositional fields: Temperature fields at t = 0,2,4,8,12,20. The black line is the
isocontour line c1(x,t) = 0.5 delineating the position of the dense material at the bottom.

set Thermal expansion coefficient =
set Viscosity =
set Reference density =
set Reference temperature =
set Density differential for compositional field 1 =
end
end

O O = O

To debug the model, we will also want to visualize the density in our graphical output files. This is done
using the following addition to the postprocessing section, using the density visualization plugin:

subsection Postprocess
set List of postprocessors = visualization, temperature statistics, composition statistics

subsection Visualization
set List of output variables = density
set Time between graphical output = 0.1
end
end

Results of this model are visualized in Fig.s 19 and 20. What is visible is that over the course of the
simulation, the material that starts at the bottom of the domain remains there. This can only happen
if the circulation is significantly affected by the high density material once the interface starts to become
non-horizontal, and this is indeed visible in the velocity vectors. As a second consequence, if the material at

193

the bottom does not move away, then there needs to be a different way for the heat provided at the bottom
to get through the bottom layer: either there must be a secondary convection system in the bottom layer,
or heat is simply conducted. The pictures in the figure seem to suggest that the latter is the case.

It is easy, using the outline above, to play with the various factors that drive this system, namely:

e The magnitude of the velocity prescribed at the top.

e The magnitude of the velocities induced by thermal buoyancy, as resulting from the magnitude of
gravity and the thermal expansion coefficient.

e The magnitude of the velocities induced by compositional variability, as described by the coefficient ~
and the magnitude of gravity.

Using the coefficients involved in these considerations, it is trivially possible to map out the parameter space
to find which of these effects is dominant. As mentioned in discussing the values in the input file, what is
important is the relative size of these parameters, not the fact that currently the density in the material at
the bottom is 100 times larger than in the rest of the domain, an effect that from a physical perspective
clearly makes no sense at all.

The active case with reactions. This section was contributed by Juliane Dannberg and René Gafiméller.

In addition, there are setups where one wants the compositional fields to interact with each other. One
example would be material upwelling at a mid-ocean ridge and changing the composition to that of oceanic
crust when it reaches a certain depth. In this cookbook, we will describe how this kind of behaviour can be
achieved by using the composition reaction function of the material model.

We will consider the exact same setup as in the previous paragraphs, except for the initial conditions
and properties of the two compositional fields. There is one material that initially fills the bottom half of
the domain and is less dense than the material above. In addition, there is another material that only gets
created when the first material reaches the uppermost 20% of the domain, and that has a higher density.
This should cause the first material to move upwards, get partially converted to the second material, which
then sinks down again. This means we want to change the initial conditions for the compositional fields:

subsection Compositional initial conditions
set Model name = function

subsection Function

set Variable names =X,z
set Function expression = if(z<0.5, 1, 0); O
end
end

Moreover, instead of the simple material model, we will use the composition reaction material model,
which basically behaves in the same way, but can handle two active compositional field and a reaction
between those two fields. In the input file, the user defines a depth and above this reaction depth the first
compositional fields is converted to the second field. This can be done by changing the following section (the
complete input file can be found in cookbooks/composition-reaction.prm).

subsection Material model
set Model name = composition reaction

subsection Composition reaction model

set Thermal conductivity = le-6
set Thermal expansion coefficient = 0.01
set Viscosity =1
set Density differential for compositional field 1 = -5
set Density differential for compositional field 2 = 5

194

cookbooks/composition-reaction.prm

Figure 21: Reaction between compositional fields: Temperature fields at t = 0,2,4,8,12,20. The black line
is the isocontour line c¢1(x,t) = 0.5 delineating the position of the material starting at the bottom and the
white line is the isocontour line co(x,t) = 0.5 delineating the position of the material that is created by the
reaction.

set Reaction depth = 0.2
end
end

Results of this model are visualized in Fig 21. What is visible is that over the course of the simulation,
the material that starts at the bottom of the domain ascends, reaches the reaction depth and gets converted
to the second material, which starts to sink down.

6.2.5 Using tracer particles

Using compositional fields to trace where material has come from or is going to has many advantages from a
computational point of view. For example, the numerical methods to advect along fields are well developed
and we can do so at a cost that is equivalent to one temperature solve for each of the compositional fields.
Unless you have many compositional fields, this cost is therefore relatively small compared to the overall
cost of a time step. Another advantage is that the value of a compositional field is well defined at every
point within the domain. On the other hand, compositional fields over time diffuse initially sharp interfaces,
as we have seen in the images of the previous section.

On the other hand, the geodynamics community has a history of using tracers for this purpose. Histori-
cally, this may have been because it is conceptually simpler to advect along individual particles rather than
whole fields, since it only requires an ODE integrator rather than the stabilization techniques necessary to
advect fields. They also provide the appearance of no diffusion, though this is arguable. Leaving the debate
whether fields or particles are the way to go aside, ASPECT supports using tracers.

In order to advect tracer particles along with the flow field, one just needs to add the tracers postproces-
sor to the list of postprocessors and specify a few parameters. We do so in the cookbooks/composition-passive-tracers.
prm input file, which is otherwise just a minor variation of the cookbooks/composition-passive.prm case
discussed in the previous Section 6.2.4. In particular, the postprocess section now looks like this:

subsection Postprocess
set List of postprocessors = visualization, tracers

subsection Visualization
set Time between graphical output = 0.1

end

subsection Tracers

195

cookbooks/composition-passive-tracers.prm
cookbooks/composition-passive-tracers.prm
cookbooks/composition-passive.prm

Figure 22: Passively advected quantities visualized through both a compositional field and a set of 1,000
particles, at t = 7.2.

set Number of tracers = 1000
set Time between data output = 0.1
set Data output format = vtu
end
end

The 1000 particles we are asking here are initially uniformly distributed throughout the domain and
are, at the end of each time step, advected along with the velocity field just computed. (There are a
number of options to decide which method to use for advecting particles, see Section 5.93.) We can visualize
them by opening both the field-based output files and the ones that correspond to particles (for example,
output/solution-00072.visit and output/particles-00072.visit) and using a pseudo-color plot for
the particles, selecting the “id” of particles to color each particle. This results in a plot like the one shown
in Fig. 22.

The particles shown here are not too impressive in still pictures since they are colorized by their particle
number, which — since particles were initially randomly distributed — is essentially a random number. The
purpose of using the particle id to colorize becomes more apparent if you use it when viewing an animation
of time steps. There, the different colors of adjacent particles come in handy because they allow the eye to
follow the motion of a single particle. This makes it rather intuitive to understand a flow field, but it can of
course not be reproduced in a static medium such as this manual.

Using tracer properties The particles in the above example only fulfil the purpose of visualizing the
convection pattern. A more meaningful use for particles is to attach properties to them, which may be set
at the beginning of the model run, or updated during the model runtime. These properties can then be
used for many applications, e.g. tracking an initial property (like the position), evaluating a property at a
defined particle path (like the pressure-temperature evolution of a certain piece of rock), or by integrating a
quantity along a particle parth (like the integrated strain a certain domain has experienced). We illustrate
these properties in the cookbook cookbooks/composition-passive-tracers-properties.prm, in which
we added the following lines to the Tracers subsection.

set List of tracer properties = function, initial composition, initial position, pT path

subsection Function

set Variable names = X,y
set Function expression = if(y<0.2, 1, 0)
end

These commands add the tracer properties function, pT path, initial positionand initial composition,
which can be used for various purposes. A full list of particle properties can be found in Section 5.93. New

196

cookbooks/composition-passive-tracers-properties.prm

tracer properties can be added as plugins as described in Section 7.2. The here selected properties allow us
in this example:

e To compare the final position of a particle with its initial position and therefore determine, how far
certain domains travelled during the model runtime.

e To compare the final composition of a particle with its initial composition and therefore determine,
which regions underwent the reaction described in Section 6.2.4, and where the material that underwent
this reaction got transported to.

e Note that the function property of the particles follows the same function as the compositional initial
composition of field number one. Therefore, this property should behave identical to the compositional
field, except for the reaction term of the compositional field. This allows to compare the error in tracer
position to the numerical diffusion of the compositional field.

e If one selects a tracer of a particular id, an output of the pressure and temperature at its current position
generated by the pT path property over time allows for the creation of a pressure-temperature curve
of a certain piece of rock. This property is interesting in many lithosphere to crustal scale models,
because it is determining the metamorphic reactions that happen during deformation processes (e.g.
in a subduction zone).

Note: ASPECT’s tracer implementation is in a preliminary state. While the accuracy and
scalability of the implementation is benchmarked, other limitations remain. This in particular
means that it is not optimized for performance, and more than a few thousand tracers per process
can slow down a model significantly. Moreover, models with an highly adaptive mesh and many
tracers do encounter a significant slowdown, because ASPECT only considers the number of
degrees of freedom for load balancing across processes and not the number of tracers. Therefore
processes that compute the solution for coarse-grid regions have to process many more tracers than
other processes. Additionally, the checkpoint/restart functionality for tracers is only implemented
in models with a constant number of processes before and after the checkpoint and when the
selected tracer properties do not change. These limitations might be removed over time, but for
current models the user should be aware of them.

6.2.6 Using a free surface

This section was contributed by Ian Rose.

Free surfaces are numerically challenging but can be useful for self consistently tracking dynamic topog-
raphy and may be quite important as a boundary condition for tectonic processes like subduction. The
parameter file cookbooks/free-surface.prm provides a simple example of how to set up a model with a
free surface, as well as demonstrates some of the challenges associated with doing so.

ASPECT supports models with a free surface using an Arbitrary Lagrangian-Eulerian framework (see
Section 2.11). Most of this is done internally, so you do not need to worry about the details to run this
cookbook. Here we demonstrate the evolution of surface topography that results when a blob of hot material
rises in the mantle, pushing up the free surface as it does. Usually the amplitude of free surface topography
will be small enough that it is difficult to see with the naked eye in visualizations, but the topography
postprocessor can help by outputting the maximum and minumum topography on the free surface at every
time step.

The bulk of the parameter file for this cookbook is similar to previous ones in this manual. We use initial
temperature conditions that set up a hot blob of rock in the center of the domain. In the Model settings
secion you need to give ASPECT a comma separated list of the free surface boundary indicators. In this
case, we are dealing with the top boundary of a box in 2D, corresponding to boundary indicator 3.

The main addition is the Free surface subsection. There is one main parameter that needs to be set
here: the value for the stabilization parameter “theta”. If this parameter is zero, then there is no stabilization,

197

cookbooks/free-surface.prm

and you are likely to see instabilities develop in the free surface. If this parameter is one then it will do a
good job of stabilizing the free surface, but it may overly damp its motions. The default value is 0.5.

Also worth mentioning is the change to the CFL number. Stability concerns typically mean that when
making a model with a free surface you will want to take smaller time steps. In general just how much
smaller will depend on the problem at hand as well as the desired accuracy.

Following are the sections in the input file specific to this testcase. The full parameter file may be found
at cookbooks/free-surface.prm.

set CFL number =0.1

subsection Initial conditions
set Model name = function
subsection Function
set Variable names = X,y
set Function expression = if(sqrt((x-250.e3)72 + (y-100.e3)72) < 25.e3, 200.0, 0.0)
end
end

subsection Free surface
set Free surface stabilization theta = 0.5
end

subsection Model settings
set Include adiabatic heating
set Include shear heating
set Fixed temperature boundary indicators
set Prescribed velocity boundary indicators
set Tangential velocity boundary indicators
set Zero velocity boundary indicators =
set Free surface boundary indicators = top
end

false
false
left, right, bottom, top

left, right, bottom

subsection Postprocess
set List of postprocessors = visualization,topography,velocity statistics,
subsection Visualization
set Time between graphical output = 1.e6
end
end

Running this input file will produce results like those in Figure 23. The model starts with a single hot
blob of rock which rises in the domain. As it rises, it pushes up the free surface in the middle, creating
a topographic high there. This is similar to the kind of dynamic topography that you might see above a
mantle plume on Earth. As the blob rises and diffuses, it loses the buoyancy to push up the boundary, and
the surface begins to relax.

After running the cookbook, you may modify it in a number of ways:

e Add a more complicated initial temperature field to see how that affects topography.
e Add a high-viscosity lithosphere to the top using a compositional field to tamp down on topography.

e Explore different values for the stabilization theta and the CFL number to understand the nature of
when and why stabilization is necessary.

e Try a model in a different geometry, such as spherical shells.

198

cookbooks/free-surface.prm

“statistics” using 2.1 +

0 2e+06 4e+06 6e+06 Be+06 1e+07 1.2e+071.4e+071.6e+071.8e+07

Figure 23: Fvolution of surface topography due to a rising blob. On the left is a snapshot of the model setup.
The right shows the value of the highest topography in the domain over 18 Myr of model time. The topography
peaks at 165 meters after 5.2 Myr. This cookbook may be run with the cookbooks/ free-surface. prm input
file.

6.2.7 Using a free surface in a model with a crust

This section was contributed by William Durkin.

This cookbook is a modification of the previous example that explores changes in the way topography
develops when a highly viscous crust is added. In this cookbook, we use a material model in which the
material changes from low viscosity mantle to high viscosity crust at z = z; = jump height, i.e., the
piecewise viscosity function is defined as

_Jnmu o for z >z,
W(Z)—{UL for z < z;.

where 7y and 7z are the viscosities of the upper and lower layers, respectively. This viscosity model can be
implemented by creating a plugin that is a small modification of the simpler material model (from which
it is otherwise simply copied). We call this material model “SimplerWithCrust”. In particular, what is
necessary is an evaluation function that looks like this:

template <int dim>
void
SimplerWithCrust<dim>::
evaluate(const typename Interface<dim>::MaterialModelInputs &in,
typename Interface<dim>::MaterialModelOutputs &out) const
{
for (unsigned int i=0; i<in.position.size(); ++i)
{

const double z = in.position[i][1];

if (z>jump_height)
out.viscosities[i]
else

eta_U;

out.viscosities[i] eta_L;

out.densities[i] = reference_rho*(1.0-thermal_alpha*(in.temperature[i]-reference_T));
out.thermal_expansion_coefficients[i] = thermal_alpha;

out.specific_heat[i] = reference_specific_heat;

out.thermal_conductivities[i] = k_value;

out.compressibilities[i] = 0.0;

199

cookbooks/free-surface.prm

Additional changes make the new parameters Jump height, Lower viscosity, and Upper viscosity avail-
able to the input parameter file, and corresponding variables available in the class and used in the code snippet
above. The entire code can be found in cookbooks/free-surface-with-crust/plugin/simpler-with-crust.
cc. Refer to Section 7.1 for more information about writing and running plugins.

The following changes are necessary compared to the input file from the cookbook shown in Section 6.2.6
to include a crust:

e Load the plugin implementing the new material model:

set Additional shared libraries = ./plugin/libsimpler-with-crust.so

e Declare values for the new parameters:

subsection Material model

set Model name = simpler with crust

subsection Simpler with crust model
set Reference density 3300
set Reference specific heat 1250
set Reference temperature = 0.0
set Thermal conductivity 1.0 # low thermal conductivity for a sharp blobd
set Thermal expansion coefficient = 4e-5

Parameters added for this cookbook:
The box ts 200km high and has its origin set at the bottom left corner.
Setting the jump height to 170km creates a 30km thick crust

set Lower viscosity = 1e20

set Upper viscosity = 1e23

set Jump height = 170e3
end

end

Note that the height of the interface at 170km is interpreted in the coordinate system in which the
box geometry of this cookbook lives. The box has dimensions 500km x 200km, so an interface height
of 170km implies a depth of 30km.

The entire script is located in cookbooks/free-surface-with-crust/free-surface-with-crust.prm.

Running this input file yields a crust that is 30km thick and 1000 times as viscous as the lower layer.
Figure 24 shows that adding a crust to the model causes the maximum topography to both decrease and
occur at a later time. Heat flows through the system primarily by advection until the temperature anomaly
reaches the base of the crustal layer (approximately at the time for which Fig 24 shows the temperature
profile). The crust’s high viscosity reduces the temperature anomaly’s velocity substantially, causing it to
affect the surface topography at a later time. Just as the cookbook shown in Section 6.2.6, the topography
returns to zero after some time.

6.2.8 Averaging material properties

The original motivation for the functionality discussed here, as well as the setup of the input file, were
provided by Cedric Thieulot.

Geophysical models are often characterized by abrupt and large jumps in material properties, in particular
in the viscosity. An example is a subducting, cold slab surrounded by the hot mantle: Here, the strong
temperature-dependence of the viscosity will lead to a sudden jump in the viscosity between mantle and
slab. The length scale over which this jump happens will be a few or a few tens of kilometers. Such
length scales cannot be adequately resolved in three-dimensional computations with typical meshes for
global computations.

200

cookbooks/free-surface-with-crust/plugin/simpler-with-crust.cc
cookbooks/free-surface-with-crust/plugin/simpler-with-crust.cc
cookbooks/free-surface-with-crust/free-surface-with-crust.prm

Figure 24: Adding a viscous crust to a model with surface topography. The thermal anomaly spreads hori-
zontally as it collides with the highly viscous crust (left). The addition of a crustal layer both dampens and
delays the appearance of the topographic maximum and minimum (right).

Having large viscosity variations in models poses a variety of problems to numerical computations. First,
you will find that they lead to very long compute times because our solvers and preconditioners break down.
This may be acceptable if it would at least lead to accurate solution, but large viscosity gradients lead also
to large pressure gradients, and this in turn leads to over- and undershots in the numerical approximation
of the gradient. We will demonstrate both of these issues experimentally below.

One of the solution to such problems is the realization that one can mitigate some of the effects by
averaging material properties on each cell somehow (see, for example, [SBET08, DK08, DMGT11, Thil5,
TMK14]). Before going into detail, it is important to realize that if we choose material properties not per
quadrature point when doing the integrals for forming the finite element matrix, but per cell, then we will
lose accuracy in the solution in those cases where the solution is smooth. More specifically, we will likely lose
one or more orders of convergence. In other words, it would be a bad idea to do this averging unconditionally.
On the other hand, if the solution has essentially discontinuous gradients and kinks in the velocity field, then
at least at these locations we cannot expect a particularly high convergence order anyway, and the averaging
will not hurt very much either. In cases where features of the solution that are due to strongly varying
viscosities or other parameters, dominate, we may then as well do the averaging per cell.

To support such cases, ASPECT supports an operation where we evaluate the material model at every
quadrature point, given the temperature, pressure, strain rate, and compositions at this point, and then
either (i) use these values, (ii) replace the values by their arithmetic average z = Zi\il x;, (iii) replace

1

the values by their harmonic average & = (ﬁ ZN L

-1
im1 ;) , (iv) replace the values by their geometric average

T = (Hf\il %) / , or (v) replace the values by the largest value over all quadrature points on this cell.
Option (vi) is to project the values from the quadrature points to a bi- (in 2d) or trilinear (in 3d) @, finite
element space on every cell, and then evaluate this finite element representation again at the quadrature
points. Unlike the other five operations, the values we get at the quadrature points are not all the same
here.

We do this operation for all quantities that the material model computes, i.e., in particular, the viscosity,
the density, the compressibility, and the various thermal and thermodynamic properties. In the first 4 cases,
the operation guarantees that the resulting material properties are bounded below and above by the minimum
and maximum of the original data set. In the last case, the situation is a bit more complicated: The nodal
values of the ()1 projection are not necessarily bounded by the minimal or maximal original values at the
quadrature points, and then neither are the output values after re-interpolation to the quadrature points.
Consequently, after projection, we limit the nodal values of the projection to the minimal and maximal
original values, and only then interpolate back to the quadrature points.

We demonstrate the effect of all of this with the “sinker” benchmark. This benchmark is defined by a high-
viscosity, heavy sphere at the center of a two-dimensional box. This is achieved by defining a compositional

201

field that is one inside and zero outside the sphere, and assigning a compositional dependence to the viscosity
and density. We run only a single time step for this benchmark. This is all modeled in the following input
file that can also be found in cookbooks/sinker-with-averaging/sinker-with-averaging.prm:

set Dimension =9
set Start time =0
set End time =0

set Output directory output_sinker

set Linear solver tolerance = le-7

set Pressure normalization volume

subsection Geometry model
set Model name = box
subsection Box
set X extent
set Y extent
end
end

1.0000
1.0000

subsection Model settings
set Include adiabatic heating
set Include shear heating
set Tangential velocity boundary indicators
set Zero velocity boundary indicators
end

false
false

left, right, bottom, top

subsection Material model
set Model name = simple

subsection Simple model
set Reference density =
set Viscosity =
set Thermal expansion coefficient
set Composition viscosity prefactor le6
set Density differential for compositional field 1 = 10
end

N o -

set Material averaging = none
end

subsection Gravity model
set Model name = vertical
subsection Vertical
set Magnitude = 1
end
end

HARRBHARARAAAAA Parameters describing the temperature field
Note: The temperature plays mo role in this model
subsection Boundary temperature model

set Model name = box
end

202

cookbooks/sinker-with-averaging/sinker-with-averaging.prm

subsection Initial conditions
set Model name = function
subsection Function
set Function expression = 0
end
end

HAHAAARHRAAAAA# Parameters describing the compositional field
Note: The compositional field is what drives the flow
in this example

subsection Compositional fields
set Number of fields =1
end

subsection Compositional initial conditions
set Model name = function
subsection Function
set Variable names = X,y
set Function expression = if((sqrt((x-0.5)"2+(y-0.5)"2)>0.22) , 0 , 1)
end
end

HARHBRARARARAAA Parameters describing the discretization

subsection Mesh refinement

set Initial global refinement =6
set Initial adaptive refinement =0
end

HERHBHBARARAAAAA Parameters describing what to do with the solution

subsection Postprocess
set List of postprocessors = visualization, velocity statistics, composition statistics
subsection Visualization
set Output format = vtu
set Time between graphical output 0
set List of output variables = density, viscosity

end
end

The type of averaging on each cell is chosen using this part of the input file:

subsection Material model
set Material averaging = harmonic average
end

For the various different averaging options, and for different levels of mesh refinement, Fig. 25 shows pressure
plots that illustrate the problem with oscillations of the discrete pressure. The important part of these plots
is not that the solution looks discontinuous — in fact, the exact solution is discontinuous at the edge of the

203

circle?® — but the spikes that go far above and below the “cliff” in the pressure along the edge of the circle.
Without averaging, these spikes are obviously orders of magnitude larger than the actual jump height. The
spikes do not disappear under mesh refinement nor averaging, but they become far less pronounced with
averaging. The results shown in the figure do not really allow to draw conclusions as to which averaging
approach is the best; a discussion of this question can also be found in [SBET08, DK08, DMGT11, TMK14]).

A very pleasant side effect of averaging is that not only does the solution become better, but it also
becomes cheaper to compute. Table 1 shows the number of outer GMRES iterations when solving the Stokes
equations (1)—(2).2% The implication of these results is that the averaging gives us a solution that not only
reduces the degree of pressure over- and undershots, but is also significantly faster to compute: for example,
the total run time for 8 global refinement steps is reduced from 5,250s for no averaging to 358s for harmonic

W@@@@@

[—45.2,45.2] —2.67,2.67) —3.58, 3.58] —3.57,3.57] —1.80,1.80] —2.77,2.77)

@@@@W

[—44.5,44.5] —5.18,5.18] —5.09, 5.09] —5.18,5.18] —5.20,5.20] —7.99,7.99]

i

Figure 25: Visualization of the pressure field for the “sinker” problem. Left to right: No averaging, arithmetic
averaging, harmonic averaging, geometric averaging, pick largest, project to Q1. Top: 7 global refinement
steps. Bottom: 8 global refinement steps. The minimal and mazimal pressure values are indicated below
every picture. This range is symmetric because we enforce that the average of the pressure equals zero. The
color scale is adjusted to show only values between p = —3 and p = 3.

Such improvements carry over to more complex and realistic models. For example, in a simulation of
flow under the East African Rift by Sarah Stamps, using approximately 17 million unknowns and run on
64 processors, the number of outer and inner iterations is reduced from 169 and 114,482 without averaging
to 77 and 23,180 with harmonic averaging, respectively. This translates into a reduction of run-time from
145 hours to 17 hours. Assessing the accuracy of the answers is of course more complicated in such cases
because we do not know the exact solution. However, the results without and with averaging do not differ
in any significant way.

A final comment is in order. First, one may think that the results should be better in cases of discontinuous
pressures if the numerical approximation actually allowed for discontinuous pressures. This is in fact possible:
We can use a finite element in which the pressure space contains piecewise constants (see Section 5.29). To
do so, one simply needs to add the following piece to the input file:

25This is also easy to try experimentally — use the input file from above and select 5 global and 10 adaptive refinement steps,
with the refinement criteria set to density, then visualize the solution.

26 The outer iterations are only part of the problem. As discussed in [KHB12], each GMRES iteration requires solving a linear
system with the elliptic operator —V - 2ne(+). For highly heterogeneous models, such as the one discussed in the current section,
this may require a lot of Conjugate Gradient iterations. For example, for 8 global refinement steps, the 304188 outer iterations
without averaging shown in Table 1 require a total of 22,096 inner CG iterations for the elliptic block (and a total of 837 for
the aproximate Schur complement). Using harmonic averaging, the 30426 outer iterations require only 1258 iterations on the
elliptic block (and 84 on the Schur complement). In other words, the number of inner iterations per outer iteration (taking into
account the split into “cheap” and “expensive” outer iterations, see [KHB12]) is reduced from 117 to 47 for the elliptic block
and from 3.8 to 1.5 for the Schur complement.

204

of global no averaging arithmetic harmonic geometric pick project
refinement steps averaging averaging averaging largest to Q1
4 30-+64 30+13 30+10 30+12 30+13 30415

5 30+87 30-+14 30+13 30+14 30+14 30+16

6 30+171 30+14 30+15 30+14 30+15 30417

7 304143 30+27 30+28 30+26 30+26 30428

8 30+188 30+27 30+26 30+27 30+28 30428

Table 1: Number of outer GMRES iterations to solve the Stokes equations for various numbers of global mesh
refinement steps and for different material averaging operations. The GMRES solver first tries to run 30
iterations with a cheaper preconditioner before switching to a more expensive preconditioner (see Section 5.2).

subsection Discretization
set Use locally conservative discretization = true
end

Disappointingly, however, this makes no real difference: the pressure oscillations are no better (maybe even
worse) than for the standard Stokes element we use, as shown in Fig. 26 and Table 2. Furthermore, as shown
in Table 3, the iteration numbers are also largely unaffected if any kind of averaging is used — though they
are far worse using the locally conservative discretization if no averaging has been selected. On the positive
side, the visualization of the discontinuous pressure finite element solution makes it much easier to see that
the true pressure is in fact discontinuous along the edge of the circle.

Figure 26: Visualization of the pressure field for the “sinker” problem. Like Fig. 25 but using the locally
conservative, enriched Stokes element. Pressure values are shown in Table 2.

of global no averaging arithmetic harmonic geometric pick project
refinement steps averaging averaging averaging largest to @y
4 66.32 2.66 2.893 1.869 3.412 3.073

5 81.06 3.537 4.131 3.997 3.885 3.991

6 75.98 4.596 4.184 4.618 4.568 5.093

7 84.36 4.677 5.286 4.362 4.635 5.145

8 83.96 5.701 5.664 4.686 5.524 6.42

Table 2: Mazximal pressure values for the “sinker” benchmark, using the locally conservative, enriched Stokes
element. The corresponding pressure solutions are shown in Fig. 26.

205

of global no averaging arithmetic harmonic geometric pick project
refinement steps averaging averaging averaging largest to Q1
4 30+376 30+16 30+12 30+14 30+14 30+17

5 30+484 30+16 30+14 30+14 30+14 30+16

6 30+583 30+16 30+17 30+14 30417 30+17

7 30+1319 30+27 30428 304-26 30428 30+28

8 3041507 30+28 30+27 30+28 30428 30429

Table 3: Like Table 1, but using the locally conservative, enriched Stokes element.

6.2.9 Prescribed internal velocity constraints

This section was contributed by Jonathan Perry-Houts

In cases where it is desirable to investigate the behavior of one part of the model domain but the
controlling physics of another part is difficult to capture, such as corner flow in subduction zones, it may
be useful to force the desired behavior in some parts of the model domain and solve for the resulting flow
everywhere else. This is possible through the use of ASPECT’s “signal” mechanism, as documented in
Section 7.4.

Internally, ASPECT adds “constraints” to the finite element system for boundary conditions and hanging
nodes. These are places in the finite element system where certain solution variables are required to match
some prescribed value. Although it is somewhat mathematically inadmissible to prescribe constraints on
nodes inside the model domain, §2, it is nevertheless possible so long as the prescribed velocity field fits in
to the finite element’s solution space, and satisfies the other constraints (i.e., is divergence free).

Using ASPECT’s signals mechanism, we write a shared library which provides a “slot” that listens for
the signal which is triggered after the regular model constraints are set, but before they are “distributed.”

As an example of this functionality, below is a plugin which allows the user to prescribe internal velocities
with functions in a parameter file:

#include <deal.II/base/parameter_handler.h>
#include <deal.II/base/parsed_function.h>
#include <deal.II/fe/fe_values.h>

#include <aspect/global.h>

#include <aspect/simulator_signals.h>

namespace aspect

{

using namespace dealii;

// Global variables (to be set by parameters)
bool prescribe_internal_velocities;

// Because we do not initially know what dimension we’re in, we need

// function parser objects for both 2d and 3d.

Functions: :ParsedFunction<2> prescribed_velocity_indicator_function_2d (2);
Functions: :ParsedFunction<3> prescribed_velocity_indicator_function_3d (3);
Functions: :ParsedFunction<2> prescribed_velocity_function_2d (2);
Functions: :ParsedFunction<3> prescribed_velocity_function_3d (3);

Ve
* Declare additional parameters.
*/
void declare_parameters(const unsigned int dim,
ParameterHandler &prm)

{

206

prm.declare_entry ("Prescribe internal,velocities", "false",

Patterns::Bool (),

"Whether or not to use any prescribed, internal velocities. "
"Locations,in which to prescribe velocities are defined,"
"in ;sectiony‘ ‘Prescribed velocities/Indicator function’’ "
"and, ;the velocities are defined in section,‘‘Prescribed,"
"velocities/Velocity function’’. Indicators are evaluated,"
"at the center of each cell, and_ all DOFs associated with, "
"the ;specified velocity component at the indicated cells,"
"are constrained."

);

prm.enter_subsection ("Prescribed velocities");
{
prm.enter_subsection ("Indicator function");
{
if (dim == 2)
Functions: :ParsedFunction<2>::declare_parameters (prm, 2);
else
Functions: :ParsedFunction<3>::declare_parameters (prm, 3);
}

prm.leave_subsection ();

prm.enter_subsection ("Velocity_function");

{
if (dim == 2)
Functions: :ParsedFunction<2>::declare_parameters (prm, 2);
else
Functions: :ParsedFunction<3>::declare_parameters (prm, 3);
}
prm.leave_subsection ();

}
prm.leave_subsection ();

}

template <int dim>
void parse_parameters(const Parameters<dim> &,
ParameterHandler &prm)
{
prescribe_internal_velocities = prm.get_bool ("Prescribe internal, velocities");
prm.enter_subsection ("Prescribed velocities");
{
prm.enter_subsection("Indicator function");
{
try
{
if (dim == 2)
prescribed_velocity_indicator_function_2d.parse_parameters (prm);

else
prescribed_velocity_indicator_function_3d.parse_parameters (prm);
}
catch (...)
{

std::cerr << "ERROR: FunctionParser failed, to parse\n"
<< "\t’Prescribed velocities.Indicator function’\n"
<< "with expression\n"

207

<< "\t’" << prm.get("Function expression") << "’";
throw;
}
}

prm.leave_subsection();

prm.enter_subsection("Velocity function");

{
try
{
if (dim == 2)
prescribed_velocity_function_2d.parse_parameters (prm);
else
prescribed_velocity_function_3d.parse_parameters (prm);
}
catch (...)
{
std::cerr << "ERROR: FunctionParser failed, to parse\n"
<< "\t’Prescribed velocities.Velocity function’\n"
<< "with expression\n"
<< "\t’" << prm.get("Function expression") << "’";
throw;
¥
}
prm.leave_subsection();
}
prm.leave_subsection ();
}
%k

* This function is called by a signal which is triggered after the other constraints
* have been calculated. This enables us to define additional constraints in the mass
* matriz on any arbitrary degree of freedom in the model space.
*/
template <int dim>
void constrain_internal_velocities (const SimulatorAccess<dim> &simulator_access,
ConstraintMatrix ¤t_constraints)
{
if (prescribe_internal_velocities)
{
Quadrature<dim> quadrature (simulator_access.get_fe().get_unit_support_points());
FEValues<dim> fe_values (simulator_access.get_fe(), quadrature, update_qg_points);
typename DoFHandler<dim>::active_cell_iterator cell;

// Loop over all cells
for (cell = simulator_access.get_dof_handler().begin_active();
cell != simulator_access.get_dof_handler().end();
++cell)
if (! cell->is_artificial())
{
fe_values.reinit (cell);
std: :vector<unsigned int> local_dof_indices(simulator_access.get_fe().dofs_per_cell);
cell->get_dof_indices (local_dof_indices);

for (unsigned int g=0; g<quadrature.size(); q++)
// If it’s okay to comstrain this DOF

208

if (current_constraints.can_store_line(local_dof_indices[q]) &&
!current_constraints.is_constrained(local_dof_indices[ql))
{
// Get the velocity component index
const unsigned int c_idx =
simulator_access.get_fe() .system_to_component_index(q) .first;

// If we’re on one of the velocity DOFs
if (c_idx >= simulator_access.introspection().component_indices.velocities[0] &&
c_idx <= simulator_access.introspection() .component_indices.velocities[dim-1])
{
// Which velocity component is this DOF assoctiated with?
const unsigned int component_direction = c_idx
- simulator_access.introspection().component_indic

// we get time passed as seconds (always) but may want
// to reinterpret it in years
double time = simulator_access.get_time();
if (simulator_access.convert_output_to_years())
time /= year_in_seconds;

prescribed_velocity_indicator_function_2d.set_time (time);
prescribed_velocity_indicator_function_3d.set_time (time);
prescribed_velocity_function_2d.set_time (time);
prescribed_velocity_function_3d.set_time (time);

const Point<dim> p = fe_values.quadrature_point(q);

// Because we defined and parsed our parameter file differently for 2d and 3d
// we need to be sure to query the correct object for function values. The
// function parser objects ezpect points of a certain dimension, but Point p
// will be compiled for both 2d and 3d, so we need some careful casts to makle
// this compile. Casting Point objects between 2d and 3d is somewhat meaninglless
// but the offending casts will never actually be ezecuted because they are
// protected by the if/else statements.
double indicator, u_i;
if (dim == 2)
{
indicator = prescribed_velocity_indicator_function_2d.value
(reinterpret_cast<const Point<2>&>(p), component_direction);
u_i = prescribed_velocity_function_2d.value
(reinterpret_cast<const Point<2>&>(p), component_direction);
}
else
{
indicator = prescribed_velocity_indicator_function_3d.value
(reinterpret_cast<const Point<3>&>(p), component_direction);
u_i = prescribed_velocity_function_3d.value
(reinterpret_cast<const Point<3>&>(p), component_direction);

if (indicator > 0.5)
{
// Add a constraint of the form doflq] = u_1%
// to the list of constraints.
current_constraints.add_line (local_dof_indices[ql);

209

current_constraints.set_inhomogeneity (local_dof_indices[q], u_i);

}

}

// Connect declare_parameters and parse_parameters to appropriate signals.
void parameter_connector ()

{
SimulatorSignals<2>::declare_additional_parameters.connect (&declare_parameters);
SimulatorSignals<3>::declare_additional_parameters.connect (&declare_parameters);
SimulatorSignals<2>::parse_additional_parameters.connect (&parse_parameters<2>);
SimulatorSignals<3>::parse_additional_parameters.connect (&parse_parameters<3>);
}

// Connect constraints function to correct signal.
template <int dim>
void signal_connector (SimulatorSignals<dim> &signals)

{

signals.post_constraints_creation.connect (&constrain_internal_velocities<dim>);

}

// Tell Aspect to send stignals to the comnector functions
ASPECT_REGISTER_SIGNALS_PARAMETER_CONNECTOR (parameter_connector)
ASPECT_REGISTER_SIGNALS_CONNECTOR (signal_connector<2>, signal_connector<3>)

The above plugin can be compiled with cmake . && make in the cookbooks/prescribed_velocity
directory. It can be loaded in a parameter file as an “Additional shared library.” By setting parameters
like those shown below, it is possible to produce many interesting flow fields such as the ones visualized in
(Figure 27).

Load the signal library.
set Additional shared libraries = ./libprescribed_velocity.so

Turn prescribed velocities on
set Prescribe internal velocities = true

subsection Prescribed velocities
subsection Indicator function
set Variable names = x,y,t
Return where to prescribe u_x; u_y, u_z
(last one only used if dimension = 3)
1 1f velocity should be prescribed, 0 otherwise
set Function expression = if((x-.5)"2+(y-.5)72<.125,1,0); \
if ((x-.5)"2+(y-.5)"2<.125,1,0)
end
subsection Velocity function
set Variable names = x,y,t
Return u_z; u_y; u_z (u_z only used <if in 3d)
set Function expression = 1;-1
end
end

210

cookbooks/prescribed_velocity

1.0
1.0

¢} =<}
o o
© ©
=] =]
Il |
|
< < ‘€
< Q
|
JHHWMM
I
i
I
3 g i
I
\‘H
i
it
/1|
o o
f) (=]
0.0 02 04 0.6 0.8 10 0.0 0.2 04 08 0.8 1.0
(a) (b)

Figure 27: Examples of flows with prescribed internal velocities, as described in Section 6.2.9.

6.2.10 Artificial viscosity smoothing

This section was contributed by Ryan Grove

Standard finite element discretizations of advection-diffusion equations introduce unphysical oscillations
around steep gradients. Therefore, stabilization must be added to the discrete formulation to obtain correct
solutions. In ASPECT, we use the Entropy Viscosity scheme developed by Guermond et al. in the paper
[Jeall]. In this scheme, an artificial viscosity is calculated on every cell and used to try to combat these
oscillations that cause unwanted overshoot and undershoot. More information about how ASPECT does
this is located at https://dealii.org/developer/doxygen/deal.II/step_31.html.

Instead of just looking at an individual cell’s artificial viscosity, improvements in the minimizing of the
oscillations can be made by smoothing. Smoothing is the act of finding the maximum artificial viscosity
taken over a cell T and the neighboring cells across the faces of T, i.e.,

(1) = K
on(T) KglﬁfT)vh()

where N(T) is the set containing 7" and the neighbors across the faces of T'.

This feature can be turned on by setting the Use artificial viscosity smoothing flag inside the Stabilization
subsection inside the Discretization subsection in your parameter file.

To show how this can be used in practice, let us consider the simple convection in a quarter of a 2d
annulus cookbook in Section 6.3.1, a radial compositional field was added to help show the advantages of
using the artificial viscosity smoothing feature.

By applying the following changes shown below to the parameters of the already existing file

cookbooks/shell_simple_2d.prm,

subsection Discretization
set Temperature polynomial degree = 2

211

https://dealii.org/developer/doxygen/deal.II/step_31.html

Pseudocolor - Elevate(C_1) Beeudogolor - Elevate(C_1)
ar C_
1.004

09
-: 0.2479
0. -0.004048
Manx:

Max; 1,004
Min: -0.0007093 Min; -0.004048

(a) (b)

Figure 28: Artificial viscosity smoothing: Example of the output of two similar runs. The run on the left
has the artificial viscosity smoothing turned on and the run on the right does not, as described in Section
6.2.10.

subsection Stabilization parameters
set Use artificial viscosity smoothing = true
end
end

subsection Compositional fields
set Number of fields = 1

end

subsection Compositional initial conditions
set Model name = function

subsection Function

set Variable names = X,y
set Function expression = if (sqrt(x*x+y*y)<4000000,1,0)
end

end

it is possible to produce pictures of the simple convection in a quarter of a 2d annulus such as the ones
visualized in Figure 28.

6.2.11 Tracking finite strain

This section was contributed by Juliane Dannberg

Notation: Here, we denote the strain rate tensor as e(u), where e(u);; = % (g;‘] + g;i) with the velocity

u, and the strain tensor as e, where e;; = % <§§? + %) with the displacement d.
J (3
In many geophysical settings, material properties, and in particular the rheology, do not only depend

on the current temperature, pressure and strain rate, but also on the history of the system. This can

212

be incorporated in ASPECT models by tracking history variables through compositional fields. In this
cookbook, we will show how to do this by tracking the strain that accumulates over time at every (Lagrangian)
point in the model.

Here, we use a material model plugin that defines the compositional fields as the components of the strain
tensor e;;, and modifies the right-hand side of the corresponding advection equations to accumulate strain
over time. This is done by adjusting the out.reaction_terms variable:

for (unsigned int q=0; q < in.position.size(); ++q)
{

// rotation tensor =

// asymmetric part of the displacement in this time step (= wvelocity gradients tensor * time step)

// + unit tensor

const Tensor<2,dim> rotation = (velocity_gradients[q] - symmetrize(velocity_gradients[ql))
* this->get_timestep()
+ unit_symmetric_tensor<dim>();

Tensor<2,dim> accumulated_strain;
for (unsigned int i=0; i<Tensor<2,dim>::n_independent_components; ++i)
accumulated_strain[Tensor<2,dim>: :unrolled_to_component_indices(i)] = in.composition[q] [i];

// the new strain is the rotated old strain plus the strain of the current time step
const Tensor<2,dim> rotated_strain = rotation * accumulated_strain * transpose(rotation)
+ in.strain_rate[q] * this->get_timestep();

for (unsigned int c=0; c<Tensor<2,dim>::n_independent_components; ++c)
{
out.reaction_terms[q] [c] = - in.composition([q] [c]
+ rotated_strain[Tensor<2,dim>: :unrolled_to_component_indices(c)]|;

Let us denote the accumulated strain at time step n as e™. We can express it as the sum of the strain e®~!

at the previous time step, rotated by the rotational component of the velocity field, plus the strain increment
g(u™)At™ accumulated over the current time step. Hence, the right-hand side term of the advection equation
for the accumulated strain consists of two parts: The first one, Re® 'R”, rotates e”~ !, the accumulated
strain from all the previous time steps; and the second part adds the strain of the current time step.

The full plugin can be found in cookbooks/finite_strain/finite_strain.cc and can be compiled
with cmake . && make in the cookbooks/finite_strain directory. It can be loaded in a parameter file as
an “Additional shared library”, and selected as material model. As it is derived from the “simple” material
model, all input parameters for the material properties are read in from the subsection Simple model.

set Additional shared libraries = ./libfinite_strain.so

subsection Material model
set Model name = finite strain

subsection Simple model
set Thermal conductivity = 4.7
set Reference density = 3400
set Thermal expansion coefficient = 2e-5
set Viscosity = 5e21
set Thermal viscosity exponent = 7
set Reference temperature = 1600

end

end

213

cookbooks/finite_strain/finite_strain.cc
cookbooks/finite_strain

3 U ainjesadwal

N

N

=]
ulens

o N
ulens

N

m\"u\‘mm m\\\\\\\\m m:m‘ T

Figure 29: Accumulated finite strain in an example convection model, as described in Section 6.2.11.

We will demonstrate its use at the example of a 2D Cartesian convection model (Figure 29): Heating
from the bottom leads to the the ascent of plumes from the bottom boundary layer, and the associated
deformation is visible in the components of the accumulated finite strain. Material moves to the sides at
the top of the plume head, so that it is shortened in vertical direction (blue areas in the yy component) and
stretched in horizontal direction (red areas in the xz component). The sides of the plume head show the
opposite effect. Shear occurs mostly at the edges of the plume head and in the plume tail (blue and red
areas in the xy component).

The example used here shows how history variables can be integrated up over the model evolution. While
we do not use these variables actively in the computation so far (in our example, there is no influence of
the accumulated strain on the rheology or any other material property), it would be trivial to extend this
material model in a way that material properties depend on the integrated strain: Because the values of
the compositional fields are part of what the material model gets as inputs, they can easily be used for
computing material model outputs such as the viscosity.

6.3 Geophysical setups

Having gone through the ways in which one can set up problems in rectangular geometries, let us now
move on to situations that are directed more towards the kinds of things we want to use ASPECT for: the
simulation of convection in the rocky mantles of planets or other celestial bodies.

To this end, we need to go through the list of issues that have to be described and that were outlined in
Section 6.1, and address them one by one:

o What internal forces act on the medium (the equation)? This may in fact be the most difficult to answer
part of it all. The real material in Earth’s mantle is certainly no Newtonian fluid where the stress is
a linear function of the strain with a proportionality constant (the viscosity) 7 that only depends on

214

the temperature. Rather, the real viscosity almost surely also depends on the pressure and the strain
rate. Because the issue is complicated and the exact material model not entirely clear, for the next few
subsections we will therefore ignore the issue and start with just using the “simple” material model
where the viscosity is constant and most other coefficients depend at most on the temperature.

What external forces do we have (the right hand side) There are of course other issues: for example,
should the model include terms that describe shear heating? Should it be compressible? Adiabatic
heating due to compression? Most of the terms that pertain to these questions appear on the right hand
sides of the equations, though some (such as the compressibility) also affect the differential operators
on the left. Either way, for the moment, let us just go with the simplest models and come back to the
more advanced questions in later examples.

One right hand side that will certainly be there is that due to gravitational acceleration. To first order,
within the mantle gravity points radially inward and has a roughly constant magnitude. In reality, of
course, the strength and direction of gravity depends on the distribution and density of materials in
Earth — and, consequently, on the solution of the model at every time step. We will discuss some of
the associated issues in the examples below.

What is the domain (geometry)? This question is easier to answer. To first order, the domains we want
to simulate are spherical shells, and to second order ellipsoid shells that can be obtained by considering
the isopotential surface of the gravity field of a homogenous, rotating fluid. A more accurate description
is of course the geoid for which several parameterizations are available. A complication arises if we ask
whether we want to include the mostly rigid crust in the domain and simply assume that it is part of
the convecting mantle, albeit a rather viscous part due to its low temperature and the low pressure
there, or whether we want to truncate the computation at the asthenosphere.

What happens at the boundary for each variable involved (boundary conditions)? The mantle has two
boundaries: at the bottom where it contacts the outer core and at the top where it either touches
the air or, depending on the outcome of the discussion of the previous question, where it contacts the
lithospheric crust. At the bottom, a very good approximation of what is happening is certainly to
assume that the velocity field is tangential (i.e., horizontal) and without friction forces due to the very
low viscosity of the liquid metal in the outer core. Similarly, we can assume that the outer core is well
mixed and at a constant temperature. At the top boundary, the situation is slightly more complex
because in reality the boundary is not fixed but also allows vertical movement. If we ignore this, we can
assume free tangential flow at the surface or, if we want, prescribe the tangential velocity as inferred
from plate motion models. ASPECT has a plugin that allows to query this kind of information from
the GPlates program.

How did it look at the beginning (initial conditions)? This is of course a trick question. Convection
in the mantle of earth-like planets did not start with a concrete initial temperature distribution when
the mantle was already fully formed. Rather, convection already happened when primordial material
was still separating into mantle and core. As a consequence, for models that only simulate convection
using mantle-like geometries and materials, no physically reasonable initial conditions are possible that
date back to the beginning of Earth. On the other hand, recall that we only need initial conditions for
the temperature (and, if necessary, compositional fields). Thus, if we have a temperature profile at a
given time, for example one inferred from seismic data at the current time, then we can use these as
the starting point of a simulation.

This discussion shows that there are in fact many pieces with which one can play and for which the answers
are in fact not always clear. We will address some of them in the cookbooks below. Recall in the descriptions
we use in the input files that ASPECT uses physical units, rather than non-dimensionalizing everything.
The advantage, of course, is that we can immediately compare outputs with actual measurements. The
disadvantage is that we need to work a bit when asked for, say, the Rayleigh number of a simulation.

215

Figure 30: Simple convection in a quarter of an annulus: Snapshots of the temperature field at times t = 0,
t = 1.2-107 years (time step 2135), and t = 10° years (time step 25,662). The bottom right part of each
figure shows an overlay of the mesh used during that time step.

6.3.1 Simple convection in a quarter of a 2d annulus

Let us start this sequence of cookbooks using a simpler situation: convection in a quarter of a 2d shell.
We choose this setup because 2d domains allow for much faster computations (in turn allowing for more
experimentation) and because using a quarter of a shell avoids a pitfall with boundary conditions we will
discuss in the next section. Because it’s simpler to explain what we want to describe in pictures than in words,
Fig. 30 shows the domain and the temperature field at a few time steps. In addition, you can find a movie of
how the temperature evolves over this time period at http://www.youtube.com/watch?v=d4AS1FmdarU.?”
Let us just start by showing the input file (which you can find in cookbooks/shell_simple_2d.prm):

set Dimension =2
set Use years in output instead of seconds = true
set End time = 1.5e9

set Output directory output

subsection Material model
set Model name = simple

subsection Simple model

set Thermal expansion coefficient = 4e-5
set Viscosity = le22
end
end

subsection Geometry model
set Model name = spherical shell

subsection Spherical shell
set Inner radius = 3481000
set Outer radius 6336000
set Opening angle = 90

end

27In YouTube, click on the gear symbol at the bottom right of the player window to select the highest resolution to see all
the details of this video.

216

http://www.youtube.com/watch?v=d4AS1FmdarU
cookbooks/shell_simple_2d.prm

end

subsection Model settings
set Zero velocity boundary indicators
set Tangential velocity boundary indicators = outer, left, right
set Prescribed velocity boundary indicators

inner

set Fixed temperature boundary indicators = inner, outer

set Include shear heating true

end

subsection Boundary temperature model
set Model name = spherical constant
subsection Spherical constant
set Inner temperature = 4273
set Outer temperature = 973
end
end

subsection Initial conditions
set Model name = spherical hexagonal perturbation
end

subsection Gravity model
set Model name = radial earth-like
end

subsection Mesh refinement
set Initial global refinement 5
set Initial adaptive refinement =4
set Strategy temperature
set Time steps between mesh refinement 15
end

subsection Postprocess
set List of postprocessors = visualization, velocity statistics, temperature statistics,
heat flux statistics, depth average

subsection Visualization

set Output format = vtu

set Time between graphical output = 1le6

set Number of grouped files =0
end

subsection Depth average
set Time between graphical output
end
end

1e6

217

In the following, let us pick apart this input file:

1. Lines 1-4 are just global parameters. Since we are interested in geophysically realistic simulations, we
will use material parameters that lead to flows so slow that we need to measure time in years, and we
will set the end time to 1.5 billion years — enough to see a significant amount of motion.

2. The next block (lines 7-14) describes the material that is convecting (for historical reasons, the re-
mainder of the parameters that describe the equations is in a different section, see the fourth point
below). We choose the simplest material model ASPECT has to offer where the viscosity is constant
(here, we set it to 7 = 10?2Pa s) and so are all other parameters except for the density which we choose
to be p(T) = po(1 — B(T — Trer)) with po = 3300kg m~3, B = 4-107°K ! and Tyer = 293K. The
remaining material parameters remain at their default values and you can find their values described
in the documentation of the simple material model in Sections 5.66 and 5.79.

3. Lines 17-25 then describe the geometry. In this simple case, we will take a quarter of a 2d shell (recall
that the dimension had previously been set as a global parameter) with inner and outer radii matching
those of a spherical approximation of Earth.

4. The second part of the model description and boundary values follows in lines 28-45. There, we
describe that we want a model where equation (3) contains the shear heating term 2ne(u) : ¢(u)
(noting that the default is to use an incompressible model for which the term %(V -u)1 in the shear
heating contribution is zero).

The boundary conditions require us to look up how the geometry model we chose (the spherical shell
model) assigns boundary indicators to the four sides of the domain. This is described in Section 5.32
where the model announces that boundary indicator zero is the inner boundary of the domain, boundary
indicator one is the outer boundary, and the left and right boundaries for a 2d model with opening angle
of 90 degrees as chosen here get boundary indicators 2 and 3, respectively. In other words, the settings
in the input file correspond to a zero velocity at the inner boundary and tangential flow at all other
boundaries. We know that this is not realistic at the bottom, but for now there are of course many
other parts of the model that are not realistic either and that we will have to address in subsequent
cookbooks. Furthermore, the temperature is fixed at the inner and outer boundaries (with the left
and right boundaries then chosen so that no heat flows across them, emulating symmetry boundary
conditions) and, further down, set to values of 700 and 4000 degrees Celsius — roughly realistic for the
bottom of the crust and the core-mantle boundary.

5. The description of what we want to model is complete by specifying that the initial temperature is a
perturbation with hexagonal symmetry from a linear interpolation between inner and outer temper-
atures (see Section 5.51), and what kind of gravity model we want to choose (one reminiscent of the
one inside the Earth mantle, see Section 5.39).

6. The remainder of the input file consists of a description of how to choose the initial mesh and how to
adapt it (lines 58-63) and what to do at the end of each time step with the solution that ASPECT
computes for us (lines 66-79). Here, we ask for a variety of statistical quantities and for graphical
output in VT'U format every million years.

Note: Having described everything to ASPECT, you may want to view the video linked to above
again and compare what you see with what you expect. In fact, this is what one should always do
having just run a model: compare it with expectations to make sure that we have not overlooked
anything when setting up the model or that the code has produced something that doesn’t match
what we thought we should get. Any such mismatch between expectation and observed result
is typically a learning opportunity: it either points to a bug in our input file, or it provides us
with insight about an aspect of reality that we had not foreseen. Either way, accepting results
uncritically is, more often than not, a way to scientifically invalid results.

218

The model we have chosen has a number of inadequacies that make it not very realistic (some of those
happened more as an accident while playing with the input file and weren’t a purposeful experiment, but
we left them in because they make for good examples to discuss below). Let us discuss these issues in the
following.

Dimension. This is a cheap shot but it is nevertheless true that the world is three-dimensional whereas
the simulation here is 2d. We will address this in the next section.

Incompressibility, adiabaticity and the initial conditions. This one requires a bit more discussion. In
the model selected above, we have chosen a model that is incompressible in the sense that the density does not
depend on the pressure and only very slightly depends on the temperature (the Boussinesq approximation).
In such models, material that rises up does not cool down due to expansion resulting from the pressure
dropping, and material that is transported down does not adiabatically heat up. Consequently, the adiabatic
temperature profile would be constant with depth, and a well-mixed model with hot inner and cold outer
boundary would have a constant temperature with thin boundary layers at the bottom and top of the mantle.
In contrast to this, our initial temperature field was a perturbation of a linear temperature profile.

There are multiple implications of this. First, the temperature difference between outer and inner bound-
ary of 3300 K we have chosen in the input file is much too large. The temperature difference is what drives
the convection, but what really counts is of course the difference in addition to the temperature increase
a volume of material would experience if it were to be transported adiabatically from the surface to the
core-mantle boundary. This difference is much smaller than 3300 K in reality, and we can expect convection
to be significantly less vigorous than in the simulation here. Indeed, using the values in the input file shown
above, we can compute the Rayleigh number for the current case to be?®

_gBATp L3 __ 10m s724-107°K ! 3300K 3300kg m 2 (2.86 - 105m)?

R
& an 1022kgm—1s-1

Second, the initial temperature profile we chose is not realistic — in fact, it is a completely instable one:
there is hot material underlying cold one, and this is not just the result of boundary layers. Consequently,
what happens in the simulation is that we first overturn the entire temperature field with the hot material in
the lower half of the domain swapping places with the colder material in the top, to achieve a stable layering
except for the boundary layers. After this, hot blobs rise from the bottom boundary layer into the cold layer
at the bottom of the mantle, and cold blobs sink from the top, but their motion is impeded about half-way
through the mantle once they reach material that has roughly the same temperature as the plume material.
This impedes convection until we reach a state where these plumes have sufficiently mixed the mantle to
achieve a roughly constant temperature profile.

This effect is visible in the movie linked to above where convection does not penetrate the entire depth
of the mantle for the first 20 seconds (corresponding to roughly the first 800 million years). We can also see
this effect by plotting the root mean square velocity, see the left panel of Fig. 31. There, we can see how the
average velocity picks up once the stable layering of material that resulted from the initial overturning has
been mixed sufficiently to allow plumes to rise or sink through the entire depth of the mantle.

The right panel of Fig. 31 shows a different way of visualizing this, using the average temperature at
various depths of the model (this is what the depth average postprocessor computes). The figure shows
how the initially linear unstable layering almost immediately reverts completely, and then slowly equilibrates
towards a temperature profile that is constant throughout the mantle (which in the incompressible model
chosen here equates to an adiabatic layering) except for the boundary layers at the inner and outer boundaries.
(The end points of these temperature profiles do not exactly match the boundary values specified in the input
file because we average temperatures over shells of finite width.)

A conclusion of this discussion is that if we want to evaluate the statistical properties of the flow field,
e.g., the number of plumes, average velocities or maximal velocities, then we need to restrict our efforts to

28Note that the density in 2d has units kg m—2

219

5000 T
_ =0 ——
o =800k years ———
==
= 0.04 E t=500M years ——
E 4000 t=1B years
=
S 003 T o 3000
= =
= B
[T
g 002 1 g 2000
< &
@
E o0t 1 1000
©
(=]
o
0 . . 0)
0 5e+08 le+09 1.5e+09 0 1le+06 2e+06 3e+06
Time [years] Depth [m]

Figure 31: Simple convection in a quarter of an annulus. Left: Root mean square values of the velocity
field. The initial spike (off the scale) is due to the overturning of the instable layering of the temperature.
Convection is suppressed for the first 800 million years due to the stable layering that results from it. The
mazimal velocity encountered follows generally the same trend and is in the range of 2-8 cm/year between
100 and 800 million years, and 48 cm/year following that. Right: Average temperature at various depths
fort =0, t = 800,000 years, t =5 - 10% years, and t = 10° years.

times after approximately 800 million years in this simulation to avoid the effects of our inappropriately
chosen initial conditions. Likewise, we may actually want to choose initial conditions more like what we see
in the model for later times, i.e., constant in depth with the exception of thin boundary layers, if we want
to stick to incompressible models.

Material model. The model we use here involves viscosity, density, and thermal property functions that
do not depend on the pressure, and only the density varies (slightly) with the temperature. We know that
this is not the case in nature.

Shear heating. When we set up the input file, we started with a model that includes the shear heating
term 2ne(u) : e(u) in eq. (3). In hindsight, this may have been the wrong decision, but it provides an
opportunity to investigate whether we think that the results of our computations can possibly be correct.
We first realized the issue when looking at the heat flux that the heat flux statistics postprocessor
computes. This is shown in the left panel of Fig. 32.29 There are two issues one should notice here. The more
obvious one is that the flux from the mantle to the air is consistently higher than the heat flux from core to
mantle. Since we have no radiogenic heating model selected (see the Model name parameter in the Heating
model section of the input file; see also Section 5.44), in the long run the heat output of the mantle must
equal the input, unless is cools. Our misconception was that after the 800 million year transition, we believed
that we had reached a steady state where the average temperature remains constant and convection simply
moves heat from the core-mantle boundary the surface. One could also be tempted to believe this from the
right panel in Fig. 31 where it looks like the average temperature does at least not change dramatically.
But, it is easy to convince oneself that that is not the case: the temperature statistics postprocessor
we had previously selected also outputs data about the mean temperature in the model, and it looks like
shown in the left panel of Fig. 33. Indeed, the average temperature drops over the course of the 1.2 billion
years shown here. We could now convince ourselves that indeed the loss of thermal energy in the mantle

29The heat flux statistics postprocessor computes heat fluxes through parts of the boundary in outward direction, i.e.,
from the mantle to the air and to the core. However, we are typically interested in the flux from the core into the mantle, so
the figure plots the negative of the computed quantity.

220

Be+06 T T Be+06 T T
Core to mantle heat flux Core to mantle heat flux
Mantle to air heat flux Mantle to air heat flux
Be+06 g Be+06 g
2 4e+06 | 2 e+08 |]
kS kS
= =
o 2e+06 1 o 2e+06 1
T T
0 4 0 /—,\’x_
-2e+06 L L -2e+06 L L
0 5e+08 le+09 0 5e+08 le+09
Time [years] Time [years]

Figure 32: Simple convection in a quarter of an annulus. Left: Heat fluz through the core-mantle and
mantle-air boundaries of the domain for the model with shear heating. Right: Same for a model without
shear heating.

due to the drop in average temperature is exactly what fuels the persistently imbalanced energy outflow. In
essence, what this would show is that if we kept the temperature at the boundaries constant, we would have
chosen a mantle that was initially too hot on average to be sustained by the boundary values and that will
cool until it will be in energetic balance and on longer time scales, in- and outflow of thermal energy would
balance each other.

However, there is a bigger problem. Fig. 32 shows that at the very beginning, there is a spike in energy
flux through the outer boundary. We can explain this away with the imbalanced initial temperature field
that leads to an overturning and, thus, a lot of hot material rising close to the surface that will then lead to a
high energy flux towards the cold upper boundary. But, worse, there is initially a negative heat flux into the
mantle from the core — in other words, the mantle is losing energy to the core. How is this possible? After
all, the hottest part of the mantle in our initial temperature field is at the core-mantle boundary, no thermal
energy should be flowing from the colder overlying material towards the hotter material at the boundary! A
glimpse of the solution can be found in looking at the average temperature in Fig. 33: At the beginning, the
average temperature rises, and apparently there are parts of the mantle that become hotter than the 4273
K we have given the core, leading to a downward heat flux. This heating can of course only come from the
shear heating term we have accidentally left in the model: at the beginning, the instable layering leads to
very large velocities, and large velocities lead to large velocity gradients that in turn lead to a lot of shear
heating! Once the initial overturning has subsided, after say 100 million years (see the mean velocity in
Fig. 31), the shear heating becomes largely irrelevant and the cooling of the mantle indeed begins.

Whether this is really the case is of course easily verified: The right panels of Fig.s 32 and 33 show heat
fluxes and average temperatures for a model where we have switched off the shear heating by setting

subsection Model settings
set Include shear heating = false
end

Indeed, doing so leads to a model where the heat flux from core to mantle is always positive, and where
the average temperature strictly drops!

Summary. As mentioned, we will address some of the issues we have identified as unrealistic in the
following sections. However, despite all of this, some things are at least at the right order of magnitude,
confirming that what ASPECT is computing is reasonable. For example, the maximal velocities encounted

221

3000 . . 3000 . .

— 2500 rﬁﬁy‘EH‘H‘H“—_—_hHHEH“—_m_‘___“_____T — 2500 k& 1
Z Z]
a a
5 2000 t 1 5 2000 t 1
© ©
2 2
£ 1500 } 1 £ 1500 } 1
z z
& 1000 | 1 & 1000 | 1
d d
S S
x 500 1 a 500 | J
0 . . 0 . .
0 5e+08 le+09 0 5e+08 le+09
Time [years] Time [years]

Figure 33: Simple convection in a quarter of an annulus. Left: Average temperature throughout the model
for the model with shear heating. Right: Same for a model without shear heating.

in our model (after the 800 million year boundary) are in the range of 6-7cm per year, with occasional
excursions up to 11lcm. Clearly, something is going in the right direction.

6.3.2 Simple convection in a spherical 3d shell

The setup from the previous section can of course be extended to 3d shell geometries as well — though at
significant computational cost. In fact, the number of modifications necessary is relatively small, as we
will discuss below. To show an example up front, a picture of the temperature field one gets from such a
simulation is shown in Fig. 34. The corresponding movie can be found at http://youtu.be/j63MKkECORRwW.

The input file. Compared to the input file discussed in the previous section, the number of changes
is relatively small. However, when taking into account the various discussions about which parts of the
model were or were not realistic, they go throughout the input file, so we reproduce it here in its entirety,
interspersed with comments (the full input file can also be found in cookbooks/shell_simple_3d.prm). Let
us start from the top where everything looks the same except that we set the dimension to 3:

set Dimension =3
set Use years in output instead of seconds = true
set End time = 1.5e9

set Output directory output

subsection Material model
set Model name = simple

subsection Simple model

set Thermal expansion coefficient = 4e-5
set Viscosity = le22
end
end

The next section concerns the geometry. The geometry model remains unchanged at “spherical shell”
but we omit the opening angle of 90 degrees as we would like to get a complete spherical shell. Such a shell
of course also only has two boundaries (the inner one has indicator zero, the outer one indicator one) and
consequently these are the only ones we need to list in the “Model settings” section:

222

http://youtu.be/j63MkEc0RRw
cookbooks/shell_simple_3d.prm

Figure 34: Convection in a spherical shell: Snapshot of isosurfaces of the temperature field at time t =~
1.06 - 10° years with a quarter of the geometry cut away. The surface shows vectors indicating the flow
velocity and direction.

subsection Geometry model
set Model name = spherical shell

subsection Spherical shell
set Inner radius = 3481000
set Outer radius = 6336000
end
end

subsection Model settings
set Zero velocity boundary indicators = inner

set Tangential velocity boundary indicators = outer

set Prescribed velocity boundary indicators =

set Fixed temperature boundary indicators = inner, outer
set Include shear heating = false

end

223

Next, since we convinced ourselves that the temperature range from 973 to 4273 was too large given
that we do not take into account adiabatic effects in this model, we reduce the temperature at the inner
edge of the mantle to 1973. One can think of this as an approximation to the real temperature there minus
the amount of adiabatic heating material would experience as it is transported from the surface to the
core-mantle boundary. This is, in effect, the temperature difference that drives the convection (because a
completely adiabatic temperature profile is stable despite the fact that it is much hotter at the core mantle
boundary than at the surface). What the real value for this temperature difference is, is unclear from current
research, but it is thought to be around 1000 Kelvin, so let us choose these values.

subsection Boundary temperature model
set Model name = spherical constant
subsection Spherical constant
set Inner temperature = 1973
set Outer temperature = 973
end
end

The second component to this is that we found that without adiabatic effects, an initial temperature
profile that decreases the temperature from the inner to the outer boundary makes no sense. Rather, we
expected a more or less constant temperature with boundary layers at both ends. We could describe such an
initial temperature field, but since any initial temperature is mostly arbitrary anyway, we opt to just assume
a constant temperature in the middle between the inner and outer temperature boundary values and let the
simulation find the exact shape of the boundary layers itself:

subsection Initial conditions
set Model name = function
subsection Function
set Function expression = 1473
end
end

subsection Gravity model
set Model name = radial earth-like
end

As before, we need to determine how many mesh refinement steps we want. In 3d, it is simply not
possible to have as much mesh refinement as in 2d, so we choose the following values that lead to meshes
that have, after an initial transitory phase, between 1.5 and 2.2 million cells and 50-75 million unknowns:

subsection Mesh refinement
set Initial global refinement 2
set Initial adaptive refinement =3
set Strategy
set Time steps between mesh refinement
end

temperature
15

Second to last, we specify what we want ASPECT to do with the solutions it computes. Here, we compute
the same statistics as before, and we again generate graphical output every million years. Computations of
this size typically run with 1000 MPI processes, and it is not efficient to let every one of them write their
own file to disk every time we generate graphical output; rather, we group all of these into a single file to
keep file systems reasonably happy. Likewise, to accomodate the large amount of data, we output depth
averaged fields in VTU format since it is easier to visualize:

subsection Postprocess
set List of postprocessors = visualization, velocity statistics, \
temperature statistics, heat flux statistics, \

224

depth average

subsection Visualization

set Output format = vtu

set Time between graphical output = 1le6

set Number of grouped files =1
end

subsection Depth average
set Time between graphical output = 1.5e6
set Output format vtu
end
end

Finally, we realize that when we run very large parallel computations, nodes go down or the scheduler
aborts programs because they ran out of time. With computations this big, we cannot afford to just lose
the results, so we checkpoint the computations every 50 time steps and can then resume it at the last saved
state if necessary (see Section 4.5):

subsection Checkpointing
set Steps between checkpoint = 50
end

Evaluation. Just as in the 2d case above, there are still many things that are wrong from a physical
perspective in this setup, notably the no-slip boundary conditions at the bottom and of course the simplistic
material model with its fixed viscosity and its neglect for adiabatic heating and compressibility. But there
are also a number of things that are already order of magnitude correct here.

For example, if we look at the heat flux this model produces, we find that the convection here produces
approximately the correct number. Wikipedia’s article on Earth’s internal heat budget3® states that the
overall heat flux through the Earth surface is about 47 - 1012 W (i.e., 47 terawatts) of which an estimated
12-30 TW are primordial heat released from cooling the Earth and 15-41 TW from radiogenic heating.3!
Our model does not include radiogenic heating (though ASPECT has a number of Heating models to
switch this on, see Section 5.44) but we can compare what the model gives us in terms of heat flux through
the inner and outer boundaries of our shell geometry. This is shown in the left panel of Fig. 35 where we
plot the heat flux through boundaries zero and one, corresponding to the core-mantle boundary and Earth’s
surface. ASPECT always computes heat fluxes in outward direction, so the flux through boundary zero will
be negative, indicating the we have a net flux into the mantle as expected. The figure indicates that after
some initial jitters, heat flux from the core to the mantle stabilizes at around 4.5 TW and that through the
surface at around 10 TW, the difference of 5.5 TW resulting from the overall cooling of the mantle. While
we cannot expect our model to be quantitatively correct, this can be compared with estimates heat fluxes
of 5-15 TW for the core-mantle boundary, and an estimated heat loss due to cooling of the mantle of 7-15
TW (values again taken from Wikipedia).

A second measure of whether these results make sense is to compare velocities in the mantle with what is
known from observations. As shown in the right panel of Fig. 35, the maximal velocities settle to values on
the order of 3 cm/year (each of the peaks in the line for the maximal velocity corresponds to a particularly
large plume rising or falling). This is, again, at least not very far from what we know to be correct and we
should expect that with a more elaborate material model we should be able to get even closer to reality.

30Not necessarily the most scientific source, but easily accessible and typically about right in terms of numbers. The numbers
stated here are those listed on Wikipedia at the time this section was written in March 2014.

31 As a point of reference, for the mantle an often used number for the release of heat due to radioactive decay is 7.4 - 10~ 12
W /kg. Taking a density of 3300 kg/m?3 and a volume of 102 m3 would yield roughly 2.4 - 1013 W of heat produced. This back
of the envelope calculation lies within the uncertain range stated above.

225

http://en.wikipedia.org/wiki/Earth's_internal_heat_budget

Ze+13 T T 0.16 - -
Core-mantle boundary ——— Average velocity ——
Earth surface 014 L Maximal velocity —— |
15e+13
le+l3 | =
— 1]
z 2
5 sen2 =
= =
8 o
T 0 z
-5e+l12 W——/_’\‘
-le+l3 1 1
0 5e+08 1e+09 1.5e+09 0 5e+08 1e+09 1.5e+09
Time [years] Time [years]

Figure 35: Fwvaluating the 3d spherical shell model. Left: Outward heat fluzes through the inner and outer
boundaries of the shell. Right: Average and mazximal velocities in the mantle.

6.3.3 3D convection with an Earth-like initial condition

This section was contributed by Jacqueline Austermann

For any model run with ASPECT we have to choose an initial condition for the temperature field. If we
want to model convection in the Earth’s mantle we want to choose an initial temperature distribution that
captures the Earth’s buoyancy structure. In this cookbook we present how to use temperature perturbations
based on the shear wave velocity model S20RTS [RvHO00] to initialize a mantle convection calculation.

The input shear wave model. The current version of ASPECT can read in the shear wave velocity mod-
els S20RTS [RvHO00] and S40RTS [RDvHW11], which are located in data/initial-conditions/S40RTS/.
Those models provide spherical harmonic coefficients up do degree 20 and 40, respectively, for 21 depth lay-
ers. The interpolation with depth is done through a cubic spline interpolation. The input files S20RTS. sph
and S40RTS.sph were downloaded from http://www.earth.lsa.umich.edu/~jritsema/Research.html
and have the following format (this example is S20RTS):

20 111111111111111111111 24 000111111111111111111111
0.1534E-01
0.1590E-01 -0.1336E-01 0.3469E-02
-0.3480E-02 0.1165E-01 0.8376E-02 0.2158E-01 -0.9923E-02

The first number in the first line denotes the maximum degree. This is followed in the next line by
the spherical harmonic coefficients from the surface down to the CMB. The coefficients are arranged in the
following way:

aoo
a1 a11 bi1
a20 G21 ba1 a2 bao

ay is the cosine coefficient of degree y and order z and b, is the sine coefficient of degree y and order
z. The depth layers are specified in the file Spline knots.txt by a normalized depth value ranging from
the CMB (3480km, normalized to -1) to the moho (6346km, normalized to 1). This is the original format
provided on the homepage.

226

http://www.earth.lsa.umich.edu/~jritsema/Research.html

Any other perturbation model in this same format can also be used, one only has to specify the different
filename in the parameter file (see next section). For models with different depth layers one has to adjust
the Spline _knots.txt file as well as the number of depth layers, which is hard coded in the current code. A
further note of caution when switching to a different input model concerns the normalization of the spherical
harmonics, which might differ. After reading in the shear wave velocity perturbation one has several options
to scale this into temperature differences, which are then used to initialize the temperature field.

Setting up the ASPECT model. For this cookbook we will use the parameter file provided in cookbooks/
S20RTS.prm, which uses a 3d spherical shell geometry similar to section 6.3.2. This plugin is only sensible
for a 3D spherical shell with Earth-like dimensions.

The relevant section in the input file is as follows:

subsection Initial conditions
set Model name = S40RTS perturbation
subsection S40RTS perturbation
set Data directory
set Initial condition file name S20RTS.sph
set Spline knots depth file name Spline_knots.txt
set Remove degree O from perturbation = false

$ASPECT_SOURCE_DIR/data/initial-conditions/S40RTS/

set Vs to density scaling =0.2

set Thermal expansion coefficient in initial temperature scaling = 3e-5

set Reference temperature = 1600

set Remove temperature heterogeneity down to specified depth = 200000
end

end

For this initial condition model we need to first specify the data directory in which the input files are
located as well as the initial condition file (S20RTS.sph or S40RTS.sph) and the file that contains the
normalized depth layers (Spline knots depth file name). We next have the option to remove the degree 0
perturbation from the shear wave model. This might be the case if we want to make sure that the depth
average temperature follows the background (adiabatic or constant) temperature.

The next input parameters describe the scaling from the shear wave velocity perturbation to the final
temperature field. The shear wave velocity perturbation v, /v, (that is provided by S20RTS) is scaled into
a density perturbation dp/p with a constant that is specified in the initial condition section of the input
parameter file as ‘Vs to density scaling’. Here we choose a constant scaling of 0.2. This perturbation is
further translated into a temperature difference AT by multiplying it by the negative inverse of thermal
expansion, which is also specified in this section of the parameter file as ‘Thermal expansion coefficient
in initial temperature scaling’. This temperature difference is then added to the background temperature,
which is the adiabatic temperature for a compressible model or the reference temperature (as specified
in this section of the parameter file) for an incompressible model. Features in the upper mantle such as
cratons might be chemically buoyant and therefore isostatically compensated, in which case their shear wave
perturbation would not contribute buoyancy variations. We therefore included an additional option to zero
out temperature perturbations within a certain depth. In this example we set this parameter ‘Remove
temperature heterogeneity down to specified depth’ to 200km. The chemical variation within the mantle
might require a more sophisticated ‘Vs to density’ scaling that varies for example with depth or as a function
of the perturbation itself, which is not captured in this model. The described procedure provides an absolute
temperature for every point, which will only be adjusted at the boundaries if indicated in the Boundary
temperature model.

Visualizing 3D models. In this cookbook we calculate the instantaneous solution to examine the flow
field. Figure 36 shows the density field for a resolution of 2 global refinement steps (bottom right) as used
in the cookbook, as well as 4 global refinement steps (other panels in this figure). The top panels show
the density variation that has been obtained from scaling S20RTS and removing perturbations in the upper

227

cookbooks/S20RTS.prm
cookbooks/S20RTS.prm

Density (kg/m?3)
3315

3310

RN
W w w
N [9N] [9§]
© o o
a1 o (8]

3290

3285

Dynamic
Topography (m)
2400

? 4 1600

800

Figure 36: The top panels show the density distribution as prescribed from the shear wave velocity model
S20RTS and the resulting flow for a global refinement of 4. This model assumes a constant scaling between
shear wave and density perturbations and zeros out perturbations in the upper 200km. The bottom figures
show the great circle (blue line) along which the top slices are evaluated. They also show the resulting dynamic
topography for a global refinement of 4 (left) and 2 (right, cookbook).

200km. One can see the two large low shear wave velocity perturbations underneath Africa and the Pacific
that lead to upwelling if they are assumed to be buoyant (as is done in this case). One can also see the
subducting slabs underneath South America and the Philippine region that lead to local downwelling. This
flow produces dynamic topography on the surface, which is shown in the bottom row (4 refinement steps
on the left, 2 refinement steps on the right). One can see that subduction zones are visible as depressed
topography due to the downward flow, while regions such as Iceland, Hawaii, or mid ocean ridges are
elevated due to (deep and) shallow upward flow. This model uses a highly simplified material model that
is incompressible and isoviscous and does therefore not represent real mantle flow. More realistic material
properties, density scaling as well as boundary conditions will affect the magnitude and pattern shown here.

6.3.4 Using reconstructed surface velocities by GPlates

This section was contributed by René Gafimoller
In a number of model setups one may want to include a surface velocity boundary condition that prescribes

228

Use
cookbooks/pe
box.prm
Finish th
GPlates sec
tion

the velocity according to a specific geologic reconstruction. The purpose of this kind of models is often to test
a proposed geologic model and compare characteristic convection results to present-day observables in order
to gain information about the initially assumed geologic input. In this cookbook we present ASPECT’s
interface to the widely used plate reconstruction software GPlates, and the steps to go from a geologic plate
reconstruction to a geodynamic model incorporating these velocities as boundary condition.

Acquiring a plate reconstruction. The plate reconstruction that is used in this cookbook is included in
the data/velocity-boundary-conditions/gplates/ directory of your ASPECT installation. For a new
model setup however, a user eventually needs to create her own data files, and so we will briefly discuss the
process of acquiring a usable plate reconstruction and transferring it into a format usable by ASPECT. Both
the necessary software and data are provided by the GPlates project. GPlates is an open-source software
for interactive visualization of plate tectonics. It is developed by the EarthByte Project in the School of
Geosciences at the University of Sydney, the Division of Geological and Planetary Sciences (GPS) at CalTech
and the Center for Geodynamics at the Norwegian Geological Survey (NGU). For extensive documentation
and support we refer to the GPlates website (http://www.gplates.org). Apart from the software one needs
the actual plate reconstruction that consists of closed polygons covering the complete model domain. For our
case we will use the data provided by [GTZ"12] that is available from the GPlates website under “Download
— Download GPlates-compatible data — Global reconstructions with continuously closing plates from 140
Ma to the present”. The data is provided under a Creative Commons Attribution 3.0 Unported License
(http://creativecommons.org/licenses/by/3.0/).

Converting GPlates data to ASPECT input. After loading the data files into GPlates (*.gpml for
plate polygons, *.rot for plate rotations over time) the user needs to convert the GPlates data to velocity
information usable in ASPECT. The purpose of this step is to convert from the description GPlates uses
internally (namely a representation of plates as polygons that rotate with a particular velocity around a
pole) to one that can be used by ASPECT (which needs velocity vectors defined at individual points at the
surface).

With loaded plate polygon and rotation information the conversion from GPlates data to ASPECT-
readable velocity files is rather straightforward. First the user needs to generate (or import) so-called
“velocity domain points”, which are discrete sets of points at which GPlates will evaluate velocity information.
This is done using the “Features — Generate Velocity Domain Points — Latitude Longitude” menu option.
Because ASPECT is using an adaptive mesh it is not possible for GPlates to generate velocity information at
the precise surface node positions like for CitcomS or Terra (the other currently available interfaces). Instead
GPlates will output the information on a general Latitude/Longitude grid with nodes on all crossing points.
ASPECT then internally interpolates this information to the current node locations during the model run.
This requires the user to choose a sensible resolution of the GPlates output, which can be adjusted in the
“Generate Latitude/Longitude Velocity Domain Points” dialog of GPlates. In general a resolution that
resolves the important features is necessary, while a resolution that is higher than the maximal mesh size for
the ASPECT model is unnecessary and only increases the computational cost and memory consumption of
the model.

Important note: The Mesh creation routine in GPlates has significantly changed from version 1.3 to
1.4. In GPlates 1.4 and later the user has to make sure that the number of longitude intervals is set as
twice the number of latitude intervals, the “Place node points at centre of latitude/longitude cells” box is
unchecked and the “Latitude/Longitude extents” are set to “Use Global Extents”. ASPECT does check
for most possible combinations that can not be read and will cancel the calculation in these cases, however
some mistakes can not be checked against from the information provided in the GPlates file.

After creating the Velocity Domain Points the user should see the created points and their velocities
indicated as points and arrows in GPlates. To export the calculated velocities one would use the “Recon-
struction — Export” menu. In this dialog the user may specify the time instant or range at which the
velocities shall be exported. The only necessary option is to include the “Velocities” data type in the “Add
Export” sub-dialog. The velocities need to be exported in the native GPlates *.gpml format, which is based

229

http://www.gplates.org
http://creativecommons.org/licenses/by/3.0/

on XML and can be read by ASPECT. In case of a time-range the user needs to add a pattern specifier to
the name to create a series of files. The %u flag is especially suited for the interaction with ASPECT), since
it can easily be replaced by a calculated file index (see also 6.3.4).

Setting up the ASPECT model. For this cookbook we will use the parameter file provided in cookbooks/
gplates-2d.prm which uses the 2d shell geometry previously discussed in Section 6.3.1. ASPECT’s GPlates
plugin allows for the use of two- and three-dimensional models incorporating the GPlates velocities. Since
the output by GPlates is threedimensional in any case, ASPECT internally handles the 2D model by ro-
tating the model plane to the orientation specified by the user and projecting the plate velocities into this
plane. The user specifies the orientation of the model plane by prescribing two points that define a plane
together with the coordinate origin (i.e. in the current formulation only great-circle slices are allowed). The
coordinates need to be in spherical coordinates 6 and ¢ with € being the colatitude (0 at north pole) and
¢ being the longitude (0 at Greenwich meridian, positive eastwards) both given in radians. The approach
of identifying two points on the surface of the Earth along with its center allows to run computations on
arbitrary two-dimensional slices through the Earth with realistic boundary conditions.
The relevant section of the input file is then as follows:

subsection Model settings
set Prescribed velocity boundary indicators = outer:gplates
set Tangential velocity boundary indicators = inner

set Fixed temperature boundary indicators = inner, outer
set Include shear heating = false
end

subsection Boundary velocity model
subsection GPlates model
set Data directory = $ASPECT_SOURCE_DIR/data/velocity-boundary-conditions/gplates/
set Velocity file name = current_day.gpml
set Time step = 1e6
set Point one = 1.5708,4.87
set Point two 1.5708,5.24
set Interpolation width = 2000000
end
end

In the model settings subsection the user prescribes the boundary that is supposed to use the GPlates
plugin. Although currently nothing forbids the user to use GPlates plugin for other boundaries than the
surface, its current usage and the provided sample data only make sense for the surface of a spherical shell
(boundary number 1 in the above provided parameter file). In case you are familiar with this kind of
modelling and the plugin you could however also use it to prescribe mantle movements below a lithosphere
model. All plugin specific options may be set in section 5.20. Possible options include the data directory
and file name of the velocity file/files, the time step (in model units, mostly seconds or years depending
on the “Use years in output instead of seconds” flag) and the points that define the 2D plane. The
parameter “Interpolation width” is used to smooth the provided velocity files by a moving average filter.
All velocity data points within this distance are averaged to determine the actual boundary velocity at a
certain mesh point. This parameter is usually set to 0 (no interpolation, use nearest velocity point data)
and is only needed in case the original setting is unstable or slowly converging.

Comparing and visualizing 2D and 3D models. The implementation of plate velocities in both two-
and three-dimensional model setups allows for an easy comparison and test for common sources of error in
the interpretation of model results. The left top figure in Fig. 37 shows a modification of the above presented
parameter file by setting “Dimension = 3” and “Initial global refinement = 3”. The top right plot of

230

cookbooks/gplates-2d.prm
cookbooks/gplates-2d.prm

Fig. 37 shows an example of three independent two-dimensional computations of the same reduced resolution.
The models were prescribed to be orthogonal slices by setting:

set Point one = 3.1416,0.0
set Point two = 1.5708,0.0

and

set Point one 3.1416,1.5708
set Point two = 1.5708,1.5708

The results of these models are plotted simultaneously in a single three-dimensional figure in their respec-
tive model planes. The necessary information to rotate the 2D models to their respective planes (rotation
axis and angle) is provided by the GPlates plugin in the beginning of the model output. The bottom plot
of Fig. 37 finally shows the results of the original cookbooks/gplates-2d.prm also in the three mentioned
planes.

Now that we have model output for otherwise identical 2D and 3D models with equal resolution and
additional 2D output for a higher resolution an interesting question to ask would be: What additional infor-
mation can be created by either using three-dimensional geometry or higher resolution in mantle convection
models with prescribed boundary velocities. As one can see in the comparison between the top right and
bottom plot in Fig. 37 additional resolution clearly improves the geometry of small scale features like the
shape of up- and downwellings as well as the maximal temperature deviation from the background man-
tle. However, the limitation to two dimensions leads to inconsistencies, that are especially apparent at the
cutting lines of the individual 2D models. Note for example that the Nacza slab of the South American
subduction zone is only present in the equatorial model plane and is not captured in the polar model plane
west of the South American coastline. The (coarse) three-dimensional model on the other hand shows the
same location of up- and downwellings but additionally provides a consistent solution that is different from
the two dimensional setups. Note that the Nazca slab is subducting eastward, while all 2D models (even in
high resolution) predict a westward subduction.

Finally we would like to emphasize that these models (especially the used material model) are way too
simplified to draw any scientific conclusion out of it. Rather it is thought as a proof-of-concept what is
possible with the dimension independent approach of ASPECT and its plugins.

Time-dependent boundary conditions. The example presented above uses a constant velocity bound-
ary field that equals the present day plate movements. For a number of purposes one may want to use
a prescribed velocity boundary condition that changes over time, for example to investigate the effect of
trench migration on subduction. Therefore ASPECT’s GPlates plugin is able to read in multiple ve-
locity files and linearly interpolate between pairs of files to the current model time. To achieve this,
one needs to use the %d wildcard in the velocity file name, which represents the current velocity file in-
dex (e.g. time_dependent.%d.gpml). This index is calculated by dividing the current model time by
the user-defined time step between velocity files (see parameter file above). As the model time pro-
gresses the plugin will update the interpolation accordingly and if necessary read in new velocity files.
In case it can not read the next velocity file, it assumes the last velocity file to be the constant bound-
ary condition until the end of the model run. One can test this behavior with the provided data files
data/velocity_boundary_conditions/gplates/time_dependent.’d.gpml with the index d ranging from
0 to 3 and representing the plate movements of the last 3 million years corresponding to the same plate re-
construction as used above. Additionally, the parameter Velocity file start time allows for a period of
no-slip boundary conditions before starting the use of the GPlates plugin. This is a comfort implementation,
which could also be achieved by using the checkpointing possibility described in section 4.5.

6.3.5 Reproducing rheology of Morency and Doin, 2004

This section was contributed by Jonathan Perry-Houts

231

cookbooks/gplates-2d.prm

Figure 37: Using GPlates for velocity boundary conditions: The top left figure shows the results of a three-
dimensional model using the present day plate velocities provided by GPlates as surface boundary condition.
The top right figure shows three independent computations on two-dimensional slices through Earth. The
boundary conditions for each of these slices (white arrows) are tangential to the slices and are projections of
the three-dimensional velocity vectors into the two-dimensional plane occupied by the slice. While the two top
models are created with the same mesh resolution the bottom figure shows three independent two-dimensional
models using a higher resolution. The view is centered on South America with Antarctica being near the
bottom of the figure (coastlines provided by NGU and the GPlates project).

232

Modeling interactions between the upper mantle and the lithosphere can be difficult because of the
dynamic range of temperatures and pressures involved. Many simple material models will assign very high
viscosities at low temperature thermal boundary layers. The pseudo-brittle rheology described in [MD04] was
developed to limit the strength of lithosphere at low temperature. The effective viscosity can be described
as the harmonic mean of two non-Newtonian rheologies:

L 1\ !
Ve = | — + —
o Vet vgff

. e\ M (Bat Vapmgz
ver =B\ g~ P\~ rT)

é71+1/np
P
vog = (T0 + YPmg2) i, |
6ref

where

where B is a scaling constant; ¢ is defined as the quadratic sum of the second invariant of the strain rate
tensor and a minimum strain rate, ég; é..f is a reference strain rate; n,, and n, are stress exponents; F,
is the activation energy; V, is the activation volume; p,, is the mantle density; R is the gas constant; T is
temperature; 7 is the cohesive strength of rocks at the surface; v is a coefficient of yield stress increase with
depth; and z is depth.

By limiting the strength of the lithosphere at low temperature, this rheology allows one to more realis-
tically model processes like lithospheric delamination and foundering in the presence of weak crustal layers.
A similar model setup to the one described in [MDO04] can be reproduced with the following parameters.

Note: [MDO04] defines the second invariant of the strain rate in a nonstandard way. The for-

mulation in the paper is given as e;; = y/4 (e}, + €3,), where € is the strain rate tensor. For

consistency, that is also the formulation implemented in ASPECT. Because of this irregularity
it is inadvisable to use this material model for purposes beyond reproducing published results.

Note: The viscosity profile in Figure 1 of [MDO04] appears to be wrong. The published parameters
do not reproduce those viscosities; it is unclear why. The values used here get very close. See
Figure 38 for an approximate reproduction of the original figure.

set Dimension = 2
set Maximum time step = led
set Nonlinear solver scheme = iterated IMPES

subsection Geometry model
set Model name = box

subsection Box

set X extent = 3000e3
set Y extent = 750e3
set X repetitions = 4
end
end

subsection Model settings
set Fixed temperature boundary indicators = top, bottom
set Tangential velocity boundary indicators = top, bottom, left, right

233

end

subsection Compositional fields

set Number of fields 2

set Names of fields = upper_crust, lower_crust
end

subsection Compositional initial conditions
set Model name = function

subsection Function
set Variable names = x,y
set Function expression = if (y>=725e3,1,0);if ((y<725e3&y>700e3),1,0)
end
end

subsection Initial conditions
set Model name = function

subsection Function
set Variable names = x,y
set Function constants = h=750e3, w=3000e3, mantleT=1350 # deg C
set Function expression = \
if (y < 100e3, \
(100e3-y)/100e3#*(1600-mantleT) +mant1eT+293, \
if (y>650e3, \
(h-y)/(100e3) *mant1eT+293, \
mantleT+293))
end
end

subsection Material model
set Model name = Morency and Doin

subsection Morency and Doin
set Densities = 3300,2920,2920
set Activation energies = 500,320,320
set Coefficient of yield stress increase with depth = 0.25
set Thermal expansivities = 3.5e-5
set Stress exponents for viscous rheology
set Stress exponents for plastic rheology
set Thermal diffusivity = 0.8e-6
set Heat capacity = 1.25e3
set Activation volume = 6.4e-6
set Reference strain rate = 6.4e-16
set Preexponential constant for viscous rheology law = 7ell ## Value used in paper is 1.24el4
set Cohesive strength of rocks at the surface = 117
set Reference temperature = 293
set Minimum strain rate = 5e-19 ## Value used in paper is 1.4e-20
end
end

3
30

subsection Boundary temperature model
set Model name = initial temperature
end

234

subsection Boundary composition model
set Model name = initial composition
end

subsection Gravity model
set Model name = vertical
end

subsection Mesh refinement
set Initial global refinement 5
set Initial adaptive refinement =3
set Strategy minimum refinement function
subsection Minimum refinement function
set Variable names = d,ignored
set Function expression = if(d<100e3,8,5)
end
end

subsection Postprocess
set List of postprocessors = depth average

subsection Depth average
set Number of zones = 500
set Output format = gnuplot
end
end

subsection Termination criteria
set Termination criteria = end step
set End step = 0

end

6.3.6 Crustal deformation

This section was contributed by Cedric Thieulot, and makes use of the Drucker-Prager material model written
by Anne Glerum and the free surface plugin by Ian Rose.

This is a simple example of an upper-crust undergoing compression or extension. It is characterized by
a single layer of visco-plastic material subjected to basal kinematical boundary conditions. In compression,
this setup is somewhat analogous to [Wil99], and in extension to [AHT11].

Brittle failure is approximated by adapting the viscosity to limit the stress that is generated during
deformation. This “cap” on the stress level is parameterized in this experiment by the pressure-dependent
Drucker Prager yield criterion and we therefore make use of the Drucker-Prager material model (see Section
5.66) in the cookbooks/crustal model 2D.prm.

The layer is assumed to have dimensions of 80km x 16km and to have a density p = 2800 kg/m®. The
plasticity parameters are specified as follows:

subsection Material model
set Model name = drucker prager
subsection Drucker Prager
set Reference density = 2800
subsection Viscosity
set Minimum viscosity = lel9
set Maximum viscosity = 1e25
set Reference strain rate = 1e-20
set Angle internal friction = 30

235

Temperature Viscosity

0 | 0 L,~J,;~*44Lr14‘;44’*i*“‘;“::#
-100 | : . -100 |- | | | | .
-200 - — -200 - .
€ 300 , . -300 - .
=3
S 400 - - -400 |- .
]
o
-500 : — -500 - .
-600 : — -600 -
-700 | - . -700 - .
| | | |
0 1000 2000 le+18 le+20 le+22 le+24 le+26 le+28
Temperature (K) Viscosity (Pa s)

Figure 38: Approximate reproduction of figure 1 from [MDO0]] using the ‘morency doin’ material model with
almost all default parameters. Note the low-viscosity Moho, enabled by the low activation energy of the
crustal component.

set Cohesion = 20e6
end
end
end

The yield strength o, is a function of pressure, cohesion and angle of friction (see Drucker-Prager material
model in Section 5.66), and the effective viscosity is then computed as follows:

Heff = ;
¢ % + HMmin Hmax

where ¢ is the square root of the second invariant of the deviatoric strain rate. The viscosity cutoffs insure
that the viscosity remains within computationally acceptable values.

During the first iteration of the first timestep, the strain rate is zero, so we avoid dividing by zero by
setting the strain rate to Reference strain rate.

The top boundary is a free surface while the left, right and bottom boundaries are subjected to the
following boundary conditions:

subsection Boundary velocity model
subsection Function

set Variable names = X,y

set Function constants = cm=0.01, year=1

set Function expression = if (x<40e3 , 1*cm/year, -1*cm/year) ; O
end

end

Note that compressive boundary conditions are simply achieved by reversing the sign of the imposed
velocity.

236

The free surface will be advected up and down according to the solution of the Stokes solve. We have
a choice whether to advect the free surface in the direction of the surface normal or in the direction of the
local vertical (i.e., in the direction of gravity). For small deformations, these directions are almost the same,
but in this example the deformations are quite large. We have found that when the deformation is large,
advecting the surface vertically results in a better behaved mesh, so we set the following in the free surface
subsection:

subsection Free surface
set Surface velocity projection = vertical
end

We also make use of the strain rate-based mesh refinement plugin:

subsection Mesh refinement

set Initial adaptive refinement =1

set Initial global refinement =3

set Refinement fraction = 0.95

set Strategy = strain rate
set Coarsening fraction = 0.05

set Time steps between mesh refinement = 1

set Run postprocessors on initial refinement = true
end

Setting set Initial adaptive refinement = 4 yields a series of meshes as shown in Fig. (39), all
produced during the first timestep. As expected, we see that the location of the highest mesh refinement
corresponds to the location of a set of conjugated shear bands.

If we now set this parameter to 1 and allow the simulation to evolve for 500kyr, a central graben or
plateau (depending on the nature of the boundary conditions) develops and deepens/thickens over time,
nicely showcasing the unique capabilities of the code to handle free surface large deformation, localised
strain rates through visco-plasticity and adaptive mesh refinement as shown in Fig. (40).

Deformation localizes at the basal velocity discontinuity and plastic shear bands form at an angle of
approximately 53° to the bottom in extension and 35° in compression, both of which correspond to the
reported Arthur angle [Kaul0, Buil2].

Extension to 3D We can easily modify the previous input file to produce crustal model_3D.prm which
implements a similar setup, with the additional constraint that the position of the velocity discontinuity
varies with the y-coordinate, as shown in Fig. (41). The domain is now 128 x 96 x 16km and the boundary
conditions are implemented as follows:

subsection Boundary velocity model
subsection Function
set Variable names = X,y,Z
set Function constants cm=0.01, year=1
set Function expression = if (x<56e3 && y<=48e3 | x<72e3 && y>48e3,-1*cm/year,l*cm/year);0;0
end
end

The presence of an offset between the two velocity discontinuity zones leads to a transform fault which
connects them.

The Finite Element mesh, the velocity, viscosity and strain rate fields are shown in Fig. (42) at the end
of the first time steps. The reader is encouraged to run this setup in time to look at how the two grabens
interact as a function of their initial offset [AHT11, AHT12, AHFT13].

237

I

smaman:
HHHHH
iRaRRaE

nmmama:
FHH
P

te

strain_ra

5.000e-13

3e-13

Figure 39: Mesh evolution during the first timestep (refinement is based on strain rate).

238

|
RN

velocity X

-1.000e-02 -0.004 0 0.004 1.000e-02
ERSAEREARANARNRRRRRRANANNRARRAEE

- .

Viscosity strain_rate

1.558e+19 le+21 L ‘3‘.‘2‘8‘+22 | le+24 1.000e+25 0.000e+00 le-13 3e-13 5.000e-13

Figure 40: Finite element mesh, velocity, viscosity and strain rate fields in the case of extensional boundary
conditions (top) and compressive boundary conditions (bottom) at t=500kyr.

239

j transform

velocity X strain_rate

'W'OOOG'OQ'O‘OW\HH'\O\'?\O\A\\||||\[\]Hm||(f'|0|[\]flmuo|m7 {00pe-02 00008400\ \1\9[1\3\ el > 00p=-13

Figure 41: Basal velocity boundary conditions and corresponding strain rate field for the 3D model.

6.4 Benchmarks

Benchmarks are used to verify that a solver solves the problem correctly, i.e., to verify correctness of a code.>?
Over the past decades, the geodynamics community has come up with a large number of benchmarks.
Depending on the goals of their original inventors, they describe stationary problems in which only the
solution of the flow problem is of interest (but the flow may be compressible or incompressible, with constant
or variable viscosity, etc), or they may actually model time-dependent processes. Some of them have solutions
that are analytically known and can be compared with, while for others, there are only sets of numbers that
are approximately known. We have implemented a number of them in ASPECT to convince ourselves (and
our users) that ASPECT indeed works as intended and advertised. Some of these benchmarks are discussed
below. Numerical results for several of these benchmarks are also presented in [KHB12] in much more detail
than shown here.

6.4.1 Running benchmarks that require code

Some of the benchmarks require plugins like custom material models, boundary conditions, or postprocessors.
To not pollute ASPECT with all these purpose-built plugins, they are kept separate from the more generic
plugins in the normal source tree. Instead, the benchmarks have all the necessary code in .cc files in the
benchmark directories. Those are then compiled into a shared library that will be used by ASPECT if it is
referenced in a .prm file. Let’s take the SolCx benchmark as an example (see Section 6.4.3). The directory
contains:

e solcx.cc — the code file containing a material model “SolCxMaterial” and a postprocessor “SolCx-
Postprocessor”,

e solcx.prm — the parameter file referencing these plugins,

e CMakeLists.txt — a cmake configuration that allows you to compile solcx.cc.

32Verification is the first half of the verification and validation (V&V) procedure: werification intends to ensure that the
mathematical model is solved correctly, while validation intends to ensure that the mathematical model is correct. Obviously,
much of the aim of computational geodynamics is to validate the models that we have.

240

velocity X

-1.000e-02-0.007 | \-\U\P‘O\??\ i ‘0‘ UL ‘(‘J ?‘0‘35 0.007 1.004e-02

i viscosity

3.111e+19 le+21 3.2e+22 le+24 1.000e+25

2
20002200y
(AL,
S
TPALTIALT TR 747 ALT
O s e s s g s Ll
e ey
e el o L T
O g 00 by g Mg oAy Mgt ey b et
W o I 0 gt ottt ot b petdsg
A [L 05
e T L L i
A TP BT RE Fo5l siss
G5 A
Yy

strain_rate

0.000e+00 2.‘5&‘:‘-]? 5e-14 7.5e-14 1.000e-13

[NRRRRRN \\W

Figure 42: Finite element mesh, velocity, viscosity and strain rate fields at the end of the first time step after
one level of strain rate-based adaptive mesh refinement.

241

To run this benchmark you need to follow the general outline of steps discussed in Section 7.2. For the
current case, this amounts to the following:

1. Move into the directory of that particular benchmark:
$ cd benchmark/solcx

2. Set up the project:
$ cmake .

By default, cmake will look for the ASPECT binary and other information in a number of directories
relative to the current one. If it is unable to pick up where ASPECT was built and installed, you
can specify this directory explicitly this using -D ASPECT DIR=<...> as an additional flag to cmake,
where <...> is the path to the build directory.

3. Build the library:
$ make

This will generate the file 1ibsolcx.so.
Finally, you can run ASPECT with solcx.prm:
$../../aspect solcx.prm

where again you may have to use the appropriate path to get to the ASPECT executable. You will need to
run ASPECT from the current directory because solcx.prm refers to the plugin as ./libsolcx.so, i.e., in
the current directory.

6.4.2 The van Keken thermochemical composition benchmark

This section is a co-production of Cedric Thieulot, Juliane Dannberg, Timo Heister and Wolfgang Bangerth
with an extension to this benchmark provided by the Virginia Tech Dept. of Geosciences class Geodynamics
and ASPECT co-taught by Scott King and D. Sarah Stamps.

One of the most widely used benchmarks for mantle convection codes is the isoviscous Rayleigh-Taylor
case (“case la”) published by van Keken et al. in [vKKS*97]. The benchmark considers a 2d situation
where a lighter fluid underlies a heavier one with a non-horizontal interface between the two of them. This
unstable layering causes the lighter fluid to start rising at the point where the interface is highest. Fig. 43
shows a time series of images to illustrate this.

Although van Keken’s paper title suggests that the paper is really about thermochemical convection,
the part we look here can equally be considered as thermal or chemical convection: all that is necessary
is that we describe the fluid’s density somehow. We can do that by using an inhomogenous initial tem-
perature field, or an inhomogenous initial composition field. We will use the input file in cookbooks/
van-keken-discontinuous.prm as input, the central piece of which is as follows (go to the actual input file
to see the remainder of the input parameters):

subsection Material model
set Model name = simple
subsection Simple model

set Viscosity = le2

set Thermal expansion coefficient = 0

set Density differential for compositional field 1 = -10
end

end

242

cookbooks/van-keken-discontinuous.prm
cookbooks/van-keken-discontinuous.prm

Figure 43: Van Keken benchmark (using a smoothed out interface, see the main text): Compositional field

at times t = 0,300, 900, 1800.

subsection Compositional initial conditions
set Model name = function
subsection Function
set Variable names = X,z
set Function constants pi=3.14159
set Function expression = if((2>0.2+0.02*cos(pi*x/0.9142)) , 0 , 1)
end
end

The first part of this selects the simple material model and sets the thermal expansion to zero (resulting
in a density that does not depend on the temperature, making the temperature a passively advected field)
and instead makes the density depend on the first compositional field. The second section prescribes that the
first compositional field’s initial conditions are 0 above a line describes by a cosine and 1 below it. Because
the dependence of the density on the compositional field is negative, this means that a lighter fluid underlies
a heavier one.

The dynamics of the resulting flow have already been shown in Fig. 43. The measure commonly considered
in papers comparing different methods is the root mean square of the velocity, which we can get using the
following block in the input file (the actual input file also enables other postprocessors):

subsection Postprocess
set List of postprocessors = velocity statistics
end

Using this, we can plot the evolution of the fluid’s average velocity over time, as shown in the left panel
of Fig. 44. Looking at this graph, we find that both the timing and the height of the first peak is already
well converged on a simple 32 x 32 mesh (5 global refinements) and is very consistent (to better than 1%
accuracy) with the results in the van Keken paper.

That said, it is startling that the second peak does not appear to converge despite the fact that the
various codes compared in [vKKST97] show good agreement in this comparison. Tracking down the cause
for this proved to be a lesson in benchmark design; in hindsight, it may also explain why van Keken et al.
stated presciently in their abstract that “... good agreement is found for the initial rise of the unstable lower
layer; however, the timing and location of the later smaller-scale instabilities may differ between methods.”
To understand what is happening here, note that the first peak in these plots corresponds to the plume that
rises along the left edge of the domain and whose evolution is primarily determined by the large-scale shape
of the initial interface (i.e., the cosine used to describe the initial conditions in the input file). This is a first
order deterministic effect, and is obviously resolved already on the coarsest mesh shown used. The second
peak corresponds to the plume that rises along the right edge, and its origin along the interface is much
harder to trace — its position and the timing when it starts to rise is certainly not obvious from the initial

243

0.0035 . 0.0035 .
5refinements —— 5refinements ——
6 refinements ——— 6 refinements ———
0.003 | f 7ref!nements e — 0.003 | 7ref!nements e —
| 8refinements —— 8refinements ——
- f 9 refinements - 9 refinements
£ 00025 | ! £ 00025 |
=] | =]
[1 [
> \ >
@ 0.002 | | @ 0.002 |
L] L
3 Y 3
o \ o
0 ’ 1 0
< 0.0015 | 1! < 0.0015
@ 1Y @
£ / £
5 o000l | | % 5 oom |
o o
e ——
0 L L I 0 L L I
o] 500 1000 1500 2000 0 500 1000 1500 2000
Time Time

Figure 44: Van Keken benchmark with discontinuous (left) and smoothed, continuous (right) initial conditions

1/2
or the compositional field: Evolution of the root mean square velocity (5 u(x,t)]? da as a function
1 Jo

of time for different numbers of global mesh refinements. 5 global refinements correspond to a 32 X 32 mesh,
9 refinements to a 512 x 512 mesh.

location of the interface. Now recall that we are using a finite element field using continuous shape functions
for the composition that determines the density differences that drive the flow. But this interface is neither
aligned with the mesh, nor can a discontinuous function be represented by continuous shape functions to
begin with. In other words, we may input the initial conditions as a discontinuous functions of zero and
one in the parameter file, but the initial conditions used in the program are in fact different: they are the
interpolated values of this discontinuous function on a finite element mesh. This is shown in Fig. 45. It is
obvious that these initial conditions agree on the large scale (the determinant of the first plume), but not in
the steps that may (and do, in fact) determine when and where the second plume will rise. The evolution of
the resulting compositional field is shown in Fig. 46 and it is obvious that the second, smaller plume starts
to rise from a completely different location — no wonder the second peak in the root mean square velocity
plot is in a different location and with different height!

The conclusion one can draw from this is that if the outcome of a computational experiment depends so
critically on very small details like the steps of an initial condition, then it’s probably not a particularly good
measure to look at in a benchmark. That said, the benchmark is what it is, and so we should try to come up
with ways to look at the benchmark in a way that allows us to reproduce what van Keken et al. had agreed
upon. To this end, note that the codes compared in that paper use all sorts of different methods, and one
can certainly agree on the fact that these methods are not identical on small length scales. One approach
to make the setup more mesh-independent is to replace the original discontinuous initial condition with a
smoothed out version; of course, we can still not represent it exactly on any given mesh, but we can at least
get closer to it than for discontinuous variables. Consequently, let us use the following initial conditions
instead (see also the file cookbooks/van-keken-smooth.prm):

subsection Compositional initial conditions
set Model name = function
subsection Function
set Variable names
set Function constants
set Function expression =
end
end

= X,z
pi=3.14159
0.5%(1+tanh((0.2+0.02*cos (pi*x/0.9142)-z)/0.02))

244

cookbooks/van-keken-smooth.prm

Time: 0.000000

Figure 45: Van Keken benchmark with discontinuous initial conditions for the compositional field: Initial
compositional field interpolated onto a 32 x 32 (left) and 64 x 64 finite element mesh (right).

This replaces the discontinuous initial conditions with a smoothed out version with a half width of around
0.01. Using this, the root mean square plot now looks as shown in the right panel of Fig. 44. Here, the
second peak also converges quickly, as hoped for.

The exact location and height of the two peaks is in good agreement with those given in the paper
by van Keken et al., but not exactly where desired (the error is within a couple of per cent for the first
peak, and probably better for the second, for both the timing and height of the peaks). This has to do
with the fact that they depend on the exact size of the smoothing parameter (the division by 0.02 in the
formula for the smoothed initial condition). However, for more exact results, one can choose this half width
parameter proportional to the mesh size and thereby get more accurate results. The point of the section was
to demonstrate the reason for the lack of convergence.

In this section we extend the van Keken cookbook following up the work previously completed by Cedric
Thieulot, Juliane Dannberg, Timo Heister and Wolfgang Bangerth. This section contributed by Grant Fuen,
Tahiry Rajaonarison, and Shangxin Liu as part of the Geodynamics and ASPECT class at Virginia Tech.

As already mentioned above, using a half width parameter proportional to the mesh size allows for more
accurate results. We test the effect of the half width size of the smoothed discontinuity by changing the
division by 0.02, the smoothing parameter, in the formula for the smoothed initial conditions into values
proportional to the mesh size. We use 7 global refinements because the root mean square velocity converges
at greater resolution while keeping average runtime around 5 to 25 minutes. These runtimes were produced
by the BlueRidge cluster of the Advanced Research Computing (ARC) program at Virginia Tech. BlueRidge
is a 408-node Cray CS-300 cluster; each node outfitted with two octa-core Intel Sandy Bridge CPUs and 64
GB of memory. A chart of average runtimes for 5 through 10 global refinements on one node can be seen
in Table 4. For 7 global refinements (128x128 mesh size), the size of the mesh is 0.0078 corresponding to
a half width parameter of 0.0039. The smooth model allows for much better convergence of the secondary
plumes, although they are still more scattered than the primary plumes.

This convergence is due to changing the smoothing parameter, which controls how much of the problem
is smoothed over. As the parameter is increased, the smoothed boundary grows and vice versa. As the
smoothed boundary shrinks it becomes sharper until the original discontinuous behavior is revealed. As
it grows, the two layers eventually become one large, transitioning layer rather than two distinct layers
separated by a boundary. These effects can be seen in Fig. 47. The overall effect is that the secondary rise
is at different times based on these conditions. In general, as the smoothing parameter is decreased, the
smoothed boundary shrinks and the plumes rise more quickly. As it is increased, the boundary grows and
the plumes rise more slowly. This trend can be used to force a more accurate convergence from the secondary

245

Time: 0.000000 Time: 50.000000

Time: 100.000000 Time: 150.000000

Time: 200.000000

Figure 46: Van Keken benchmark with discontinuous initial conditions for the compositional field: Evolution
of the compositional field over time on a 32 x 32 (first and third column; left to right and top to bottom) and
64 x 64 finite element mesh (second and fourth column).

246

Global Number of Processors
Refinements 4 8 12 16
5 28.1 seconds 19.8 seconds 19.6 seconds 17.1 seconds
6 3.07 minutes 1.95 minutes 1.49 minutes 1.21 minutes
7 23.33 minutes 13.92 minutes 9.87 minutes 7.33 minutes
8 3.08 hours 1.83 hours 1.30 hours 56.33 minutes
9 1.03 days 15.39 hours 10.44 hours 7.53 hours
10 More than 6 days More than 6 days 3.39 days 2.56 days

Table 4: Average runtimes for the van Keken Benchmark with smoothed initial conditions. These times are
for the entire computation, a final time step number of 2000. All of these tests were run using ASPECT
version 1.3 in release mode, and used different numbers of processors on one node on the BlueRidge cluster
of ARC at Virginia Tech.

plumes.

The evolution in time of the resulting compositional fields (Fig. 48) shows that the first peak converges as
the smoothed interface decreases. There is a good agreement for the first peak for all smoothing parameters.
As the width of the discontinuity increases, the second peak rises both later and more slowly.

Now let us further add a two-layer viscosity model to the domain. This is done to recreate the two non-
isoviscous Rayleigh-Taylor instability cases (“cases 1b and 1¢”) published in van Keken et al. in [vKKST97].
Let’s assume the viscosity value of the upper heavier layer is 7, and the viscosity value of the lower lighter layer
is 7. Based on the initial constant viscosity value 1x10? Pa s, we set the viscosity proportion % =0.1,0.01,
meaning the viscosity of the upper, heavier layer is still 1x10? Pa s, but the viscosity of the lower, lighter
layer is now either 10 or 1 Pa s, respectively. The viscosity profiles of the discontinuous and smooth models
are shown in Fig. 49.

For both benchmark cases, discontinuous and smooth, and both viscosity proportions, 0.1 and 0.01, the
results are shown at the end time step number, 2000, in Fig. 50. This was generated using the original input
parameter file, running the cases with 8 global refinement steps, and also adding the two-layer viscosity
model.

Compared to the results of the constant viscosity throughout the domain, the plumes rise faster when
adding the two-layer viscosity model. Also, the larger the viscosity difference is, the earlier the plumes
appear and the faster their ascent. To further reveal the effect of the two-layer viscosity model, we also plot
the evolution of the fluids’ average velocity over time, as shown in Fig. 51.

We can observe that when the two-layer viscosity model is added, there is only one apparent peak for
each case. The first peaks of the 0.01 viscosity contrast tests appear earlier and are larger in magnitude than
those of 0.1 viscosity contrast tests. There are no secondary plumes and the whole system tends to reach
stability after around 500 time steps.

6.4.3 The SolCx Stokes benchmark

The SolCx benchmark is intended to test the accuracy of the solution to a problem that has a large jump in
the viscosity along a line through the domain. Such situations are common in geophysics: for example, the
viscosity in a cold, subducting slab is much larger than in the surrounding, relatively hot mantle material.

The SolCx benchmark computes the Stokes flow field of a fluid driven by spatial density variations,
subject to a spatially variable viscosity. Specifically, the domain is Q = [0, 1]2, gravity is g = (0, —1)7 and
the density is given by p(x) = sin(wz1) cos(mx2); this can be considered a density perturbation to a constant
background density. The viscosity is

(x) = 1 for z; <0.5,
X)) =3108 for z; > 0.5.

This strongly discontinuous viscosity field yields an almost stagnant flow in the right half of the domain and

247

€1 -100

I 0.75

- 0.50 50
B 025 B 025

- 0.00 - 0.00

- 1.00 . C1-1.00 . C - 1.00

Bo7s B o7s l 0.75
- 050 - 0.50 L 0.50
M o025 B o2s M 025

- 0.00 - 0.00 - 0.00

- 1.00

I 0.75

- 0.50
B 025
- 0.00

Figure 47: Van Keken Benchmark using smoothed out interface at 7 global refinements: compositional field

at time t = 0 using smoothing parameter size: a) 0.0039, b) 0.0078, c) 0.0156, d) 0.0234, e) 0.0312, f)
0.0390, g) 0.0468, h) 0.0546, i) 0.0624.

8.8035

0,003 8,0312

68,8025
0,002
8.8015

0,001

[568 1600 1568 20880

Figure 48: Van Keken benchmark with smoothed initial conditions for the compositional field using 7 global
refinements for different smoothing parameters. Number of the time step is shown on the x-axis, while root
mean square velocity is shown on the y-axis.

248

e s B vicostyFas)

B
8

02
o1
10 0 0

aﬂ X X

01 02 03 g 3 05 07 08 09 (] 01 02 03

o
X(m)

Figure 49: Van Keken benchmark using layers of different viscosities. The left image is the discontinuous
case, while right is the smooth. Both are shown at t=0.

Figure 50: Van Keken benchmark two-layer viscosity model at final time step number, 2000. These images
show layers of different compositions and viscosities. Discontinuous cases are the left images, smooth cases
are the right. The upper images are % = 0.1, and the lower are % =0.01.

249

8.818

ous 8.1 ——
nooth 0,81 ——
0,016 Smooth 8.1 ——

8,814

8.812

8,008

6.886

8,804

8,002

Figure 51: Van Keken benchmark: Evolution of the root mean square velocity as a function of time for
different viscosity contrast proportions (0.1/0.01) for both discontinuous and smooth models.

Pseudocolor
Var: densi
-

~0.5000

Peudocalor

Ve,
o 0.2552

—0.9276
0.000 0.000

~0.5000 1976

1,000
Max: 1.000

2552
Min: -1.000 Mow: 02552

Mire 0.5552
Vector
Var. veloci
—0.003600
0.002700
0.001800

0.0009000

0,000
Max: 0,003548
Min: 0,000

Figure 52: SolCx Stokes benchmark. Left: The density perturbation field and overlaid to it some velocity
vectors. The viscosity is very large in the right hand, leading to a stagnant flow in this region. Right: The
pressure on a relatively coarse mesh, showing the internal layer along the line where the viscosity jumps.

consequently a singularity in the pressure along the interface. Boundary conditions are free slip on all of 0f2.
The temperature plays no role in this benchmark. The prescribed density field and the resulting velocity
field are shown in Fig. 52.

The SolCx benchmark was previously used in [DMGT11, Section 4.1.1] (references to earlier uses of
the benchmark are available there) and its analytic solution is given in [Zho96]. ASPECT contains an
implementation of this analytic solution taken from the Underworld package (see [MQLT07] and http:
//www.underworldproject.org/, and correcting for the mismatch in sign between the implementation and
the description in [DMGT11]).

To run this benchmark, the following input file will do (see the files in benchmark/solcx/ to rerun the
benchmark):

set Additional shared libraries = ./libsolcx.so

HARAHARHHHARAA# Global parameters

250

http://www.underworldproject.org/
http://www.underworldproject.org/
benchmark/solcx/

set Dimension =2

set Start time =0
set End time =0
set Output directory = output
set Pressure normalization = volume

HARBHARBRRARAAH Parameters describing the model

subsection Geometry model
set Model name = box

subsection Box
set X extent =1
set Y extent =1
end
end

subsection Model settings
set Prescribed velocity boundary indicators =
set Tangential velocity boundary indicators = left, right, bottom, top
set Zero velocity boundary indicators =

end

subsection Material model
set Model name = SolCxMaterial

subsection SolCx
set Viscosity jump = 1e6
end
end

subsection Gravity model
set Model name = vertical
end

HARBHRRURRHRAAH Parameters describing the temperature field

subsection Boundary temperature model
set Model name = box
end

subsection Initial conditions
set Model name = perturbed box
end

251

HARAAARHHAAAA#A# Parameters describing the discretization

subsection Discretization
set Stokes velocity polynomial degree =2
set Use locally conservative discretization = false

end

subsection Mesh refinement

set Initial adaptive refinement =0
set Initial global refinement =4
end

HARHHAARARAAAHAA Parameters describing what to do with the solution

subsection Postprocess
set List of postprocessors = SolCxPostprocessor, visualization

end

Since this is the first cookbook in the benchmarking section, let us go through the different parts of this
file in more detail:

The material model and the postprocessor

The first part consists of parameter setting for overall parameters. Specifically, we set the dimension
in which this benchmark runs to two and choose an output directory. Since we are not interested in
a time dependent solution, we set the end time equal to the start time, which results in only a single
time step being computed.

The last parameter of this section, Pressure normalization, is set in such a way that the pressure
is chosen so that its domain average is zero, rather than the pressure along the surface, see Section 2.5.

The next part of the input file describes the setup of the benchmark. Specifically, we have to say
how the geometry should look like (a box of size 1 x 1) and what the velocity boundary conditions
shall be (tangential flow all around — the box geometry defines four boundary indicators for the left,
right, bottom and top boundaries, see also Section 5.32). This is followed by subsections choosing
the material model (where we choose a particular model implemented in ASPECT that describes the
spatially variable density and viscosity fields, along with the size of the viscosity jump) and finally the
chosen gravity model (a gravity field that is the constant vector (0, —1)7, see Section 5.39).

The part that follows this describes the boundary and initial values for the temperature. While we are
not interested in the evolution of the temperature field in this benchmark, we nevertheless need to set
something. The values given here are the minimal set of inputs.

The second-to-last part sets discretization parameters. Specifically, it determines what kind of Stokes
element to choose (see Section 5.29 and the extensive discussion in [KHB12]). We do not adaptively
refine the mesh but only do four global refinement steps at the very beginning. This is obviously a
parameter worth playing with.

The final section on postprocessors determines what to do with the solution once computed. Here, we
do two things: we ask ASPECT to compute the error in the solution using the setup described in the
Duretz et al. paper [DMGT11], and we request that output files for later visualization are generated and
placed in the output directory. The functions that compute the error automatically query which kind
of material model had been chosen, i.e., they can know whether we are solving the SolCx benchmark
or one of the other benchmarks discussed in the following subsections.

252

Upon running ASPECT with this input file, you will get output of the following kind (obviously with
different timings, and details of the output may also change as development of the code continues):

aspect/cookbooks> ../aspect solcx.prm
Number of active cells: 256 (on 5 levels)
Number of degrees of freedom: 3,556 (2,178+289+1,089)

x Timestep O: t=0 years

Solving temperature system... O iteratioms.

Rebuilding Stokes preconditiomer...

Solving Stokes system... 30+3 iteratioms.

Postprocessing:

Errors u_L1l, p_L1, u_L2, p_L2: 1.125997e-06, 2.994143e-03, 1.670009e-06, 9.778441e-03
Writing graphical output: output/solution-00000

Tt o Fomm e +
Total wallclock time elapsed since start	1.51s		
Section	no. calls	wall time	% of total
+-—= - -—- + —+- —+- -+			
Assemble Stokes system	1] 0.114s	7.6%	
Assemble temperature system	1 0.284s	19%	
Build Stokes preconditioner	1] 0.0935s	6.2%	
Build temperature preconditioner	1] 0.0043s	0.29%	
Solve Stokes system	1] 0.0717s	4.8%	
Solve temperature system	1	0.000753s	0.05%
Postprocessing	1] 0.627s	42%	
Setup dof systems	1	0.19s	13%
+-—= -—- -—- + —+- —+- -+

One can then visualize the solution in a number of different ways (see Section 4.4), yielding pictures like
those shown in Fig. 52. One can also analyze the error as shown in various different ways, for example as a
function of the mesh refinement level, the element chosen, etc.; we have done so extensively in [KHB12].

6.4.4 The SolKz Stokes benchmark

The SolKz benchmark is another variation on the same theme as the SolCx benchmark above: it solves a
Stokes problem with a spatially variable viscosity but this time the viscosity is not a discontinuous function
but grows exponentially with the vertical coordinate so that it’s overall variation is again 10°. The forcing
is again chosen by imposing a spatially variable density variation. For details, refer again to [DMGT11].

The following input file, only a small variation of the one in the previous section, solves the benchmark
(see benchmark/solkz/):

A description of the SolKZ benchmark for which a known solution
is available. See the manual for more information.

set Additional shared libraries ./1libsolkz.so
HARBHARRRRARAAH Global parameters

set Dimension =2

set Start time =0

253

benchmark/solkz/

set End time =0

set Output directory output

set Pressure normalization volume

HARBHARBRRAHAAH Parameters describing the model

subsection Geometry model
set Model name = box

subsection Box
set X extent =1
set Y extent =1
end
end

subsection Model settings
set Prescribed velocity boundary indicators
set Tangential velocity boundary indicators = left, right, bottom, top
set Zero velocity boundary indicators =

end

subsection Material model
set Model name = SolKzMaterial
end

subsection Gravity model
set Model name = vertical
end

HARHHAHHRRAAAA# Parameters describing the temperature field
subsection Boundary temperature model

set Model name = box
end

subsection Initial conditions
set Model name = perturbed box
end

HARBHARBRRRAAAHAH Parameters describing the discretization

subsection Discretization

set Stokes velocity polynomial degree =2
set Use locally conservative discretization = false
end

254

Pe=udocolor
var. p
0014

uuuuu
—0.05072
7.451209

05072

1014
Max: 0.1014
Nire 0.1014

Figure 53: SolKz Stokes benchmark. Left: The density perturbation field and overlaid to it some velocity
vectors. The viscosity grows exponentially in the vertical direction, leading to small velocities at the top
despite the large density variations. Right: The pressure.

subsection Mesh refinement

set Initial adaptive refinement =0
set Initial global refinement =4
end

HARBHRRRRARAAAR Parameters describing what to do with the solution
subsection Postprocess

set List of postprocessors =
end

SolKzPostprocessor, visualization

The output when running ASPECT on this parameter file looks similar to the one shown for the SolCx
case. The solution when computed with one more level of global refinement is visualized in Fig. 53.

6.4.5 The “inclusion” Stokes benchmark

The “inclusion” benchmark again solves a problem with a discontinuous viscosity, but this time the viscosity
is chosen in such a way that the discontinuity is along a circle. This ensures that, unlike in the SolCx
benchmark discussed above, the discontinuity in the viscosity never aligns to cell boundaries, leading to
much larger difficulties in obtaining an accurate representation of the pressure. Specifically, the almost
discontinuous pressure along this interface leads to oscillations in the numerical solution. This can be seen
in the visualizations shown in Fig. 54. As before, for details we refer to [DMGT11]. The analytic solution
against which we compare is given in [SP03]. An extensive discussion of convergence properties is given in
[KHB12].

The benchmark can be run using the parameter files in benchmark/inclusion/. The material model,
boundary condition, and postprocessor are defined in benchmark/inclusion/inclusion.cc. Consequently,
this code needs to be compiled into a shared lib before you can run the tests.

HARBHARRRRARAAH Global parameters

set Additional shared libraries = ./libinclusion.so

255

Link to
general sectior
on how yo
can compil
libs for th
benchmarks.

Revisit thi
once we hav
the machin
ery in place t
choose nonzer
boundary con

At iAo .

benchmark/inclusion/
benchmark/inclusion/inclusion.cc

Pesudocalor
Var: viscosty
Tt

—7502
5005
—2508

1.000
Max: 1000
in: 1.000

vector
Ry
— 3.3462+07
2ztm07

11152407

1778
Max: d.481=+07
Win: 1778

Figure 54: Inclusion Stokes benchmark. Left: The viscosity field when interpolated onto the mesh (internally,
the “exact” wiscosity field — large inside a circle, small outside — is used), and overlaid to it some velocity
vectors. Right: The pressure with its oscillations along the interface. The oscillations become more localized

as the mesh is refined.

set Dimension =

set Start time =
set End time =

set Output directory

set Pressure normalization

output

volume

HARRBHARARARAAA Parameters describing the model

subsection Geometry model
set Model name = box

subsection Box

set X extent = 2
set Y extent = 2
end
end

subsection Model settings
set Prescribed velocity boundary indicators

set Tangential velocity boundary indicators
set Zero velocity boundary indicators
end

left
right
bottom:
top

256

InclusionBoundary,
InclusionBoundary,
InclusionBoundary,
InclusionBoundary

~

subsection Material model
set Model name = InclusionMaterial

subsection Inclusion
set Viscosity jump = 1e3
end
end

subsection Gravity model
set Model name = vertical
end

HARBHARRRRARAAH Parameters describing the temperature field

subsection Boundary temperature model
set Model name = box
end

subsection Initial conditions
set Model name = perturbed box
end

HERBBHBHRARARAHAA Parameters describing the discretization

subsection Discretization

set Stokes velocity polynomial degree =2

set Use locally conservative discretization = false
end

subsection Mesh refinement

set Initial adaptive refinement =0
set Initial global refinement =6
end

HARBHRRRRARAAASE Parameters describing what to do with the solution

subsection Postprocess
set List of postprocessors = InclusionPostprocessor, visualization
end

6.4.6 The Burstedde variable viscosity benchmark

This section was contributed by Iris van Zelst.
This benchmark is intended to test solvers for variable viscosity Stokes problems. It begins with postu-
lating a smooth exact polynomial solution to the Stokes equation for a unit cube, first proposed by [DB14]

257

and also described by [BSAT13]:

r+ 22+ ay+ 23y
u= y+ay +y? + 2’y (38)
—2z — 3xz — 3yz — bxlyz

5
p=ayz+ a3z — —. (39)

32
It is then trivial to verify that the velocity field is divergence-free. The constant 73—52 has been added
to the expression of p to ensure that the volume pressure normalization of ASPECT can be used in this
benchmark (in other words, to ensure that the exact pressure has mean value zero and, consequently, can

easily be compared with the numerically computed pressure). Following [BSAT13], the viscosity u is given
by the smoothly varying function

j=exp{l—Ble(l—2)+y(l—y) +2(1—2)]}. (40)

The maximum of this function is u = e, for example at (x,y, z) = (0,0,0), and the minimum of this function
is = exp (1 - %) at (x,y,z) = (0.5,0.5,0.5). The viscosity ratio p* is then given by

. €XP (1 — %) ~38 i
= — X = eX).
s exp(1) P (4) (41)
Hence, by varying 8 between 1 and 20, a difference of up to 7 orders of magnitude viscosity is obtained. [
will be one of the parameters that can be selected in the input file that accompanies this benchmark.
The corresponding body force of the Stokes equation can then be computed by inserting this solution
into the momentum equation,

Vp =V (2ue(u)) = pg. (42)

Using equations (38), (39) and (40) in the momentum equation (42), the following expression for the body
force pg can be found:

yz + 3z%y3z 2 4 6zy
pg = | wz+323y%2 | —p| 2+ 222+ 2y°

zy + 23y3 —10yz

2 + 4z + 2y + 622y z+y+2xy? + 23

+(1—=22)Bu | x+y+2wy*+ a3 +(1—=2y)Bu | 2+ 2x+ 4y + 42%y

—3z — 10xyz —32 — ba?z
—3z — 10xyz
+(1-22)Bu -3z — bx?z (43)

—4 — 62 — 6y — 1022y

Assuming p = 1, the above expression translates into an expression for the gravity vector g. This expression
for the gravity (even though it is completely unphysical), has consequently been incorporated into the
BursteddeGravity gravity model that is described in the benchmarks/burstedde/burstedde.cc file that
accompanies this benchmark.

We will use the input file benchmark/burstedde/burstedde.prm as input, which is very similar to the
input file benchmark/inclusion/adaptive.prm discussed above in Section 6.4.5. The major changes for
the 3D polynomial Stokes benchmark are listed below:

set Linear solver tolerance = le-12

Boundary conditions
subsection Model settings

258

set Tangential velocity boundary indicators =
set Prescribed velocity boundary indicators

left : BursteddeBoundary,
right : BursteddeBoundary,
front : BursteddeBoundary,
back : BursteddeBoundary,
bottom: BursteddeBoundary,
top : BursteddeBoundary

P

end

subsection Material model
set Model name = BursteddeMaterial
end

subsection Gravity model
set Model name = BursteddeGravity
end

subsection Burstedde benchmark

Viscosity parameter is beta

set Viscosity parameter = 20
end

subsection Postprocess
set List of postprocessors = visualization, velocity statistics, BursteddePostprocessor
end

The boundary conditions that are used are simply the velocities from equation (38) prescribed on each
boundary. The viscosity parameter in the input file is 8. Furthermore, in order to compute the velocity
and pressure L; and Ly norm, the postprocessor BursteddePostprocessor is used. Please note that the
linear solver tolerance is set to a very small value (deviating from the default value), in order to ensure that
the solver can solve the system accurately enough to make sure that the iteration error is smaller than the
discretization error.

Expected analytical solutions at two locations are summarised in Table 5 and can be deduced from
equations (38) and (39). Figure 55 shows that the analytical solution is indeed retrieved by the model.

Table 5: Analytical solutions
Quantity ‘ r = (0,0,0) ‘ r=(1,1,1)

» —0.15625 1.84375
u (0,0,0) (4,4, -13)
|ul 0 14.177

The convergence of the numerical error of this benchmark has been analysed by playing with the mesh
refinement level in the input file, and results can be found in Figure 56. The velocity shows cubic error
convergence, while the pressure shows quadratic convergence in the L; and Ly norms, as one would hope for
using Q2 elements for the velocity and ()1 elements for the pressure.

6.4.7 The “Stokes’ law” benchmark

This section was contributed by Juliane Dannberg.

Stokes’ law was derived by George Gabriel Stokes in 1851 and describes the frictional force a sphere with
a density different than the surrounding fluid experiences in a laminar flowing viscous medium. A setup for
testing this law is a sphere with the radius r falling in a highly viscous fluid with lower density. Due to its
higher density the sphere is accelerated by the gravitational force. While the frictional force increases with

259

viscosity

721
§

*;2

velocity X

4
I

=3

velocity Z

(c) (d)

Figure 55: Burstedde benchmark: Results for the 3D polynomial Stokes benchmark, obtained with a reso-
lution of 16 x 16 elements, with 5 = 10.

the velocity of the falling particle, the buoyancy force remains constant. Thus, after some time the forces
will be balanced and the settling velocity of the sphere vy will remain constant:

6rnrv, =4/3rmr3 Apg, (44)
~—— —
frictional force buoyancy force

where 7 is the dynamic viscosity of the fluid, Ap is the density difference between sphere and fluid and g the
gravitational acceleration. The resulting settling velocity is then given by
2Aprig
Vg = — . 45

== (45)
Because we do not take into account inertia in our numerical computation, the falling particle will reach the
constant settling velocity right after the first timestep.

For the setup of this benchmark, we chose the following parameters:

r = 200 km
Ap =100kg/m?
n=10*2Pas

g =9.81m/s%

With these values, the exact value of sinking velocity is vs = 8.72-1071%m/s.
To run this benchmark, we need to set up an input file that describes the situation. In principle, what we
need to do is to describe a spherical object with a density that is larger than the surrounding material. There

260

a) Velocity error (L1 norm) b) Pressure error (L1 norm)

0%:"—k\““‘\ 3 0.01 ¢ :
0.01 T 4 0.001 E 3
0.001 - E : -
0.0001 = = 0.0001 - =
le-05 & o F B
le-06 F = 1le-05 E E
1e'07 E X ~ s E .]
le-08 V———— - le-06
10 10
¢) Velocity error (L2 norm) d) Pressure error (L2 norm)
10 T T T T T 0.01 E T 3
1F o 4 E & E
0.1 - 3 C 4
0008% 3 E 0.001 }
o8 | R e S
e- E = F > = *
le-06 £ E le-05 3 E;%g e \
le-07 F - r x2 ———]
1le-08 le-06]
10
ncell x ncell x

Figure 56: Burstedde benchmark: Error convergence for the 3D polynomial Stokes benchmark.

are multiple ways of doing this. For example, we could simply set the initial temperature of the material
in the sphere to a lower value, yielding a higher density with any of the common material models. Or, we
could use ASPECT’s facilities to advect along what are called “compositional fields” and make the density
dependent on these fields.

We will go with the second approach and tell ASPECT to advect a single compositional field. The initial
conditions for this field will be zero outside the sphere and one inside. We then need to also tell the material
model to increase the density by Ap = 100kgm ™2 times the concentration of the compositional field. This
can be done, like everything else, from the input file.

All of this setup is then described by the following input file. (You can find the input file to run this
cookbook example in cookbooks/stokes.prm. For your first runs you will probably want to reduce the
number of mesh refinement steps to make things run more quickly.)

HARBRARRRARRHAY Global parameters

We use a 3d setup. Since we are only interested
in a steady state solution, we set the end time
equal to the start time to force a single time
step before the program terminates.

set Dimension =3

|
o

set Start time
set End time =0
set Use years in output instead of seconds = false

set Output directory output

261

cookbooks/stokes.prm

HARBHARBRHAHRAAH Parameters describing the model

The setup is a 3d box with edge length 2890000 in which
all 6 sides have free slip boundary conditions. Because
the temperature plays no role in this model we need mot
bother to describe temperature boundary conditions or

the material parameters that pertain to the temperature.

subsection Geometry model
set Model name = box

subsection Box
set X extent 2890000
set Y extent 2890000
set Z extent = 2890000
end
end

subsection Model settings
set Tangential velocity boundary indicators = left, right, front, back, bottom, top
end

subsection Material model
set Model name = simple

subsection Simple model

set Reference density = 3300
set Viscosity = le22
end
end

subsection Gravity model
set Model name = vertical

subsection Vertical
set Magnitude = 9.81
end
end

HARBBRBRARAAAHAA Parameters describing the temperature field
As above, there is mo need to set anything for the
temperature boundary conditions.

subsection Boundary temperature model
set Model name = box

end

subsection Initial conditions
set Model name = function

subsection Function

262

set Function expression = 0
end
end

HARBHARRRHHRAAH Parameters describing the compositional field

This, however, is the more important part: We need to describe
the compositional field and its influence on the density
function. The following blocks say that we want to

advect a single compositional field and that we give it an
initial value that is zero outside a sphere of radius
T=200000m and centered at the point (p,p,p) with

p=1445000 (which is half the diameter of the boz) and one instide.
The last block re-opens the material model and sets the
density differential per unit change in compositional field to
100.

H*

H oW R R R R W W

subsection Compositional fields
set Number of fields =1
end

subsection Compositional initial conditions
set Model name = function

subsection Function
set Variable names = X,y,Z
r=200000,p=1445000
set Function expression = if (sqrt((x-p)*(x-p)+(y-p)*(y-p)+(z-p)*(z-p)) > r, 0, 1)
end
end

set Function constants

subsection Material model
subsection Simple model
set Density differential for compositional field 1 = 100
end
end

HARHAARHHHAAA## Parameters describing the discretization

The following parameters describe how often we want to refine

the mesh globally and adaptively, what fraction of cells should
be refined in each adaptive refinement step, and what refinement
indicator to use when refining the mesh adaptively.

subsection Mesh refinement

set Initial adaptive refinement =4

set Initial global refinement =4

set Refinement fraction = 0.2

set Strategy = velocity
end

HuRBBHBRARAAAAAE Parameters describing what to do with the solution
The final section allows us to choose which postprocessors to
run at the end of each time step. We select to generate graphical

263

output that will consist of the primary variables (velocity, pressure,
temperature and the compositional fields) as well as the density and
viscosity. We also select to compute some statistics about the

veloctity field.

subsection Postprocess
set List of postprocessors = visualization, velocity statistics

subsection Visualization
set List of output variables = density, viscosity
end
end

Using this input file, let us try to evaluate the results of the current computations for the settling velocity
of the sphere. You can visualize the output in different ways, one of it being ParaView and shown in Fig. 57
(an alternative is to use Visit as described in Section 4.4; 3d images of this simulation using Visit are shown
in Fig. 58). Here, Paraview has the advantage that you can calculate the average velocity of the sphere using
the following filters:

1. Threshold (Scalars: C_1, Lower Threshold 0.5, Upper Threshold 1),
2. Integrate Variables,

3. Cell Data to Point Data,

N

. Calculator (use the formula sqrt(velocity x"2+ velocity_y “2+4velocity_z"2) /Volume).

If you then look at the Calculator object in the Spreadsheet View, you can see the average sinking velocity of
the sphere in the column “Result” and compare it to the theoretical value vy = 8.72-107%m/s. In this case,
the numerical result is 8.865 -107° m /s when you add a few more refinement steps to actually resolve the 3d
flow field adequately. The “velocity statistics” postprocessor we have selected above also provides us with
a maximal velocity that is on the same order of magnitude. The difference between the analytical and the
numerical values can be explained by different at least the following three points: (i) In our case the sphere
is viscous and not rigid as assumed in Stokes’ initial model, leading to a velocity field that varies inside the
sphere rather than being constant. (ii) Stokes’ law is derived using an infinite domain but we have a finite
box instead. (iii) The mesh may not yet fine enough to provide a fully converges solution. Nevertheless, the
fact that we get a result that is accurate to less than 2% is a good indication that ASPECT implements
the equations correctly.

6.4.8 Latent heat benchmark

This section was contributed by Juliane Dannberg.

The setup of this benchmark is taken from Schubert, Turcotte and Olson [STOO01] (part 1, p. 194) and is
illustrated in Fig. 59. It tests whether the latent heat production when material crosses a phase transition
is calculated correctly according to the laws of thermodynamics. The material model defines two phases in
the model domain with the phase transition approximately in the center. The material flows in from the top
due to a prescribed downward velocity, and crosses the phase transition before it leaves the model domain
at the bottom. As initial condition, the model uses a uniform temperature field, however, upon the phase
change, latent heat is released. This leads to a characteristic temperature profile across the phase transition
with a higher temperature in the bottom half of the domain. To compute it, we have to solve equation (3) or
its reformulation (5). For steady-state one-dimensional downward flow with vertical velocity vy, it simplifies
to the following:

oT 0X 0*T
pvay% = ,DTAS'Uyaiy + pCpHTzﬂ'

264

density

velocity Magnitude 400
\ .118e-9
\ y
\ 1o 3375
} ~7.5e-10
! —3350
; ~5e-10
s - 256-10 3325
el 3.46e-18 3300

Figure 57: Stokes benchmark. Both figures show only a 2D slice of the three-dimensional model. Left: The
compositional field and overlaid to it some velocity vectors. The composition is 1 inside a sphere with the
radius of 200 km and 0 outside of this sphere. As the velocity vectors show, the sphere sinks in the viscous
medium. Right: The density distribution of the model. The compositional density contrast of 100 kg/m?
leads to a higher density inside of the sphere.

Figure 58: Stokes benchmark. Three-dimensional views of the compositional field (left), the adaptively refined
mesh (center) and the resulting velocity field (right).

265

v=v =-2223*1071 m/s

T=T =1000 K Solution:
=T =
1 T= Tl Temperature
107.39
1100
o . (=)
% Phase transition: % g
=z Ap = 115.6 kg/m? s —1075
@ y =107 Pa/K a -
& = — = = = — — —| = E
2 |as=0pry/p?=9671J/(kgK) | & —1050
(] © E
o o g
* w 1025
p,= 3400 kg/m? E
- L T=T, 1000
V=y, =-2.223* 1071 m/s =T,(1-A4S/kc)™
=1109.08 K

T: isolating

Figure 59: Latent heat benchmark. Both figures show the 2D box model domain. Left: Setup of the benchmark
together with a sketch of the expected temperature profile across the phase transition. The dashed line marks
the phase transition. Material flows in with a prescribed temperature and velocity at the top, crosses the phase
transition in the center and flows out at the bottom. The predicted bottom temperature is To = 1109.08 K.
Right: Temperature distribution of the model together with the associated temperature profile across the phase
transition. The modelled bottom temperature is To = 1107.39 K.

Here, pCpx = k with k the thermal conductivity and « the thermal diffusivity. The first term on the right-
hand side of the equation describes the latent heat produced at the phase transition: It is proportional to
the temperature T, the entropy change AS across the phase transition divided by the specific heat capacity
and the derivative of the phase function X. If the velocity is smaller than a critical value, and under the
assumption of a discontinuous phase transition (i.e. with a step function as phase function), this latent
heating term will be zero everywhere except for the one point 3. where the phase transition takes place.
This means, we have a region above the phase transition with only phase 1, and below a certain depth a
jump to a region with only phase 2. Inside of these one-phase regions, we can solve the equation above (using
the boundary conditions T'=T; for y — oo and T' = T for y — —o0) and get
T(y) = {Tl + (T2 — T1)€Ma Y > Yir
T, Y < Yir

While it is not entirely obvious while this equation for T'(y) should be correct (in particular why it should be
asymmetric), it is not difficult to verify that it indeed satisfies the equatoin stated above for both y < y,. and
Yy > Y. Furthermore, it indeed satisfies the jump condition we get by evaluating the equation at y = yy,.
Indeed, the jump condition can be reinterpreted as a balance of heat conduction: We know the amount of
heat that is produced at the phase boundary, and as we consider only steady-state, the same amount of heat
is conducted upwards from the transition:

k OT v
pv,TAS =———|,o, =-—"2(Th-T}
y Pocp By ly=y,, pOCp()

latent heat release
heat conduction

In contrast to [STOO01], we also consider the density change Ap across the phase transition: While the
heat conduction takes place above the transition and the density can be assumed as p = py = const., the

266

latent heat is released directly at the phase transition. Thus, we assume an average density p = pg + 0.5Ap
for the left side of the equation. Rearranging this equation gives

T

A
1—(1+ﬁ)§—f

T, =

In addition, we have tested the approach exactly as it is described in [STOO01] by setting the entropy
change to a specific value and in spite of that using a constant density. However, this is physically inconsistent,
as the entropy change is proportional to the density change across the phase transition. With this method,
we could reproduce the analytic results from [STOO01].

The exact values of the parameters used for this benchmark can be found in Fig. 59. They result in
a predicted value of T5 = 1109.08 K for the temperature in the bottom half of the model, and we will
demonstrate below that we can match this value in our numerical computations. However, it is not as simple
as suggested above. In actual numerical computations, we can not exactly reproduce the behavior of Dirac

delta functions as would result from taking the derivative %—5 of a discontinuous function X (y). Rather,

we have to model X (y) as a function that has a smooth transition from one value to another, over a depth
region of a certain width. In the material model plugin we will use below, this depth is an input parameter
and we will play with it in the numerical results shown after the input file.

To run this benchmark, we need to set up an input file that describes the situation. In principle, what we
need to do is to describe the position and entropy change of the phase transition in addition to the previously
outlined boundary and initial conditions. For this purpose, we use the “latent heat” material model that
allows us to set the density change Ap and Clapeyron slope 7 (which together determine the entropy change
via AS = ’yA—f) as well as the depth of the phase transition as input parameters.

All of this setup is then described by the input file cookbooks/latent-heat.prm that models flow in
a box of 105 meters of height and width, and a fixed downward velocity. The following section shows the
central part of this file:

subsection Material model
set Model name = latent heat
subsection Latent heat

The change of density across the phase transition. Together with the
Clapeyron slope, this is what determines the entropy change.

set Phase transition density jumps = 115.6

set Corresponding phase for density jump =0

If the temperature ts equal to the phase transition temperature, the
phase transition will occur at the phase transition depth. However,
if the temperature deviates from this value, the Clapeyron slope

determines how much the pressure (and depth) of the phase boundary
changes. Here, the phase transition will be in the middle of the bozx
for T=T1.

set Phase transition depths = 500000
set Phase transition temperatures = 1000
set Phase transition Clapeyron slopes = le7

We set the width of the phase transition to 5 km. You may want to

change this parameter to see how latent heating depends on the width
of the phase transition.
set Phase transition widths

5000

set Reference density 3400
set Reference specific heat = 1000
set Reference temperature 1000

267

cookbooks/latent-heat.prm

Phase transition width = 20km Resolution proportional to phase transition width

N N

[N [

S 1106 g 1109 J
© 1105.8 1 ° X

Q < 1108 4 X

£ 1105564 5 2 v

p - 1107 4

© 1105.41 X 5 107 %

< O D NV SR DS o 1106

5 1105.2 3 1

s (L X
g 1105 : g 1105 +—————r—————————
£ 4 5 6 7 8 9 10 £ 0 2 4 6 8 10 12 14 16 18 20 22
] ()

= # global refinements =

width of phase transition in km

Figure 60: Results of the latent heat benchmark. Both figures show the modelled temperature Ty at the bottom
of the model domain. Left: T in dependence of resolution using a constant phase transition width of 20 km.
With an increasing number of global refinements of the mesh, the bottom temperature converges against a
value of To = 1105.27 K. Right: Ts in dependence of phase transition width. The model resolution is chosen
proportional to the phase transition width, starting with 5 global refinements for a width of 20km. With
decreasing phase transition width, Ty approaches the theoretical value of 1109.08 K

set Thermal conductivity = 2.38

We set the thermal expansion amd the compresstibility to zero, so that

all temperature (and density) changes are caused by advection, diffusion
and latent heating.

set Thermal expansion coefficient = 0.0

set Compressibility = 0.0

Viscosity ts constant.

set Thermal viscosity exponent = 0.0
set Viscosity = 8.44e21
set Viscosity prefactors 1.0, 1.0
set Composition viscosity prefactor =1.0
end
end

The complete input file referenced above also sets the number of mesh refinement steps. For your first
runs you will probably want to reduce the number of mesh refinement steps to make things run more quickly.
Later on, you might also want to change the phase transition width to look how this influences the result.

Using this input file, let us try to evaluate the results of the current computations. We note that it
takes some time for the model to reach a steady state and only then does the bottom temperature reach the
theoretical value. Therefore, we use the last output step to compare predicted and computed values. You
can visualize the output in different ways, one of it being ParaView and shown in Fig. 59 on the right side
(an alternative is to use Visit as described in Section 4.4). In ParaView, you can plot the temperature profile
using the filter “Plot Over Line” (Point1: 500000,0,0; Point2: 500000,1000000,0, then go to the “Display”
tab and select “T” as only variable in the “Line series” section) or “Calculator” (as seen in Fig. 59). In
Fig. 60 (left) we can see that with increasing resolution, the value for the bottom temperature converges to
a value of To = 1105.27K.

However, this is not what the analytic solution predicted. The reason for this difference is the width of
the phase transition with which we smooth out the Dirac delta function that results from differentiating the
X (y) we would have liked to use in an ideal world. (In reality, however, for the Earth’s mantle we also expect

268

phase transitions that are distributed over a certain depth range and so the smoothed out approach may not
be a bad approximation.) Of course, the results shown above result from an the analytical approach that is
only correct if the phase transition is discontinuous and constrained to one specific depth y = y;,.. Instead,
we chose a hyperbolic tangent as our phase function. Moreover, Fig. 60 (right) illustrates what happens to
the temperature at the bottom when we vary the width of the phase transition: The smaller the width, the
closer the temperature gets to the predicted value of T = 1109.08 K, demonstrating that we converge to the
correct solution.

6.4.9 The 2D cylindrical shell benchmarks by Davies et al.

This section was contributed by William Durkin and Wolfgang Bangerth.

All of the benchmarks presented so far take place in a Cartesian domain. Davies et al. describe a bench-
mark (in a paper that is currently still being written) for a 2D spherical Earth that is nondimensionalized
such that

Pmin =122 T|, =1
Pmax =222 T| =0

Tmaz

The benchmark is run for a series of approximations (Boussinesq, Extended Boussinesq, Truncated
Anelastic Liquid, and Anelastic Liquid), and temperature, velocity, and heat flux calculations are com-
pared with the results of other mantle modeling programs. ASPECT will output all of these values directly
except for the Nusselt number, which we must calculate ourselves from the heat fluxes that ASPECT can
compute. The Nusselt number of the top and bottom surfaces, Nur and Nupg, respectively, are defined by
the authors of the benchmarks as

27
-~ In(f) or
Nur = 2mrmax(1 — f)) Or 40 (46)
0
and)
Nug — fIn(f) T .

o 27 min (1 — f) or
0

where f is the ratio rmi.

max

We can put this in terms of heat flux
B kaT
0= or

through the inner and outer surfaces, where ¢, is heat flux in the radial direction. Let @) be the total heat
that flows throug a surface,
27
Q = /QT do,
0

_ —Qrn(f)
Nur = 2 Tmae (L —)k

then (46) becomes

and similarly
—QpfIn(f)

27(_7'min(1 - f)k
Qr and @Qp are heat fluxes that ASPECT can readily compute through the heat flux statistics post-
processor (see Section 5.88). For further details on the nondimensionalization and equations used for each
approximation, refer to Davies et al.

The series of benchmarks is then defined by a number of cases relating to the exact equations chosen to
model the fluid. We will discuss these in the following.

NUB =

269

Case 1.1: BA_Ral04_Iso_ZS This case is run with the following settings:
e Boussinesq Approximation
e Boundary Condition: Zero-Slip

Rayleigh Number = 10*

Initial Conditions: D = 0,0 =4
o (T) =1

where D and O refer to the degree and order of a spherical harmonic that describes the initial temperature.
While the initial conditions matter, what is important here though is that the system evolve to four convective
cells since we are only interested in the long term, steady state behavior.

The model is relatively straightforward to set up, basing the input file on that discussed in Section 6.3.1.
The full input file can be found at benchmark/davies_et_al/case-1.1.prm, with the interesting parts
excerpted as follows:

HARRBABHRARAAAHAA Parameters describing the model

subsection Geometry model
set Model name = spherical shell
subsection Spherical shell

set Inner radius = 1.22
set Opening angle = 360
set Outer radius = 2.22
end
end
#[...]

subsection Material model
set Model name = simple
subsection Simple model
set Reference density =
set Reference specific heat =
set Reference temperature =
set Thermal conductivity =
set Thermal expansion coefficient = le-6
set Viscosity =1
end
end

= O R .

HARBHRRRRRARAHAHE Parameters describing the temperature field
Angular mode ts set to 4 in order to match the number of
convective cells reported by Davies et al.

subsection Initial conditions
set Model name = spherical hexagonal perturbation
subsection Spherical hexagonal perturbation

set Angular mode =4
set Rotation offset =0
end

end

270

benchmark/davies_et_al/case-1.1.prm

HARBRARRRARRHRAY Prescribe the Rayleigh number as g*alpha
Here, Ra = 1074 and alpha was chosen as 107-6 abowve.
subsection Gravity model

set Model name = radial constant

subsection Radial constant

set Magnitude = 1el0

end

end

#[...]

We use the same trick here as in Section 6.2.1 to produce a model in which the density p(7') in the tem-
perature equation (3) is almost constant (namely, by choosing a very small thermal expansion coefficient) as
required by the benchmark, and instead prescribe the desired Rayleigh number by choosing a correspondingly
large gravity.

Results for this and the other cases are shown below.

Case 2.1: BA_Ral04_Iso_ FS Case 2.1 uses the following setup, differing only in the boundary conditions:

e Boussinesq Approximation

e Boundary Condition: Free-Slip
Rayleigh Number = 10*

Initial Conditions: D = 0,0 =4
o (1) =1

As a consequence of the free slip boundary conditions, any solid body rotation of the entire system
satisfies the Stokes equations with their boundary conditions. In other words, the solution of the problem
is not unique: given a solution, adding a solid body rotation yields another solution. We select arbitrarily
the one that has no net rotation (see Section 5.87). The section in the input file that is relevant is then as
follows (the full input file resides at benchmark/davies_et_al/case-2.1.prm):

subsection Model settings
set Remove nullspace

net rotation

set Fixed temperature boundary indicators =0,1
set Prescribed velocity boundary indicators =

set Tangential velocity boundary indicators = 0,1
set Zero velocity boundary indicators =

set Include adiabatic heating = false
set Include shear heating = false

end

Again, results are shown below.

Case 2.2: BA_Ral05 Iso FS Case 2.2 is described as follows:
e Boussinesq Approximation
e Boundary Condition: Free-Slip
e Rayleigh Number = 10°

271

benchmark/davies_et_al/case-2.1.prm

e Initial Conditions: Final conditions of case 2.1 (BA_Ral04_Iso_FS)
o (1) =1

In other words, we have an increased Rayleigh number and begin with the final steady state of case 2.1. To
start the model where case 2.1 left off, the input file of case 2.1, benchmark/davies_et_al/case-2.1.prm,
instructs ASPECT to checkpoint itself every few time steps (see Section 4.5). If case 2.2 uses the same
output directory, we can then resume the computations from this checkpoint with an input file that prescribes
a different Rayleigh number and a later input time:

HRRHBAARARAAAAA Global parameters

Case 2.2 begins with the final steady state solution of Case 2.1

"Resume computation” must be set to true, and "Output directory” must
point to the folder that contains the results of Case 2.1.

set CFL number =10

set End time =3

set Output directory = output
set Resume computation = true

We increase the Rayleigh number to 10° by increasing the magnitude of gravity in the input file. The
full script for case 2.2 is located in benchmark/davies_et_al/case-2.2.prm

Case 2.3: BA_Ral03_vv_FS Case 2.3 is a variation on the previous one:
e Boussinesq Approximation

e Boundary Condition: Free-Slip

Rayleigh Number = 103

Initial Conditions: Final conditions of case 2.1 (BA_Ral04_Iso_FS)
e 7(T) =1000"7

The Rayleigh number is smaller here (and is selected using the gravity parameter in the input file, as before),
but the more important change is that the viscosity is now a function of temperature. At the time of writing,
there is no material model that would implement such a viscosity, so we create a plugin that does so for
us (see Sections 7 and 7.2 in general, and Section 7.3.1 for material models in particular). The code for it
is located in benchmarks/davies_et_al/case-2.3-plugin/VoT.cc (where “VoT” is short for “viscosity as
a function of temperature”) and is essentially a copy of the simpler material model. The primary change
compared to the simpler material model is the line about the viscosity in the following function:

template <int dim>
void
VoT<dim>: :
evaluate(const typename Interface<dim>::MaterialModelInputs &in,
typename Interface<dim>::MaterialModelOutputs &out) const
{
for (unsigned int i=0; i<in.position.size(); ++i)
{
out.viscosities[i] = eta*std::pow(1000, (-in.temperature[i]));
out.densities[i] = reference_rho * (1.0 - thermal_alpha * (in.temperature[i] - reference_T));
out.thermal_expansion_coefficients[i] = thermal_alpha;
out.specific_heat[i] = reference_specific_heat;

272

benchmark/davies_et_al/case-2.1.prm
benchmark/davies_et_al/case-2.2.prm
benchmarks/davies_et_al/case-2.3-plugin/VoT.cc

out.thermal_conductivities[i] = k_value;
out.compressibilities[i] = 0.0;
}
}

Using the method described in Sections 6.4.1 and 7.2, and the files in the benchmarks/davies_et_al/case-2.3-plugin,
we can compile our new material model into a shared library that we can then reference from the input file.

The complete input file for case 2.3 is located in benchmark/davies_et_al/case-2.3.prm and contains

among others the following parts:

set Additional shared libraries = ./case-2.3-plugin/1ibVoT.so

subsection Material model
set Model name = VoT

subsection VoT model
set Reference density =
set Reference specific heat =
set Reference temperature =
set Thermal conductivity =
set Thermal expansion coefficient = le-5
set Viscosity =1

end

end

» O K

Results In the following, let us discuss some of the results of the benchmark setups discussed above. First,
the final steady state temperature fields are shown in Fig. 61. It is immediately obvious how the different
Rayleigh numbers affect the width of the plumes. If one imagines a setup with constant gravity, constant
inner and outer temperatures and constant thermal expension coefficient (this is not how we describe it in
the input files, but we could have done so and it is closer to how we intuit about fluids than adjusting the
gravity), then the Rayleigh number is inversely proportional to the viscosity — and it is immediately clear
that larger Rayleigh numbers (corresponding to lower viscosities) then lead to thinner plumes. This is nicely
reflected in the visualizations.

(a) Case 1.1 (b) Case 2.1 (c) Case 2.2 (d) Case 2.3

Figure 61: Davies et al. benchmarks: Final steady state temperature fields for the 2D cylindrical benchmark
cases.

Secondly, Fig. 62 shows the root mean square velocity as a function of time for the various cases. It is
obvious that they all converge to steady state solutions. However, there is an initial transient stage and, in
cases 2.2 and 2.3, a sudden jolt to the system at the time where we switch from the model used to compute
up to time ¢t = 2 to the different models used after that.

273

benchmark/davies_et_al/case-2.3.prm

30 T T 100 T T

T
Case 1.1 Vrms Calse 2.1Vrms

25 L i
\ 80 E

20 H

60 q

|
\ so | J
i
|
|

30 H 4

0 1 1 L 10 1 1 1
0 0.5 1 15 2 0 05 1 15 2
(a) Case 1.1 (b) Case 2.1
500 1 1 T 100 T T
Case 2.2Vrms Case 2.3 Vims

as0 |- 1 90 i
400 b 80 —
350 |- 1 70 |
300 .

60 .
250 |- 4 |

o]]
200 g |-

a0 .
150 - . |
100 |- 1 e 1
50 [y 4 20 | i

] L L 1 1 L 10 L L L 1 1
0 05 1 15 2 25 3 0 05 1 15 2 25 3
(c) Case 2.2 (d) Case 2.3

Figure 62: Davies et al. benchmarks: Vs for 2D Cylindrical Cases. Large jumps occur when transitioning
from case 2.1 to cases 2.2 and 2.3 due to the instantaneous change of parameter settings.

These runs also produce quantitative data that will be published along with the concise descriptions of
the benchmarks and a comparison with other codes. In particular, some of the criteria listed above to judge
the accuracy of results are listed in Table 6.3

6.4.10 The Crameri et al. benchmarks

This section was contributed by Ian Rose.

33The input files available in the benchmark/davies_et_al directory use 5 global refinements in order to provide cases that
can be run without excessive trouble on a normal computer. However, this is not enough to achieve reasonable accuracy and
both the data shown below and the data submitted to the benchmarking effort uses 7 global refinement steps, corresponding
to a mesh with 1536 cells in tangential and 128 cells in radial direction. Computing on such meshes is not cheap, as it leads to
a problem size of more than 2.5 million unknowns. It is best done using a parallel computation.

Case | (T) Nup | Nupg Vims

1.1 0.403 | 2.464 | 2.468 | 19.053
2.1 0.382 | 4.7000 | 4.706 | 46.244
2.2 0.382 | 9.548 | 9.584 | 193.371
2.3 0.582 | 5.102 | 5.121 | 79.632

Table 6: Davies et al. benchmarks: Numerical results for some of the output quantities required by the
benchmarks and the various cases considered.

274

Figure 63: Setup for the topography relaxation benchmark. The box is 2800 km wide and 700 km high, with
a 100 km lid on top. The lid has a viscosity of 1022 Pa s, while the mantle has a viscosity of 102! Pas. The
sides are free slip, the bottom is no slip, and the top is a free surface. Both the lid and the mantle have
a density of 3300 kg/m3, and gravity is 10m/s%. There is a 7km sinusoidal initial topography on the free
surface.

This section follows the two free surface benchmarks described by Crameri et al. [CSGT12].

Case 1: Relaxation of topography The first benchmark involves a high viscosity lid sitting on top
of a lower viscosity mantle. There is an initial sinusoidal topography which is then allowed to relax. This
benchmark has a semi-analytical solution (which is exact for infinitesimally small topography). Details for
the benchmark setup are in Figure 63.

The complete parameter file for this benchmark can be found in benchmarks/crameri_et_al/case_1/
crameri_benchmark_1.prm, the most relevant parts of which are excerpted here:

set CFL number = 0.01
set Additional shared libraries = ./libcrameri_benchmark_1.so

subsection Geometry model
set Model name = rebound box
subsection Rebound Box
set Order = 1
set Amplitude = 7.e3
end
subsection Box
set X extent 28.e5
set Y extent 7.eb
set X repetitions = 300
set Y repetitions = 75
end
end

In particular, this benchmark uses a custom geometry model to set the initial geometry. This geometry
model, called “ReboundBox”, is based on the Box geometry model. It generates a domain in using the same
parameters as Box, but then displaces all the nodes vertically with a sinusoidal perturbation, where the
magnitude and order of that perturbation are specified in the ReboundBox subsection.

The characteristic timescales of topography relaxation are significantly smaller than those of mantle
convection. Taking timesteps larger than this relaxation timescale tends to cause sloshing instabilities,
which are described further in Section 2.11. Some sort of stabilization is required to take large timesteps.
In this benchmark, however, we are interested in the relaxation timescale, so we are free to take very small

275

benchmarks/crameri_et_al/case_1/crameri_benchmark_1.prm
benchmarks/crameri_et_al/case_1/crameri_benchmark_1.prm

P L [| [T [il
E ’ i
. 6 S ——,N,_—_—_—_——__—_—_ .
2N o |
S r |
54 — SULEC
S, — Underworld |
£ | — MILAMIN VEP
2 40 u
I = Aspect |
s T — Analytic solution -
= oL I L —— ' L J

0 20 40 60 80 100 120

Time (ka)

Figure 64: Results for the topography relazation benchmark, showing maximum topography versus time.
Over about 100 ka the topography completely disappears. The results of four free surface codes, as well as
the semi-analytic solution, are nearly identical.

timesteps (in this case, 0.01 times the CFL number). As can be seen in Figure 64, the results of all the codes
which are included in this comparison are basically indistinguishable.

Case 2: Dynamic topography Case two is more complicated. Unlike the case one, it occurs over
mantle convection timescales. In this benchmark there is the same high viscosity lid over a lower viscosity
mantle. However, now there is a blob of buoyant material rising in the center of the domain, causing dynamic
topography at the surface. The details for the setup are in the caption of Figure 65.

Case two requires higher resolution and longer time integrations than case one. The benchmark is over
20 million years and builds dynamic topography of ~ 800 meters.

Again, we excerpt the most relevant parts of the parameter file for this benchmark, with the full thing
available in benchmarks/crameri_et_al/case_2/crameri_benchmark_2.prm. Here we use the “Multicom-
ponent” material model, which allows us to easily set up a number of compositional fields with different
material properties. The first compositional field corresponds to background mantle, the second corresponds
to the rising blob, and the third corresponds to the viscous lid.

Furthermore, the results of this benchmark are sensitive to the mesh refenement and timestepping pa-
rameters. Here we have nine refinement levels, and refine according to density and the compositional fields.

set CFL number =0.1

subsection Material model
set Model name = multicomponent
subsection Multicomponent
set Densities = 3300, 3200, 3300
set Viscosities = 1.e21, 1.e20, 1.e23
set Viscosity averaging scheme = harmonic
end
end

subsection Mesh refinement

276

benchmarks/crameri_et_al/case_2/crameri_benchmark_2.prm

Figure 65: Setup for the dynamic topography benchmark. Again, the domain is 2800 km wide and 700 km
high. A 100 km thick lid with viscosity 10%® overlies a mantle with viscosity 10?1, Both the lid and the mantle
have a density of 3300 kg/m>. A blob with diameter 100 km lies 300 km from the bottom of the domain. The
blob has a density of 3200kg/m? and a viscosity of 102° Pa s.

00 ! ! !

E 800 seeazaszsacaseosieazaoscs R S L

B T00 - e g

7 600 =

D OO 1w .

o

S 00 Lo SULEC)

E 300 SRR . Underworld

Eowf S — — MILAMIN VEP

g 100 fovveeeeee P e SRR — Aspect -
% 5 10 15 20

Time (Ma)

Figure 66: FEwvolution of topography for the dynamic topography benchmark. The maximum topography is
shown as a function of time, for ASPECT as well as for several other codes participating in the benchmark.
This benchmark shows considerably more scatter between the codes.

277

Log topography error at 3 Ma
g
Log topography error at 3 Ma

0.0 0.1 02 03 0.4 05 06 50 55 6.0 65 7.0 75 8.0 85 9.0

CFL number Maximum refinement number

Figure 67: Convergence for case two. Left: Logarithm of the error with decreasing CFL number. As the CFL
number decreases, the error gets smaller. However, once it reaches a value of ~ 0.1, there stops being much
improvement in accuracy. Right: Logarithm of the error with increasing maximum mesh resolution. As the
resolution increases, so does the accuracy.

set Additional refinement times =

set Initial adaptive refinement =4

set Initial global refinement =5

set Refinement fraction =0.3

set Coarsening fraction =0.

set Strategy = density,composition

set Refinement criteria merge operation = plus
set Time steps between mesh refinement = 5
end

Unlike the first benchmark, for case two there is no (semi) analytical solution to compare against. Fur-
thermore, the time integration for this benchmark is much longer, allowing for errors to accumulate. As such,
there is considerably more scatter between the participating codes. ASPECT does, however, fall within the
range of the other results, and the curve is somewhat less wiggly. The results for maximum topography
versus time are shown in 66

The precise values for topography at a given time are quite dependent on the resolution and timestepping
parameters. Following [CSGT12] we investigate the convergence of the maximum topography at 3 Ma as a
function of CFL number and mesh resolution. The results are shown in figure 67.

We find that at 3 Ma ASPECT converges to a maximum topography of ~396 meters. This is slightly
different from what MILAMIN_VEP reported as its convergent value in [CSG112], but still well within the
range of variation of the codes. Additionally, we note that ASPECT is able to achieve good results with
relatively less mesh resolution due to the ability to adaptively refine in the regions of interest (namely, the
blob and the high viscosity lid).

Accuracy improves roughly linearly with decreasing CFL number, though stops improving at CFL ~ 0.1.
Accuracy also improves with increasing mesh resolution, though its convergence order does not seem to
be excellent. It is possible that other mesh refinement parameters than we tried in this benchmark could
improve the convergence. The primary challenge in accuracy is limiting numerical diffusion of the rising
blob. If the blob becomes too diffuse, its ability to lift topography is diminished. It would be instructive to
compare the results of this benchmark using tracer particles with the results using compositional fields.

278

7

Extending ASPECT

ASPECT is designed to be an extensible code. In particular, it uses both a plugin architecture and a set
of signals through which it is trivial to replace or extend certain components of the program. Examples of
things that are simple to extend are:

This

the material description,
the geometry,

the gravity description,
the initial conditions,
the boundary conditions,

the functions that postprocess the solution, i.e., that can compute derived quantities such as heat fluxes
over part of the boundary, mean velocities, etc.,

the functions that generate derived quantities that can be put into graphical output files for visual-
ization such as fields that depict the strength of the friction heating term, spatially dependent actual
viscosities, and so on,

the computation of refinement indicators,
the determination of how long a computation should run.

list may also have grown since this section was written. We will discuss the way this is achieved in

Sections 7.1 and 7.3. Changing the core functionality, i.e., the basic equations (1)—(3), and how they are
solved is arguably more involved. We will discuss this in Section 7.5.

Note: The purpose of coming up with ways to make extensibility simple is that if you want to
extend ASPECT for your own purposes, you can do this in a separate set of files that describe
your situation, rather than by modifying the ASPECT source files themselves. This is important,
because (i) it makes it possible for you to update ASPECT itself to a newer version without
losing the functionality you added (because you did not make any changes to the ASPECT files
themselves), (ii) because it makes it possible to keep unrelated changes separate in your own set
of files, in a place where they are simple to find, and (iii) because it makes it much easier for you
to share your modifications and additions with others.

Since ASPECT is written in C++ using the DEAL.II library, you will have to be proficient in C++.

You

will also likely have to familiarize yourself with this library for which there is an extensive amount of

documentation:

e The manual at https://www.dealii.org/developer/doxygen/deal.II/index.html that describes

in detail what every class, function and variable in DEAL.II does.

e A collection of modules at https://www.dealii.org/developer/doxygen/deal.II/modules.html

that give an overview of whole groups of classes and functions and how they work together to achieve
their goal.

The DEAL.II tutorial at https://www.dealii.org/developer/doxygen/tutorial/index.html that
provides a step-by-step introduction to the library using a sequence of several dozen programs that
introduce gradually more complex topics. In particular, you will learn DEAL.IT’s way of dimension
independent programming that allows you to write the program once, test it in 2d, and run the exact
same code in 3d without having to debug it a second time.

279

https://www.dealii.org/developer/doxygen/deal.II/index.html
https://www.dealii.org/developer/doxygen/deal.II/modules.html
https://www.dealii.org/developer/doxygen/tutorial/index.html

e The step-31 and step-32 tutorial programs at https://www.dealii.org/developer/doxygen/deal.
II/step_31.html and https://www.dealii.org/developer/doxygen/deal.II/step_32.html from
which ASPECT directly descends.

e An overview of many general approaches to numerical methods, but also a discussion of DEAL.II
and tools we use in programming, debugging and visualizing data are given in Wolfgang Bangerth’s
video lectures. These are linked from the DEAL.IT website at https://www.dealii.org/ and directly
available at http://www.math.tamu.edu/~bangerth/videos.html.

e The DEAL.II Frequently Asked Questions at https://github.com/dealii/dealii/wiki/Frequently-Asked-Questio
that also have extensive sections on developing code with DEAL.II as well as on debugging. It also
answers a number of questions we frequently get about the use of C++ in DEAL.II.

e Several other parts of the DEAL.II website at https://www.dealii.org/ also have information that
may be relevant if you dive deeper into developing code. If you have questions, the mailing lists at
https://www.dealii.org/mail.html are also of general help.

e A general overview of DEAL.IT is also provided in the paper [BHKO07].

As a general note, by default ASPECT utilizes a DEAL.II feature called debug mode, see also the intro-
duction to this topic in Section 4.3. If you develop code, you will definitely want this feature to be on, as it
will capture the vast majority of bugs you will invariably introduce in your code.

When you write new functionality and run the code for the first time, you will almost invariably first
have to deal with a number of these assertions that point out problems in your code. While this may be
annoying at first, remember that these are actual bugs in your code that have to be fixed anyway and
that are much easier to find if the program aborts than if you have to go by their more indirect results
such as wrong answers. The Frequently Asked Questions at https://github.com/dealii/dealii/wiki/
Frequently-Asked-Questions contain a section on how to debug DEAL.II programs.

The downside of debug mode, as mentioned before, is that it makes the program much slower. Conse-
quently, once you are confident that your program actually does what it is intended to do — but no earlier!
—, you may want to switch to optimized mode that links ASPECT with a version of the DEAL.II libraries
that uses compiler optimizations and that does not contain the assert statements discussed above. This
switch can be facilitated by editing the top of the ASPECT Makefile and recompiling the program.

In addition to these general comments, ASPECT is itself extensively documented. You can find docu-
mentation on all classes, functions and namespaces starting from the doc/doxygen/index.html page.

7.1 The idea of plugins and the SimulatorAccess and Introspection classes

The most common modification you will probably want to do to ASPECT are to switch to a different
material model (i.e., have different values of functional dependencies for the coefficients 1, p, Cy, . . . discussed
in Section 2.2); change the geometry; change the direction and magnitude of the gravity vector g; or change
the initial and boundary conditions.

To make this as simple as possible, all of these parts of the program (and some more) have been separated
into modules that can be replaced quickly and where it is simple to add a new implementation and make it
available to the rest of the program and the input parameter file. The way this is achieved is through the
following two steps:

e The core of ASPECT really only communicates with material models, geometry descriptions, etc.,
through a simple and very basic interface. These interfaces are declared in the include/aspect/
material_model/interface.h, include/aspect/geometry_model/interface.h, etc., header files.
These classes are always called Interface, are located in namespaces that identify their purpose, and
their documentation can be found from the general class overview in doc/doxygen/classes.html.

To show an example of a rather minimal case, here is the declaration of the aspect::GravityModel::Interface
class (documentation comments have been removed):

280

https://www.dealii.org/developer/doxygen/deal.II/step_31.html
https://www.dealii.org/developer/doxygen/deal.II/step_31.html
https://www.dealii.org/developer/doxygen/deal.II/step_32.html
https://www.dealii.org/
http://www.math.tamu.edu/~bangerth/videos.html
https://github.com/dealii/dealii/wiki/Frequently-Asked-Questions
https://www.dealii.org/
https://www.dealii.org/mail.html
https://github.com/dealii/dealii/wiki/Frequently-Asked-Questions
https://github.com/dealii/dealii/wiki/Frequently-Asked-Questions
Makefile
doc/doxygen/index.html
include/aspect/material_model/interface.h
include/aspect/material_model/interface.h
include/aspect/geometry_model/interface.h
doc/doxygen/classes.html
doc/doxygen/classaspect_1_1GravityModel_1_1Interface.html

class Interface
{
public:
virtual “Interface();

virtual
Tensor<1,dim>
gravity_vector (const Point<dim> &position) const = 0;

static void declare_parameters (ParameterHandler &prm);

virtual void parse_parameters (ParameterHandler &prm);

};

If you want to implement a new model for gravity, you just need to write a class that derives from this
base class and implements the gravity_vector function. If your model wants to read parameters from
the input file, you also need to have functions called declare parameters and parse_parameters in
your class with the same signatures as the ones above. On the other hand, if the new model does not
need any run-time parameters, you do not need to overload these functions.?

Each of the categories above that allow plugins have several implementations of their respective inter-
faces that you can use to get an idea of how to implement a new model.

e At the end of the file where you implement your new model, you need to have a call to the macro
ASPECT REGISTER_GRAVITY_MODEL (or the equivalent for the other kinds of plugins). For example, let us
say that you had implemented a gravity model that takes actual gravimetric readings from the GRACE
satellites into account, and had put everything that is necessary into a class aspect: : GravityModel: : GRACE.
Then you need a statement like this at the bottom of the file:

ASPECT_REGISTER_GRAVITY_MODEL
(GRACE,
"grace",
"A_gravity model derived from GRACE,"
"data. Run-time parameters are read, from the parameter, "
"file jin subsection, ’Radial constant’.");

Here, the first argument to the macro is the name of the class. The second is the name by which this
model can be selected in the parameter file. And the third one is a documentation string that describes
the purpose of the class (see, for example, Section 5.39 for an example of how existing models describe
themselves).

This little piece of code ensures several things: (i) That the parameters this class declares are known
when reading the parameter file. (ii) That you can select this model (by the name “grace”) via the
run-time parameter Gravity model/Model name. (iii) That ASPECT can create an object of this
kind when selected in the parameter file.

Note that you need not announce the existence of this class in any other part of the code: Everything

34 At first glance one may think that only the parse_parameters function can be overloaded since declare_parameters is not
virtual. However, while the latter is called by the class that manages plugins through pointers to the interface class, the former
function is called essentially at the time of registering a plugin, from code that knows the actual type and name of the class
you are implementing. Thus, it can call the function — if it exists in your class, or the default implementation in the base class
if it doesn’t — even without it being declared as virtual.

281

should just work automatically.?® This has the advantage that things are neatly separated: You do

not need to understand the core of ASPECT to be able to add a new gravity model that can then
be selected in an input file. In fact, this is true for all of the plugins we have: by and large, they
just receive some data from the simulator and do something with it (e.g., postprocessors), or they just
provide information (e.g., initial meshes, gravity models), but their writing does not require that you
have a fundamental understanding of what the core of the program does.

The procedure for the other areas where plugins are supported works essentially the same, with the
obvious change in namespace for the interface class and macro name.

In the following, we will discuss the requirements for individual plugins. Before doing so, however, let
us discuss ways in which plugins can query other information, in particular about the current state of the
simulation. To this end, let us not consider those plugins that by and large just provide information without
any context of the simulation, such as gravity models, prescribed boundary velocities, or initial temperatures.
Rather, let us consider things like postprocessors that can compute things like boundary heat fluxes. Taking
this as an example (see Section 7.3.8), you are required to write a function with the following interface

template <int dim>
class MyPostprocessor : public aspect::Postprocess::Interface
{
public:
virtual
std::pair<std::string,std::string>
execute (TableHandler &statistics);

// ... more things ...

The idea is that in the implementation of the execute function you would compute whatever you are
interested in (e.g., heat fluxes) and return this information in the statistics object that then gets written to
a file (see Sections 4.1 and 4.4.2). A postprocessor may also generate other files if it so likes — e.g., graphical
output, a file that stores the locations of tracers, etc. To do so, obviously you need access to the current
solution. This is stored in a vector somewhere in the core of ASPECT. However, this vector is, by itself, not
sufficient: you also need to know the finite element space it is associated with, and for that the triangulation
it is defined on. Furthermore, you may need to know what the current simulation time is. A variety of other
pieces of information enters computations in these kinds of plugins.

All of this information is of course part of the core of ASPECT, as part of the aspect::Simulator class.
However, this is a rather heavy class: it’s got dozens of member variables and functions, and it is the one
that does all of the numerical heavy lifting. Furthermore, to access data in this class would require that
you need to learn about the internals, the data structures, and the design of this class. It would be poor
design if plugins had to access information from this core class directly. Rather, the way this works is
that those plugin classes that wish to access information about the state of the simulation inherit from the
aspect::SimulatorAccess class. This class has an interface that looks like this:

template <int dim>
class SimulatorAccess
{
protected:
double get_time () const;

std::string get_output_directory () const;

const LinearAlgebra::BlockVector &

35The existing implementations of models of the gravity and other interfaces declare the class in a header file and define the
member functions in a .cc file. This is done so that these classes show up in our doxygen-generated documentation, but it is
not necessary: you can put your entire class declaration and implementation into a single file as long as you call the macro
discussed above on it. This single file is all you need to touch to add a new model.

282

doc/doxygen/classaspect_1_1Simulator.html
doc/doxygen/classaspect_1_1SimulatorAccess.html

get_solution () const;

const DoFHandler<dim> &
get_dof_handler () const;

// ... many more things ...

This way, SimulatorAccess makes information available to plugins without the need for them to understand
details of the core of ASPECT. Rather, if the core changes, the SimulatorAccess class can still provide
exactly the same interface. Thus, it insulates plugins from having to know the core. Equally importantly,
since SimulatorAccess only offers its information in a read-only way it insulates the core from plugins since
they can not interfere in the workings of the core except through the interface they themselves provide to
the core.

Using this class, if a plugin class MyPostprocess is then not only derived from the corresponding
Interface class but also from the SimulatorAccess class, then you can write a member function of the
following kind (a nonsensical but instructive example; see Section 7.3.8 for more details on what postproces-
sors do and how they are implemented):36

template <int dim>
std::pair<std::string,std::string>
MyPostprocessor<dim>: :execute (TableHandler &statistics)
{
// compute the mean value of vector component ’dim’ of the solution
// (which here is the pressure block) using a deal.II function:
const double
average_pressure = VectorTools::compute_mean_value (this->get_mapping(),
this->get_dof_handler(),
QGauss<dim>(2),
this->get_solution(),
dim) ;
statistics.add_value ("Average pressure", average_pressure);

// return that there is nothing to print to screen (a useful
// plugin would produce something more elaborate here):
return std::pair<std::string,std::string>();

}

The second piece of information that plugins can use is called “introspection”. In the code snippet above,
we had to use that the pressure variable is at position dim. This kind of implicit knowledge is usually bad
style: it is error prone because one can easily forget where each component is located; and it is an obstacle
to the extensibility of a code if this kind of knowledge is scattered all across the code base.

Introspection is a way out of this dilemma. Using the SimulatorAccess::introspection() function
returns a reference to an object (of type aspect::Introspection) that plugins can use to learn about these sort of
conventions. For example, this->introspection() .component mask.pressure returns a component mask
(a deal.IT concept that describes a list of booleans for each component in a finite element that are true if a
component is part of a variable we would like to select and false otherwise) that describes which component
of the finite element corresponds to the pressure. The variable, dim, we need above to indicate that we
want the pressure component can be accessed as this->introspection() .component_indices.pressure.
While this is certainly not shorter than just writing dim, it may in fact be easier to remember. It is most
definitely less prone to errors and makes it simpler to extend the code in the future because we don’t litter
the sources with “magic constants” like the one above.

36For complicated, technical reasons, in the code below we need to access elements of the SimulatorAccess class using the
notation this->get_solution(), etc. This is due to the fact that both the current class and the base class are templates. A
long description of why it is necessary to use this-> can be found in the DEAL.II Frequently Asked Questions.

283

doc/doxygen/classaspect_1_1SimulatorAccess.html
doc/doxygen/classaspect_1_1SimulatorAccess.html
doc/doxygen/classaspect_1_1SimulatorAccess.html
doc/doxygen/classaspect_1_1SimulatorAccess.html
doc/doxygen/structaspect_1_1Introspection.html
doc/doxygen/classaspect_1_1SimulatorAccess.html

This aspect::Introspection class has a significant number of variables that can be used in this way, i.e.,
they provide symbolic names for things one frequently has to do and that would otherwise require implicit
knowledge of things such as the order of variables, etc.

7.2 How to write a plugin

Before discussing what each kind of plugin actually has to implement (see the next subsection), let us briefly
go over what you actually have to do when implementing a new plugin. Essentially, the following steps are
all you need to do:

o Create a file, say my_plugin.cc that contains the declaration of the class you want to implement. This
class must be derived from one of the Interface classes we will discuss below. The file also needs to
contain the implementation of all member functions of your class.

As discussed above, it is possible — but not necessary — to split this file into two: a header file, say
my_plugin.h, and the my_plugin.cc file (or, if you prefer, into multiple source files). We do this
for all the existing plugins in ASPECT so that the documentation of these plugins shows up in the
doxygen-generated documentation. However, for your own plugins, there is typically no need for this
split. The only occasion where this would be useful is if some plugin actually makes use of a different
plugin (e.g., the implementation of a gravity model of your own may want to query some specifics of
a geometry model you also implemented); in that case the using plugin needs to be able to see the
declaration of the class of the used plugin, and for this you will need to put the declaration of the
latter into a header file.

e At the bottom of the my_plugin.cc file, put a statement that instantiates the plugin, documents it,
and makes it available to the parameter file handlers by registering it. This is always done using one
of the ASPECT_REGISTER_* macros that will be discussed in the next subsections; take a look at how
they are used in the existing plugins in the ASPECT source files.

e You need to compile the file. There are two ways by which this can be achieved:

— Put the my_plugin.cc into one of the ASPECT source directories and call cmake . followed by
make to ensure that it actually gets compiled. This approach has the advantage that you do not
need to worry much about how the file actually gets compiled. On the other hand, every time
you modify the file, calling make requires not only compiling this one file, but also link ASPECT.
Furthermore, when you upgrade from one version of ASPECT to another, you need to remember
to copy the my_plugin.cc file.

— Put the my_plugin.cc file into a directory of your choice and compile it into a shared library
yourself. This may be as easy as calling

g++ -I/path/to/aspect/headers -I/path/to/deal.II/headers \backslash
-fPIC -shared my_plugin.cc -o my_plugin.so

on Linux, but the command may be different on other systems. Now you only need to tell
ASPECT to load this shared library at startup so that the plugin becomes available at run time
and can be selected from the input parameter file. This is done using the Additional shared
libraries parameter in the input file, see Section 5.2. This approach has the upside that you can
keep all files that define new plugins in your own directories where you also run the simulations,
also making it easier to keep around your plugins as you upgrade your ASPECT installation. On
the other hand, compiling the file into a shared library is a bit more that you need to do yourself.
Nevertheless, this is the preferred approach.

In practice, the compiler line above can become tedious because it includes paths to the ASPECT
and DEAL.II header files, but possibly also other things such as Trilinos headers, etc. Having to

284

doc/doxygen/structaspect_1_1Introspection.html

remember all of these pieces is a hassle, and a much easier way is in fact to set up a mini-CMake
project for this. To this end, simply copy the file doc/plugin-CMakeLists.txt to the directory
where you have your plugin source files and rename it to CMakeLists.txt.

You can then just run the commands

cmake -DASPECT_DIR=/path/to/aspect
make

and it should compile your plugin files into a shared library my_plugin.so. A concrete example of this
process is discussed in Section 6.4.1. Of course, you may want to choose different names for the source
files source_1.cc, source_2.cc or the name of the plugin my_plugin.

In essence, what these few lines do is that they find an ASPECT installation (i.e., the directory where
you configured and compiled it, which may be the same directory as where you keep your sources, or
a different one, as discussed in Section 3) in either the directory explicitly specified in the ASPECT_DIR
variable passed to cmake, the shell environment, or just one directory up. It then sets up compiler
paths and similar, and the following lines simply define the name of a plugin, list the source files for
it, and define everything that’s necessary to compile them into a shared library. Calling make on the
command line then simply compiles everything.

Note: Complex projects built on ASPECT often require plugins of more than just one kind.
For example, they may have plugins for the geometry, the material model, and for postpro-
cessing. In such cases, you can either define multiple shared libraries by repeating the calls to
PROJECT, ADD_LIBRARY and ASPECT_SETUP_PLUGIN for each shared library in your CMakeLists.txt
file above, or you can just compile all of your source files into a single shared library. In the lat-
ter case, you only need to list a single library in your input file, but each plugin will still be
selectable in the various sections of your input file as long as each of your classes has a corre-
sponding ASPECT_REGISTER_* statement somewhere in the file where you have its definition. An
even simpler approach is to just put everything into a single file — there is no requirement that
different plugins are in separate files, though this is often convenient from a code organization
point of view.

Note: If you choose to compile your plugins into a shared library yourself, you will need to
recompile them every time you upgrade your ASPECT installation since we do not guarantee
that the ASPECT application binary interface (ABI) will remain stable, even if it may not be
necessary to actually change anything in the implementation of your plugin.

7.3 Materials, geometries, gravitation and other plugin types
7.3.1 Material models

The material model is responsible for describing the various coefficients in the equations that ASPECT
solves. To implement a new material model, you need to overload the aspect::MaterialModel::Interface class
and use the ASPECT_REGISTER_MATERIAL _MODEL macro to register your new class. The implementation of the
new class should be in namespace aspect: :MaterialModel. An example of a material model implemented
this way is given in Section 6.4.9.

Specifically, your new class needs to implement the following interface:

template <int dim>
class aspect::MaterialModel: :Interface

{

285

doc/plugin-CMakeLists.txt
doc/doxygen/classaspect_1_1MaterialModel_1_1Interface.html

public:
// Physical parameters used in the basic equations
virtual void evaluate(const MaterialModelInputs &in, MaterialModelOutputs &out) const=0;

virtual bool is_compressible () const = 0;

// Reference quantities
virtual double reference_viscosity () const = 0;

virtual double reference_density () const = 0;

virtual double reference_thermal_expansion_coefficient () const = 0;

// Auziliary material properties used for postprocessing
virtual double
seismic_Vp (const double temperature,
const double pressure,
const std::vector<double> &compositional_fields,
const Point<dim> &position) const;

virtual double

seismic_Vs (const double temperature,
const double pressure,
const std::vector<double> &compositional_fields,
const Point<dim> &position) const;

virtual unsigned int
thermodynamic_phase (const double temperature,
const double pressure,
const std::vector<double> &compositional_fields) const;

// Functions used in dealing with run—time parameters
static void
declare_parameters (ParameterHandler &prm);

virtual void
parse_parameters (ParameterHandler &prm);
// Optional:

virtual void initialize ();

virtual void update ();

}

The main properties of the material are computed in the function evaluate() that takes a struct of type
MaterialModellnputs and is supposed to fill a MaterialModelOutputs structure. For performance reasons
this function is handling lookups at an arbitrary number of positions, so for each variable (for example
viscosity), a std::vector is returned. The following members of MaterialModelOutputs need to be filled:

struct MaterialModelOutputs

{
std: :vector<double> viscosities;
std: :vector<double> densities;

286

std::vector<double> thermal_expansion_coefficients;
std::vector<double> specific_heat;

std: :vector<double> thermal_conductivities;
std::vector<double> compressibilities;

}

The variables refer to the coefficients 7, Cp, k, p in equations (1)—(3), each as a function of temperature,
pressure, position, compositional fields and, in the case of the viscosity, the strain rate (all handed in by
MaterialModelInputs). Implementations of evaluate() may of course choose to ignore dependencies on any
of these arguments.

The remaining functions are used in postprocessing as well as handling run-time parameters. The exact
meaning of these member functions is documented in the aspect::MaterialModel::Interface class documen-
tation. Note that some of the functions listed above have a default implementation, as discussed on the
documentation page just mentioned.

The function is_compressible returns whether we should consider the material as compressible or not,
see Section 2.10.1 on the Boussinesq model. As discussed there, incompressibility as described by this
function does not necessarily imply that the density is constant; rather, it may still depend on temperature
or pressure. In the current context, compressibility simply means whether we should solve the continuity
equation as V - (pu) = 0 (compressible Stokes) or as V - u = 0 (incompressible Stokes).

The purpose of the parameter handling functions has been discussed in the general overview of plugins
above.

The functions initialize() and update() can be implemented if desired (the default implementation does
nothing) and are useful if the material model has internal state. The function initialize() is called once during
the initialization of ASPECT and can be used to allocate memory, initialize state, or read information from
an external file. The function update() is called at the beginning of every time step.

Additionally, every material model has a member variable “model_dependence”, declared in the Interface
class, which can be accessed from the plugin as “this—model_dependence”. This structure describes the
nonlinear dependence of the various coefficients on pressure, temperature, composition or strain rate. This
information will be used in future versions of ASPECT to implement a fully nonlinear solution scheme based
on, for example, a Newton iteration. The initialization of this variable is optional, but only plugins that
declare correct dependencies can benefit from these solver types. All packaged material models declare their
dependencies in the parse_parameters() function and can be used as a starting point for implementations of
new material models.

Older versions of ASPECT used to have individual functions like viscosity() instead of the evaluate()
function discussed above. They are now a deprecated way of implementing a material model. You can get
your old model working by deriving from InterfaceCompatibility instead of Interface.

7.3.2 Heating models
7.3.3 Geometry models

The geometry model is responsible for describing the domain in which we want to solve the equations. A
domain is described in DEAL.II by a coarse mesh and, if necessary, an object that characterizes the boundary.
Together, these two suffice to reconstruct any domain by adaptively refining the coarse mesh and placing new
nodes generated by refining cells onto the surface described by the boundary object. The geometry model is
also responsible for marking different parts of the boundary with different boundary indicators for which one
can then, in the input file, select whether these boundaries should be Dirichlet-type (fixed temperature) or
Neumann-type (no heat flux) boundaries for the temperature, and what kind of velocity conditions should
hold there. In DEAL.II, a boundary indicator is a number of type types: :boundary_id, but since boundaries
are hard to remember and get right in input files, geometry models also have a function that provide a map
from symbolic names that can be used to describe pieces of the boundary to the corresponding boundary
indicators. For example, the simple box geometry model in 2d provides the map {"left"—0, "right"—1,

287

To be written

doc/doxygen/classaspect_1_1MaterialModel_1_1Interface.html
doc/doxygen/classaspect_1_1MaterialModel_1_1Interface.html

"bottom"—2,"top"—3}, and we have consistently used these symbolic names in the input files used in this
manual.

To implement a new geometry model, you need to overload the aspect::GeometryModel::Interface class
and use the ASPECT_REGISTER_GEOMETRY_MODEL macro to register your new class. The implementation of the
new class should be in namespace aspect: : GeometryModel.

Specifically, your new class needs to implement the following basic interface:

template <int dim>
class aspect::GeometryModel: :Interface
{
public:
virtual
void
create_coarse_mesh (parallel::distributed::Triangulation<dim> &coarse_grid) const = 0;

virtual
double
length_scale () const = 0;

virtual
double depth(const Point<dim> &position) const = 0;

virtual
Point<dim> representative_point(const double depth) const = 0;

virtual
double maximal_depth() const = 0;

virtual
std::set<types::boundary_id_t>
get_used_boundary_indicators () const = 0;

virtual
std: :map<std::string,types: :boundary_id>
get_symbolic_boundary_names_map () const;

static
void
declare_parameters (ParameterHandler &prm);

virtual
void
parse_parameters (ParameterHandler &prm) ;

};

The kind of information these functions need to provide is extensively discussed in the documentation of
this interface class at aspect::GeometryModel::Interface. The purpose of the last two functions has been
discussed in the general overview of plugins above.

The create_coarse mesh function does not only create the actual mesh (i.e., the locations of the vertices
of the coarse mesh and how they connect to cells) but it must also set the boundary indicators for all parts
of the boundary of the mesh. The DEAL.II glossary describes the purpose of boundary indicators as follows:

In a Triangulation object, every part of the boundary is associated with a unique number (of
type types: :boundary_id) that is used to identify which boundary geometry object is responsible
to generate new points when the mesh is refined. By convention, this boundary indicator is also
often used to determine what kinds of boundary conditions are to be applied to a particular part

288

doc/doxygen/classaspect_1_1GeometryModel_1_1Interface.html
doc/doxygen/classaspect_1_1GeometryModel_1_1Interface.html

of a boundary. The boundary is composed of the faces of the cells and, in 3d, the edges of these
faces.

By default, all boundary indicators of a mesh are zero, unless you are reading from a mesh file
that specifically sets them to something different, or unless you use one of the mesh generation
functions in namespace GridGenerator that have a ’colorize’ option. A typical piece of code that
sets the boundary indicator on part of the boundary to something else would look like this, here
setting the boundary indicator to 42 for all faces located at x = —1:

for (typename Triangulation<dim>::active_cell_iterator

cell = triangulation.begin_active();

cell != triangulation.end();

++cell)

for (unsigned int f=0; f<GeometryInfo<dim>::faces_per_cell; ++f)

if (cell->face(f)->at_boundary())

if (cell->face(f)->center() [0] == -1)
cell->face(f)->set_boundary_indicator (42);

This calls functions TriaAccessor: :set_boundary_indicator. In 3d, it may also be appropriate
to call TriaAccessor: :set_all boundary_indicators instead on each of the selected faces. To
query the boundary indicator of a particular face or edge, use TriaAccessor: :boundary_indicator.

The code above only sets the boundary indicators of a particular part of the boundary, but it
does not by itself change the way the Triangulation class treats this boundary for the purposes
of mesh refinement. For this, you need to call Triangulation::set_boundary to associate a
boundary object with a particular boundary indicator. This allows the Triangulation object to
use a different method of finding new points on faces and edges to be refined; the default is to use
a StraightBoundary object for all faces and edges. The results section of step-49 has a worked
example that shows all of this in action.

The second use of boundary indicators is to describe not only which geometry object to use on
a particular boundary but to select a part of the boundary for particular boundary conditions.

[i]

Note: Boundary indicators are inherited from mother faces and edges to their children upon
mesh refinement. Some more information about boundary indicators is also presented in a section
of the documentation of the Triangulation class.

Two comments are in order here. First, if a coarse triangulation’s faces already accurately represent where
you want to pose which boundary condition (for example to set temperature values or determine which are
no-flow and which are tangential flow boundary conditions), then it is sufficient to set these boundary
indicators only once at the beginning of the program since they will be inherited upon mesh refinement to
the child faces. Here, at the beginning of the program is equivalent to inside the create_coarse mesh())
function of the geometry module shown above that generates the coarse mesh.

Secondly, however, if you can only accurately determine which boundary indicator should hold where
on a refined mesh — for example because the coarse mesh is the cube [0, L]® and you want to have a fixed
velocity boundary describing an extending slab only for those faces for which z > L — Lg,;, — then you need
a way to set the boundary indicator for all boundary faces either to the value representing the slab or the
fluid underneath after every mesh refinement step. By doing so, child faces can obtain boundary indicators
different from that of their parents. DEAL.II triangulations support this kind of operations using a so-called
post-refinement signal. In essence, what this means is that you can provide a function that will be called by
the triangulation immediately after every mesh refinement step.

The way to do this is by writing a function that sets boundary indicators and that will be called by the
Triangulation class. The triangulation does not provide a pointer to itself to the function being called,

289

nor any other information, so the trick is to get this information into the function. C++ provides a nice
mechanism for this that is best explained using an example:

#include <deal.II/base/std_cxxl1x/bind.h>

template <int dim>
void set_boundary_indicators (parallel::distributed::Triangulation<dim> &triangulation)
{

set boundary indicators on the triangulation object

template <int dim>

void

MyGeometry<dim>: :

create_coarse_mesh (parallel::distributed::Triangulation<dim> &coarse_grid) const

{

create the coarse mesh ...

coarse_grid.signals.post_refinement.connect
(std_cxxlx::bind (&set_boundary_indicators<dim>,
std_cxxlx: :ref (coarse_grid)));

}

What the call to std_cxx1x::bind does is to produce an object that can be called like a function
with no arguments. It does so by taking the address of a function that does, in fact, take an argument but
permanently fix this one argument to a reference to the coarse grid triangulation. After each refinement step,
the triangulation will then call the object so created which will in turn call set_boundary_indicators<dim>
with the reference to the coarse grid as argument.

This approach can be generalized. In the example above, we have used a global function that will be
called. However, sometimes it is necessary that this function is in fact a member function of the class that
generates the mesh, for example because it needs to access run-time parameters. This can be achieved as
follows: assuming the set_boundary_indicators() function has been declared as a (non-static, but possibly
private) member function of the MyGeometry class, then the following will work:

#include <deal.II/base/std_cxxlx/bind.h>

template <int dim>

void

MyGeometry<dim>: :

set_boundary_indicators (parallel::distributed::Triangulation<dim> &triangulation) const

{

set boundary indicators on the triangulation object

template <int dim>

void

MyGeometry<dim>::

create_coarse_mesh (parallel::distributed::Triangulation<dim> &coarse_grid) const

{

create the coarse mesh ...

coarse_grid.signals.post_refinement.connect
(std_cxx1x::bind (&MyGeometry<dim>::set_boundary_indicators,
std_cxx1x::cref (xthis),
std_cxxlx: :ref (coarse_grid)));

290

}

Here, like any other member function, set_boundary_indicators implicitly takes a pointer or reference to
the object it belongs to as first argument. std: :bind again creates an object that can be called like a global
function with no arguments, and this object in turn calls set_boundary_indicators with a pointer to the
current object and a reference to the triangulation to work on. Note that because the create_coarse mesh
function is declared as const, it is necessary that the set_boundary_indicators function is also declared
const.

Note: For reasons that have to do with the way the parallel: :distributed: :Triangulation is
implemented, functions that have been attached to the post-refinement signal of the triangulation
are called more than once, sometimes several times, every time the triangulation is actually refined.

7.3.4 Gravity models

The gravity model is responsible for describing the magnitude and direction of the gravity vector at each point
inside the domain. To implement a new gravity model, you need to overload the aspect::GravityModel::Interface
class and use the ASPECT_REGISTER_GRAVITY_MODEL macro to register your new class. The implementation
of the new class should be in namespace aspect: :GravityModel.

Specifically, your new class needs to implement the following basic interface:

template <int dim>
class aspect::GravityModel::Interface
{
public:
virtual
Tensor<1,dim>
gravity_vector (const Point<dim> &position) const = 0;

virtual
void
update ();

static
void
declare_parameters (ParameterHandler &prm);

virtual
void
parse_parameters (ParameterHandler &prm) ;

};

The kind of information these functions need to provide is discussed in the documentation of this interface
class at aspect::GravityModel::Interface. The first needs to return a gravity vector at a given position,
whereas the second is called at the beginning of each time step, for example to allow a model to update itself
based on the current time or the solution of the previous time step. The purpose of the last two functions
has been discussed in the general overview of plugins above.

7.3.5 Initial conditions

The initial conditions model is responsible for describing the initial temperature distribution throughout the
domain. It essentially has to provide a function that for each point can return the initial temperature. Note
that the model (1)—(3) does not require initial values for the pressure or velocity. However, if coefficients
are nonlinear, one can significantly reduce the number of initial nonlinear iterations if a good guess for them

291

doc/doxygen/classaspect_1_1GravityModel_1_1Interface.html
doc/doxygen/classaspect_1_1GravityModel_1_1Interface.html

is available; consequently, ASPECT initializes the pressure with the adiabatically computed hydrostatic
pressure, and a zero velocity. Neither of these two has to be provided by the objects considered in this
section.

To implement a new initial conditions model, you need to overload the aspect::InitialConditions::Interface
class and use the ASPECT_REGISTER_INITIAL_CONDITIONS macro to register your new class. The implemen-
tation of the new class should be in namespace aspect::InitialConditions.

Specifically, your new class needs to implement the following basic interface:

template <int dim>
class aspect::InitialConditions::Interface
{
public:
void
initialize (const GeometryModel::Interface<dim> &geometry_model,
const BoundaryTemperature::Interface<dim> &boundary_temperature,
const AdiabaticConditions<dim> &adiabatic_conditions) ;
virtual
double
initial_temperature (const Point<dim> &position) const = 0;
static
void
declare_parameters (ParameterHandler &prm) ;
virtual
void
parse_parameters (ParameterHandler &prm);
I

The meaning of the first class should be clear. The purpose of the last two functions has been discussed in
the general overview of plugins above.

7.3.6 Prescribed velocity boundary conditions

Most of the time, one chooses relatively simple boundary values for the velocity: either a zero boundary
velocity, a tangential flow model in which the tangential velocity is unspecified but the normal velocity is
zero at the boundary, or one in which all components of the velocity are unspecified (i.e., for example, an
outflow or inflow condition where the total stress in the fluid is assumed to be zero). However, sometimes
we want to choose a velocity model in which the velocity on the boundary equals some prescribed value.
A typical example is one in which plate velocities are known, for example their current values or historical
reconstructions. In that case, one needs a model in which one needs to be able to evaluate the velocity at
individual points at the boundary. This can be implemented via plugins.

To implement a new boundary velocity model, you need to overload the aspect::VelocityBoundaryConditions::Interface
class and use the ASPECT_REGISTER_VELOCITY_BOUNDARY_CONDITIONS macro to register your new class. The
implementation of the new class should be in namespace aspect: :VelocityBoundaryConditions.

Specifically, your new class needs to implement the following basic interface:

template <int dim>
class aspect::VelocityBoundaryConditions: :Interface
{
public:
virtual
Tensor<1,dim>
boundary_velocity (const Point<dim> &position) const = 0;

292

doc/doxygen/classaspect_1_1InitialConditions_1_1Interface.html
doc/doxygen/classaspect_1_1VelocityBoundaryConditions_1_1Interface.html

virtual
void
initialize (const GeometryModel::Interface<dim> &geometry_model);

virtual
void
update ();

static
void
declare_parameters (ParameterHandler &prm);

virtual
void
parse_parameters (ParameterHandler &prm);

}s;

The first of these functions needs to provide the velocity at the given point. The next two are other member
functions that can (but need not) be overloaded if a model wants to do initialization steps at the beginning
of the program or at the beginning of each time step. Examples are models that need to call an external
program to obtain plate velocities for the current time, or from historical records, in which case it is far
cheaper to do so only once at the beginning of the time step than for every boundary point separately. See,
for example, the aspect::VelocityBoundaryConditions::GPlates class.

The remaining functions are obvious, and are also discussed in the documentation of this interface class
at aspect::VelocityBoundaryConditions::Interface. The purpose of the last two functions has been discussed
in the general overview of plugins above.

7.3.7 Temperature boundary conditions

The boundary conditions are responsible for describing the temperature values at those parts of the boundary
at which the temperature is fixed (see Section 7.3.3 for how it is determined which parts of the boundary
this applies to).

To implement a new boundary conditions model, you need to overload the aspect::BoundaryTemperature::Interface
class and use the ASPECT_REGISTER_BOUNDARY_TEMPERATURE MODEL macro to register your new class. The
implementation of the new class should be in namespace aspect: :BoundaryTemperature.

Specifically, your new class needs to implement the following basic interface:

template <int dim>
class aspect::BoundaryTemperature::Interface

{
public:

virtual

double

temperature (const GeometryModel::Interface<dim> &geometry_model,
const unsigned int boundary_indicator,
const Point<dim> &location) comnst = 0;

virtual

double minimal_temperature () const = 0;

virtual

double maximal_temperature () const = 0;

static

293

doc/doxygen/classaspect_1_1VelocityBoundaryConditions_1_1GPlates.html
doc/doxygen/classaspect_1_1VelocityBoundaryConditions_1_1Interface.html
doc/doxygen/classaspect_1_1BoundaryTemperature_1_1Interface.html

void
declare_parameters (ParameterHandler &prm);

virtual
void
parse_parameters (ParameterHandler &prm) ;

};

The first of these functions needs to provide the fixed temperature at the given point. The geometry model
and the boundary indicator of the particular piece of boundary on which the point is located is also given
as a hint in determining where this point may be located; this may, for example, be used to determine if a
point is on the inner or outer boundary of a spherical shell. The remaining functions are obvious, and are
also discussed in the documentation of this interface class at aspect::BoundaryTemperature::Interface. The
purpose of the last two functions has been discussed in the general overview of plugins above.

7.3.8 Postprocessors: Evaluating the solution after each time step

Postprocessors are arguably the most complex and powerful of the plugins available in ASPECT since they
do not only passively provide any information but can actually compute quantities derived from the solution.
They are executed once at the end of each time step and, unlike all the other plugins discussed above, there
can be an arbitrary number of active postprocessors in the same program (for the plugins discussed in
previous sections it was clear that there is always exactly one material model, geometry model, etc.).

Motivation. The original motivation for postprocessors is that the goal of a simulation is of course not
the simulation itself, but that we want to do something with the solution. Examples for already existing
postprocessors are:

e Generating output in file formats that are understood by visualization programs. This is facilitated
by the aspect::Postprocess::Visualization class and a separate class of visualization postprocessors, see
Section 7.3.9.

e Computing statistics about the velocity field (e.g., computing minimal, maximal, and average ve-
locities), temperature field (minimal, maximal, and average temperatures), or about the heat fluxes
across boundaries of the domain. This is provided by the aspect::Postprocess::VelocityStatistics, as-
pect::Postprocess:: TemperatureStatistics, aspect::Postprocess::HeatFluxStatistics classes, respectively.

Since writing this text, there may have been other additions as well.

However, postprocessors can be more powerful than this. For example, while the ones listed above are
by and large stateless, i.e., they do not carry information from one invocation at one timestep to the next
invocation,?” there is nothing that prohibits postprocessors from doing so. For example, the following ideas
would fit nicely into the postprocessor framework:

e Passive tracers: If one would like to follow the trajectory of material as it is advected along with the
flow field, one technique is to use tracer particles. To implement this, one would start with an initial
population of particles distributed in a certain way, for example close to the core-mantle boundary.
At the end of each time step, one would then need to move them forward with the flow field by one
time increment. As long as these particles do not affect the flow field (i.e., they do not carry any
information that feeds into material properties; in other words, they are passive), their location could
well be stored in a postprocessor object and then be output in periodic intervals for visualization. In
fact, such a passive tracer postprocessor is already available.

37This is not entirely true. The visualization plugin keeps track of how many output files it has already generated, so that
they can be numbered consecutively.

294

doc/doxygen/classaspect_1_1BoundaryTemperature_1_1Interface.html
doc/doxygen/classaspect_1_1Postprocess_1_1Visualization.html
doc/doxygen/classaspect_1_1Postprocess_1_1VelocityStatistics.html
doc/doxygen/classaspect_1_1Postprocess_1_1TemperatureStatistics.html
doc/doxygen/classaspect_1_1Postprocess_1_1TemperatureStatistics.html
doc/doxygen/classaspect_1_1Postprocess_1_1HeatFluxStatistics.html

e Surface or crustal processes: Another possibility would be to keep track of surface or crustal processes
induced by mantle flow. An example would be to keep track of the thermal history of a piece of crust
by updating it every time step with the heat flux from the mantle below. One could also imagine
integrating changes in the surface topography by considering the surface divergence of the surface
velocity computed in the previous time step: if the surface divergence is positive, the topography is
lowered, eventually forming a trench; if the divergence is negative, a mountain belt eventually forms.

In all of these cases, the essential limitation is that postprocessors are passive, i.e., that they do not affect
the simulation but only observe it.

The statistics file. Postprocessors fall into two categories: ones that produce lots of output every time
they run (e.g., the visualization postprocessor), and ones that only produce one, two, or in any case a small
and fixed number of often numerical results (e.g., the postprocessors computing velocity, temperature, or
heat flux statistics). While the former are on their own in implementing how they want to store their data
to disk, there is a mechanism in place that allows the latter class of postprocessors to store their data into
a central file that is updated at the end of each time step, after all postprocessors are run.

To this end, the function that executes each of the postprocessors is given a reference to a dealii: :TableHandler
object that allows to store data in named columns, with one row for each time step. This table is then stored
in the statistics file in the directory designated for output in the input parameter file. It allows for easy
visualization of trends over all time steps. To see how to put data into this statistics object, take a look at
the existing postprocessor objects.

Note that the data deposited into the statistics object need not be numeric in type, though it often is.
An example of text-based entries in this table is the visualization class that stores the name of the graphical
output file written in a particular time step.

Implementing a postprocessor. Ultimately, implementing a new postprocessor is no different than any
of the other plugins. Specifically, you’ll have to write a class that overloads the aspect::Postprocess::Interface
base class and use the ASPECT_REGISTER_POSTPROCESSOR macro to register your new class. The implemen-
tation of the new class should be in namespace aspect: :Postprocess.

In reality, however, implementing new postprocessors is often more difficult. Primarily, this difficulty
results from two facts:

e Postprocessors are not self-contained (only providing information) but in fact need to access the solution
of the model at each time step. That is, of course, the purpose of postprocessors, but it requires that
the writer of a plugin has a certain amount of knowledge of how the solution is computed by the main
Simulator class, and how it is represented in data structures. To alleviate this somewhat, and to
insulate the two worlds from each other, postprocessors do not directly access the data structures of
the simulator class. Rather, in addition to deriving from the aspect::Postprocess::Interface base class,
postprocessors also derive from the SimulatorAccess class that has a number of member functions
postprocessors can call to obtain read-only access to some of the information stored in the main class
of ASPECT. See the documentation of this class to see what kind of information is available to
postprocessors. See also Section 7.1 for more information about the SimulatorAccess class.

e Writing a new postprocessor typically requires a fair amount of knowledge how to leverage the DEAL.II
library to extract information from the solution. The existing postprocessors are certainly good exam-
ples to start from in trying to understand how to do this.

Given these comments, the interface a postprocessor class has to implement is rather basic:

template <int dim>
class aspect::Postprocess::Interface
{
public:
virtual

295

doc/doxygen/classaspect_1_1Postprocess_1_1Interface.html
doc/doxygen/classaspect_1_1Postprocess_1_1Interface.html
doc/doxygen/classaspect_1_1SimulatorAccess.html
doc/doxygen/classaspect_1_1SimulatorAccess.html

std::pair<std::string,std::string>
execute (TableHandler &statistics) = 0;

virtual
void
save (std::map<std::string, std::string> &status_strings) const;

virtual
void
load (const std::map<std::string, std::string> &status_strings);

static
void
declare_parameters (ParameterHandler &prm);

virtual
void
parse_parameters (ParameterHandler &prm) ;

};

The purpose of these functions is described in detail in the documentation of the aspect::Postprocess::Interface
class. While the first one is responsible for evaluating the solution at the end of a time step, the save/load
functions are used in checkpointing the program and restarting it at a previously saved point during the
simulation. The first of these functions therefore needs to store the status of the object as a string under a
unique key in the database described by the argument, while the latter function restores the same state as
before by looking up the status string under the same key. The default implementation of these functions is
to do nothing; postprocessors that do have non-static member variables that contain a state need to overload
these functions.

There are numerous postprocessors already implemented. If you want to implement a new one, it would
be helpful to look at the existing ones to see how they implement their functionality.

Postprocessors and checkpoint/restart. Postprocessors have save() and load() functions that are
used to write the data a postprocessor has into a checkpoint file, and to load it again upon restart. This is
important since many postprocessors store some state — say, a temporal average over all the time steps seen
so far, or the number of the last graphical output file generated so that we know how the next one needs to
be numbered.

The typical case is that this state is the same across all processors of a parallel computation. Consequently,
what ASPECT writes into the checkpoint file is only the state obtained from the postprocessors on processor
0 of a parallel computation. On restart, all processors read from the same file and the postprocessors on all
processors will be initialized by what the same postprocessor on processor 0 wrote.

There are situations where postprocessors do in fact store complementary information on different proces-
sors. At the time of writing this, one example is the postprocessor that supports advecting passive particles
along the velocity field: on every processor, it handles only those particles that lie inside the part of the
domain that is owned by this MPI rank. The serialization approach outlined above can not work in this
case, for obvious reasons. In cases like this, one needs to implement the save () and load() differently than
usual: one needs to put all variables that are common across processors into the maps of string as usual, but
one then also needs to save all state that is different across processors, from all processors. There are two
ways: If the amount of data is small, you can use MPI communications to send the state of all processors
to processor zero, and have processor zero store it in the result so that it gets written into the checkpoint
file; in the load () function, you will then have to identify which part of the text written by processor 0 is
relevant to the current processor. Or, if your postprocessor stores a large amount of data, you may want to
open a restart file specifically for this postprocessor, use MPI I/O or other ways to write into it, and do the
reverse operation in load ().

296

doc/doxygen/classaspect_1_1Postprocess_1_1Interface.html

Note that this approach requires that ASPECT actually calls the save() function on all processors.
This in fact happens — though ASPECT also discards the result on all but processor zero.

7.3.9 Visualization postprocessors

As mentioned in the previous section, one of the postprocessors that are already implemented in ASPECT
is the aspect::Postprocess::Visualization class that takes the solution and outputs it as a collection of files
that can then be visualized graphically, see Section 4.4. The question is which variables to output: the
solution of the basic equations we solve here is characterized by the velocity, pressure and temperature; on
the other hand, we are frequently interested in derived, spatially and temporally variable quantities such as
the viscosity for the actual pressure, temperature and strain rate at a given location, or seismic wave speeds.

ASPECT already implements a good number of such derived quantities that one may want to visualize.
On the other hand, always outputting all of them would yield very large output files, and would furthermore
not scale very well as the list continues to grow. Consequently, as with the postprocessors described in the
previous section, what can be computed is implemented in a number of plugins and what is computed is
selected in the input parameter file (see Section 5.100).

Defining visualization postprocessors works in much the same way as for the other plugins discussed in this
section. Specifically, an implementation of such a plugin needs to be a class that derives from interface classes,
should by convention be in namespace aspect: :Postprocess: :VisualizationPostprocessors, and is reg-
istered using a macro, here called ASPECT_REGISTER_VISUALIZATION POSTPROCESSOR. Like the postprocessor
plugins, visualization postprocessors can derive from class aspect::Postprocess::SimulatorAccess if they need
to know specifics of the simulation such as access to the material models and to get access to the introspection
facility outlined in Section 7.1. A typical example is the plugin that produces the viscosity as a spatially vari-
able field by evaluating the viscosity function of the material model using the pressure, temperature and loca-
tion of each visualization point (implemented in the aspect: :Postprocess: :VisualizationPostprocessors: :Viscosity
class). On the other hand, a hypothetical plugin that simply outputs the norm of the strain rate y/e(u) : €(u)
would not need access to anything but the solution vector (which the plugin’s main function is given as an
argument) and consequently is not derived from the aspect::Postprocess::SimulatorAccess class.?®

Visualization plugins can come in two flavors:

e Plugins that compute things from the solution in a pointwise way: The classes in this group are de-
rived not only from the respective interface class (and possibly the SimulatorAccess class) but also
from the deal.Il class DataPostprocessor or any of the classes like DataPostprocessorScalar or
DataPostprocessorVector. These classes can be thought of as filters: DataOut will call a func-
tion in them for every cell and this function will transform the values or gradients of the solution
and other information such as the location of quadrature points into the desired quantity to out-
put. A typical case would be if the quantity g(x) you want to output can be written as a function
g(x) = G(u(x), Vu(x),x,...) in a pointwise sense where u(z) is the value of the solution vector (i.e.,
the velocities, pressure, temperature, etc) at an evaluation point. In the context of this program an
example would be to output the density of the medium as a spatially variable function since this is a
quantity that for realistic media depends pointwise on the values of the solution.

To sum this, slightly confusing multiple inheritance up, visualization postprocessors do the following;:

— If necessary, they derive from aspect::Postprocess::SimulatorAccess.

— They derive from aspect::Postprocess::VisualizationPostprocessors::Interface. The functions of
this interface class are all already implemented as doing nothing in the base class but can be
overridden in a plugin. Specifically, the following functions exist:

38The actual plugin aspect: :Postprocess: :VisualizationPostprocessors: :StrainRate only computes y/e(u) : e(u) in the

incompressible case. In the compressible case, it computes \/[e(u) — %(tr e(u)I] : [e(u) — %(tr e(u))I] instead. To test whether

the model is compressible or not, the plugin needs access to the material model object, which the class gains by deriving from
aspect::Postprocess::SimulatorAccess and then calling this->get material model() .is_compressible().

297

doc/doxygen/classaspect_1_1Postprocess_1_1Visualization.html
doc/doxygen/classaspect_1_1Postprocess_1_1SimulatorAccess.html
doc/doxygen/classaspect_1_1Postprocess_1_1SimulatorAccess.html
doc/doxygen/classaspect_1_1SimulatorAccess.html
doc/doxygen/classaspect_1_1Postprocess_1_1SimulatorAccess.html
doc/doxygen/classaspect_1_1Postprocess_1_1VisualizationPostprocessors_1_1Interface.html
doc/doxygen/classaspect_1_1Postprocess_1_1SimulatorAccess.html

class Interface
{
public:
static
void
declare_parameters (ParameterHandler &prm);

virtual
void
parse_parameters (ParameterHandler &prm) ;

virtual
void save (std::map<std::string, std::string> &status_strings) const;

virtual
void load (const std::map<std::string, std::string> &status_strings);

};

— They derive from either the dealii: :DataPostprocessor class, or the simpler to use dealii: :DataPostprocesso:
or dealii: :DataPostprocessorVector classes. For example, to derive from the second of these
classes, the following interface functions has to be implemented:

class dealii::DataPostprocessorScalar
{
public:
virtual
void
compute_derived_quantities_vector
(const std::vector<Vector<double> > &uh,
const std::vector<std::vector<Tensor<l,dim> > > &duh,
const std::vector<std::vector<Tensor<2,dim> > > &dduh,
const std::vector<Point<dim> > &normals,
const std::vector<Point<dim> > &evaluation_points,
std::vector<Vector<double> > &computed_quantities) const;
};

What this function does is described in detail in the deal.Il documentation. In addition, one has to
write a suitable constructor to call dealii: :DataPostprocessorScalar: :DataPostprocessorScalar.

e Plugins that compute things from the solution in a cellwise way: The second possibility is for a class to
not derive from dealii: :DataPostprocessor but instead from the aspect::Postprocess:: VisualizationPostprocessors::Ce
class. In this case, a visualization postprocessor would generate and return a vector that consists of one
element per cell. The intent of this option is to output quantities that are not pointwise functions of the
solution but instead can only be computed as integrals or other functionals on a per-cell basis. A typi-
cal case would be error estimators that do depend on the solution but not in a pointwise sense; rather,
they yield one value per cell of the mesh. See the documentation of the CellDataVectorCreator class
for more information.

If all of this sounds confusing, we recommend consulting the implementation of the various visualization
plugins that already exist in the ASPECT sources, and using them as a template.

298

doc/doxygen/classaspect_1_1Postprocess_1_1VisualizationPostprocessors_1_1CellDataVectorCreator.html

7.3.10 Mesh refinement criteria

Despite research since the mid-1980s, it isn’t completely clear how to refine meshes for complex situations
like the ones modeled by ASPECT. The basic problem is that mesh refinement criteria either can refine
based on some variable such as the temperature, the pressure, the velocity, or a compositional field, but that
oftentimes this by itself is not quite what one wants. For example, we know that Earth has discontinuities,
e.g., at 440km and 610km depth. In these places, densities and other material properties suddenly change.
Their resolution in computation models is important as we know that they affect convection patterns. At
the same time, there is only a small effect on the primary variables in a computation — maybe a jump in the
second or third derivative, for example, but not a discontinuity that would be clear to see. As a consequence,
automatic refinement criteria do not always refine these interfaces as well as necessary.

To alleviate this, ASPECT has plugins for mesh refinement. Through the parameters in Section 5.82,
one can select when to refine but also which refinement criteria should be used and how they should be
combined if multiple refinement criteria are selected. Furthermore, through the usual plugin mechanism,
one can extend the list of available mesh refinement criteria (see the parameter “Strategy” in Section 5.82).
Each such plugin is responsible for producing a vector of values (one per active cell on the current processor,
though only those values for cells that the current processor owns are used) with an indicator of how badly
this cell needs to be refined: large values mean that the cell should be refined, small values that the cell may
be coarsened away.

To implement a new mesh refinement criterion, you need to overload the aspect::MeshRefinement::Interface
class and use the ASPECT_REGISTER _MESH REFINEMENT_CRITERION macro to register your new class. The im-
plementation of the new class should be in namespace aspect: :MeshRefinement.

Specifically, your new class needs to implement the following basic interface:

template <int dim>
class aspect::MeshRefinement::Interface
{
public:
virtual
void
execute (Vector<float> &error_indicators) const = 0;

static
void
declare_parameters (ParameterHandler &prm);

virtual
void
parse_parameters (ParameterHandler &prm) ;

};

The first of these functions computes the set of refinement criteria (one per cell) and returns it in the given
argument. Typical examples can be found in the existing implementations in the source/mesh_refinement
directory. As usual, your termination criterion implementation will likely need to be derived from the
SimulatorAccess to get access to the current state of the simulation.

The remaining functions are obvious, and are also discussed in the documentation of this interface class at
aspect::MeshRefinement::Interface. The purpose of the last two functions has been discussed in the general
overview of plugins above.

7.3.11 Criteria for terminating a simulation

ASPECT allows for different ways of terminating a simulation. For example, the simulation may have
reached a final time specified in the input file. However, it also allows for ways to terminate a simulation
when it has reached a steady state (or, rather, some criterion determines that it is close enough to steady

299

doc/doxygen/classaspect_1_1MeshRefinement_1_1Interface.html
doc/doxygen/classaspect_1_1MeshRefinement_1_1Interface.html

state), or by an external action such as placing a specially named file in the output directory. The criteria
determining termination of a simulation are all implemented in plugins. The parameters describing these
criteria are listed in Section 5.109.

To implement a termination criterion, you need to overload the aspect::TerminationCriteria::Interface
class and use the ASPECT_REGISTER_TERMINATION_CRITERION macro to register your new class. The imple-
mentation of the new class should be in namespace aspect: :TerminationCriteria.

Specifically, your new class needs to implement the following basic interface:

template <int dim>
class aspect::TerminationCriteria::Interface
{
public:
virtual
bool
execute () const = 0;

static
void
declare_parameters (ParameterHandler &prm);

virtual
void
parse_parameters (ParameterHandler &prm) ;

};

The first of these functions returns a value that indicates whether the simulation should be terminated. Typ-
ical examples can be found in the existing implementations in the source/termination_criteria directory.
As usual, your termination criterion implementation will likely need to be derived from the SimulatorAccess
to get access to the current state of the simulation.

The remaining functions are obvious, and are also discussed in the documentation of this interface class
at aspect::TerminationCriteria::Interface. The purpose of the last two functions has been discussed in the
general overview of plugins above.

7.4 Extending ASPECT through the signals mechanism

Not all things you may want to do fit neatly into the list of plugins of the previous sections. Rather, there
are cases where you may want to change things that are more of the one-off kind and that require code
that is at a lower level and requires more knowledge about ASPECT’s internal workings. For such changes,
we still want to stick with the general principle outlined at the beginning of Section 7: You should be able
to make all of your changes and extensions in your own files, without having to modify ASPECT’s own
sources.

To support this, ASPECT uses a “signals” mechanism. Signals are, in essence, objects that represent
events, for example the fact that the solver has finished a time step. The core of ASPECT defines a number
of such signals, and triggers them at the appropriate points. The idea of signals is now that you can connect
to them: you can tell the signal that it should call a particular function every time the signal is triggered.
The functions that are connected to a signal are called “slots” in common diction. One, several, or no slots
may be connected to each signal.

There are two kinds of signals that ASPECT provides:

e Signals that are triggered at startup of the program: These are, in essence, signals that live in some
kind of global scope. Examples are signals that declare additional parameters for use in input files, or
that read the values of these parameters from a ParameterHandler object. These signals are static
member variables of the structure that contains them and consequently exist only once for the entire
program.

300

doc/doxygen/classaspect_1_1TerminationCriteria_1_1Interface.html
doc/doxygen/classaspect_1_1TerminationCriteria_1_1Interface.html

e Signals that reference specific events that happen inside a simulator object. These are regular member
variables of the structure that contains them, and because each simulator object has such a structure,
the signals exist once per simulator object. (Which in practice is only once per program, of course.)

For both of these kinds, a user-written plugin file can (but does not need) to register functions that connect
functions in this file (i.e., slots) to their respective signals.
In the first case, code that registers slots with global signals would look like this:

// A function that will be called at the time when parameters are declared.
// It receives the dimension in which ASPECT will be run as the first argument,
// and the ParameterHandler object that holds the runtime parameter
// declarations as second argument.
void declare_parameters(const unsigned int dim,
ParameterHandler &prm)
{
prm.declare_entry("My _parameter", ...);

}

// The same for parsing parameters. ’my_parameter’ is a parameter

// that stores something we want to read from the input file

// and use in other functions in this file (which we don’t show here).
// For simplicity, we assume that it is an integer.

74

// The function also receives a first argument that contains all

// of the other (already parsed) arguments of the simulation, in

// case what you want to do here wants to refer to other parameters.
int my_parameter;

template <int dim>
void parse_parameters(const Parameters<dim> ¶meters,
ParameterHandler &prm)
{
my_parameter = prm.get_integer ("My_parameter");

}

// Now have a function that connects slots (i.e., the two functions

// above) to the static signals. Do this for both the 2d and 3d

// case for generality.

void parameter_connector ()

{
SimulatorSignals<2>::declare_additional_parameters.connect (&declare_parameters);
SimulatorSignals<3>::declare_additional_parameters.connect (&declare_parameters);

SimulatorSignals<2>::parse_additional_parameters.connect (&parse_parameters<2>);
SimulatorSignals<3>::parse_additional_parameters.connect (&parse_parameters<3>);

// Finally register the connector function above to make sure it gets run
// whenever we load a user plugin that is mentioned among the additional
// shared libraries in the input file:
ASPECT_REGISTER_SIGNALS_PARAMETER_CONNECTOR (parameter_connector)

301

The second kind of signal can be connected to once a simulator object has been created. As above, one
needs to define the slots, define a connector function, and register the connector function. The following
gives an example:

// A function that is called at the end of creating the current constraints
// on degrees of freedom (i.e., the constraints that describe, for example,
// hanging nodes, boundary conditions, etc).
template <int dim>
void post_constraints_creation (const SimulatorAccess<dim> &simulator_access,
ConstraintMatrix ¤t_constraints)

{

...; // do whatever you want to do here

}

// A function that is called from the simulator object and that can connect
// a slot (such as the function above) to any of the signals declared in the
// structure passed as argument:
template <int dim>
void signal_connector (SimulatorSignals<dim> &signals)
{

signals.post_constraints_creation.connect (&post_constraints_creation<dim>);

}

// Finally register the comnector function so that it is called whenever
// a simulator object has been set up. For technical reasons, we need to
// register both 2d and 3d versions of this function:
ASPECT_REGISTER_SIGNALS_CONNECTOR (signal_connector<2>,
signal_connector<3>)

As mentioned above, each signal may be connected to zero, one, or many slots. Consequently, you could
have multiple plugins each of which connect to the same slot, or the connector function above may just
connect multiple slots (i.e., functions in your program) to the same signal.

So what could one do in a place like this? One option would be to just monitor what is going on, e.g., in
code like this that simply outputs into the statistics file (see Section 4.4.2):

template <int dim>
void post_constraints_creation (const SimulatorAccess<dim> &simulator_access,
ConstraintMatrix ¤t_constraints)
{
simulator_access.get_statistics_object()
.add_value ("number of constraints",
current_constraints.n_constraints());

}

This will produce, for every time step (because this is how often the signal is called) an entry in a new column
in the statistics file that records the number of constraints. On the other hand, it is equally possible to also
modify the constraints object at this point. An application would be if you wanted to run a simulation where
you prescribe the velocity in a part of the domain, e.g., for a subducting slab (see Section 6.2.9).

Signals exist for various waypoints in a simulation and you can consequently monitor and change what
is happening inside a simulation by connecting your own functions to these signals. It would be pointless to
list here what signals actually exist — simply refer to the documentation of the SimulatorSignals class for a
complete list of signals you can connect to.

As a final note, it is generally true that writing functions that can connect to signals require significantly
more internal knowledge of the workings of ASPECT than writing plugins through the mechanisms outlined

302

doc/doxygen/structaspect_1_1SimulatorSignals.html

above. It also allows to affect the course of a simulation by working on the internal data structures of
ASPECT in ways that are not available to the largely passive and reactive plugins discussed in previous
sections. With this obviously also comes the potential for trouble. On the other hand, it also allows to do
things with ASPECT that were not initially intended by the authors, and that would be hard or impossible
to implement through plugins. An example would be to couple different codes by exchanging details of the
internal data structures, or even update the solution vectors using information received from another code.

7.5
The

Note: Chances are that if you think about using the signal mechanism, there is not yet a signal
that is triggered at exactly the point where you need it. Consequently, you will be tempted to
just put your code into the place where it fits inside ASPECT where it fits best. This is poor
practice: it prevents you from upgrading to a newer version of ASPECT at a later time because
this would overwrite the code you inserted.

Rather, a more productive approach would be to either define a new signal that is triggered
where you need it, and connect a function (slot) in your own plugin file to this signal using
the mechanisms outlined above. Then send the code that defines and triggers the signal to the
developers of ASPECT to make sure that it is also included in the next release. Alternatively,
you can also simply ask on the mailing lists for someone to add such a signal in the place where
you want it. Either way, adding signals is something that is easy to do, and we would much rather
add signals than have people who modify the ASPECT source files for their own needs and are
then stuck on a particular version.

Extending the basic solver

core functionality of the code, i.e., that part of the code that implements the time stepping, assembles

matrices, solves linear and nonlinear systems, etc., is in the aspect::Simulator class (see the doxygen
documentation of this class). Since the implementation of this class has more than 3,000 lines of code, it is

split
split

into several files that are all located in the source/simulator directory. Specifically, functionality is
into the following files:

source/simulator/core.cc: This file contains the functions that drive the overall algorithm (in
particular Simulator: :run) through the main time stepping loop and the functions immediately called
by Simulator: :run.

source/simulator/assembly.cc: This is where all the functions are located that are related to as-
sembling linear systems.

source/simulator/solver.cc: This file provides everything that has to do with solving and precon-
ditioning the linear systems.

source/simulator/initial _conditions.cc: The functions in this file deal with setting initial con-
ditions for all variables.

source/simulator/checkpoint_restart.cc: The location of functionality related to saving the cur-
rent state of the program to a set of files and restoring it from these files again.

source/simulator/helper_functions.cc: This file contains a set of functions that do the odd thing
in support of the rest of the simulator class.

source/simulator/parameters.cc: This is where we define and read run-time parameters that per-
tain to the top-level functionality of the program.

Obviously, if you want to extend this core functionality, it is useful to first understand the numerical
methods this class implements. To this end, take a look at the paper that describes these methods, see
[KHB12]. Further, there are two predecessor programs whose extensive documentation is at a much higher

303

doc/doxygen/classaspect_1_1Simulator.html
doc/doxygen/classaspect_1_1Simulator.html

level than the one typically found inside ASPECT itself, since they are meant to teach the basic components
of convection simulators as part of the DEAL.II tutorial:

e The step-31 program at https://www.dealii.org/developer/doxygen/deal.II/step_31.html: This
program is the first version of a convection solver. It does not run in parallel, but it introduces many
of the concepts relating to the time discretization, the linear solvers, etc.

e The step-32 program at https://www.dealii.org/developer/doxygen/deal.II/step_32.html: This
is a parallel version of the step-31 program that already solves on a spherical shell geometry. The fo-
cus of the documentation in this program is on the techniques necessary to make the program run in
parallel, as well as some of the consequences of making things run with realistic geometries, material
models, etc.

Neither of these two programs is nearly as modular as ASPECT, but that was also not the goal in creating
them. They will, however, serve as good introductions to the general approach for solving thermal convection
problems.

Note: Neither this manual, nor the documentation in ASPECT makes much of an attempt at
teaching how to use the DEAL.II library upon which ASPECT is built. Nevertheless, you will
likely have to know at least the basics of DEAL.II to successfully work on the ASPECT code. We
refer to the resources listed at the beginning of this section as well as references [BHK07, BHK12].

8 Future plans for ASPECT

We have a number of near-term plans for ASPECT that we hope to implement soon:

o [terating out the nonlinearity: In the current version of ASPECT, we use the velocity, pressure and
temperature of the previous time step to evaluate the coefficients that appear in the flow equations
(1)-(2); and the velocity and pressure of the current time step as well as the previous time step’s
temperature to evaluate the coefficients in the temperature equation (3). This is an appropriate
strategy if the model is not too nonlinear; however, it introduces inaccuracies and limits the size of the
time step if coefficients strongly depend on the solution variables.

To avoid this, one can iterate out the equations using either a fixed point or Newton scheme. Both
approaches ensure that at the end of a time step, the values of coeflicients and solution variables are
consistent. On the other hand, one may have to solve the linear systems that describe a time step
more than once, increasing the computational effort.

We have started implementing such methods using a testbase code, based on earlier experiments by
Jennifer Worthen [Worl12]. We hope to implement this feature in ASPECT early in 2012.

e Fuster 3d computations: Whichever way you look at it, 3d computations are expensive. In parallel
computations, the Stokes solve currently takes upward of 90% of the overall wallclock time, suggesting
an obvious target for improvements based on better algorithms as well as from profiling the code to
find hot spots. In particular, playing with better solver and/or preconditioner options would seem to
be a useful goal.

e Particle-based methods: It is often useful to employ particle tracers to visualize where material is being
transported. While conceptually simple, their implementation is made difficult in parallel computations
if particles cross the boundary between parts of the regions owned by individual processors, as well as
during re-partitioning the mesh between processors following mesh refinement. Eric Heien is working
on an implementation of such passive tracers.

304

https://www.dealii.org/developer/doxygen/deal.II/step_31.html
https://www.dealii.org/developer/doxygen/deal.II/step_32.html

e More realistic material models: The number of material models available in ASPECT is currently
relatively small. Obviously, how realistic a simulation is depends on how realistic a material model
is. We hope to obtain descriptions of more realistic material descriptions over time, either given
analytically or based on table-lookup of material properties.

e Melting: An important part of mantle behavior is melting. Melting not only affects the properties
of the material such as density or viscosity, but it also leads to chemical segregation and, in fact, to
the flow of two different fluids (the melt and the rock matrix) relative to each other. Modeling this
additional process would yield significant insight.

e Converting output into seismic velocities: The predictions of mantle convection codes are often difficult
to verify experimentally. On the other hand, simulations can be used to predict a seismic signature
of the earth mantle — for example the location of transition zones that can be observed using seismic
imaging. To facilitate such comparisons, it is of interest to output not only the primary solution
variables but also convert them into the primary quantity visible in seismic imaging: compressive and
shear wave velocities. Implementing this should be relatively straightforward if given a formula or table
that expresses velocities in terms of the variables computed by ASPECT.

To end this section, let us repeat something already stated in the introduction:

Note: ASPECT is a community project. As such, we encourage contributions from the com-
munity to improve this code over time. Obvious candidates for such contributions are implemen-
tations of new plugins as discussed in Section 7.3 since they are typically self-contained and do
not require much knowledge of the details of the remaining code. Obviously, however, we also
encourage contributions to the core functionality in any form!

9 Finding answers to more questions

If you have questions that go beyond this manual, there are a number of resources:

e For questions on the source code of ASPECT, portability, installation, etc., use the ASPECT develop-
ment mailing list at http://lists.geodynamics.org/cgi-bin/mailman/listinfo/aspect-devel.
This mailing list is where the ASPECT developers all hang out.

e ASPECT is primarily based on the deal.II library (the dependency on Trilinos and pdest is primarily
through deal.Il, and not directly visible in the ASPECT source code). If you have particular questions
about deal.Il, contact the mailing lists described at https://www.dealii.org/mail.html.

e In case of more general questions about mantle convection, you can contact the CIG mantle convection
mailing lists at http://lists.geodynamics.org/cgi-bin/mailman/listinfo/cig-MC.

e If you have specific questions about ASPECT that are not suitable for public and archived mailing
lists, you can contact the primary developers:

— Wolfgang Bangerth: bangerth@math.tamu.edu.

— Timo Heister: heister@clemson.edu.

305

http://lists.geodynamics.org/cgi-bin/mailman/listinfo/aspect-devel
https://www.dealii.org/mail.html
http://lists.geodynamics.org/cgi-bin/mailman/listinfo/cig-MC
bangerth@math.tamu.edu
heister@clemson.edu

References

[AHFT13]

[AHT11]

[AHT12]

[BBC*89]

[BHKO07]

[BHK12]

[BRV+04]

[BSA*13]

[Buil2]

[BWG11]

[CSGT12]

[DB14]

[DHPRF04]

[DKOS]

[DMGT11]

V. Allken, R.S. Huismans, H. Fossen, and C. Thieulot. 3D numerical modelling of graben
interaction and linkage: a case study of the Canyonlands grabens, Utah. Basin Research,
25:1-14, 2013.

V. Allken, R. Huismans, and C. Thieulot. Three dimensional numerical modelling of upper
crustal extensional systems. J. Geophys. Res., 116:B10409, 2011.

V. Allken, R. Huismans, and C. Thieulot. Factors controlling the mode of rift interac-
tion in brittle-ductile coupled systems: a 3d numerical study. Geochem. Geophys. Geosyst.,
13(5):Q05010, 2012.

B. Blankenbach, F. Busse, U. Christensen, L. Cserepes, D. Gunkel, U. Hansen, H. Harder,
G. Jarvis, M. Koch, G. Marquart, D. Moore, P. Olson, H. Schmeling, and T. Schnaubelt. A
benchmark comparison for mantle convection codes. Geophys. J. Int., 98:23-38, 1989.

W. Bangerth, R. Hartmann, and G. Kanschat. deal.Il — a general purpose object oriented finite
element library. ACM Trans. Math. Softw., 33(4):24, 2007.

W. Bangerth, T. Heister, and G. Kanschat. deal.II Differential Equations Analysis Library,
Technical Reference, 2012. http://www.dealii.org/.

J. Badro, J.-P. Rueff, G. Vanké, G. Monaco, G. Fiquet, and F. Guyot. Electronic transitions
in perovskite: Possible nonconvecting layers in the lower mantle. Science, 305:383-386, 2004.

C. Burstedde, G. Stadler, L. Alisic, L. C. Wilcox, E. Tan, M. Gurnis, and O. Ghattas. Large-
scale adaptive mantle convection simulation. Geophysical Journal International, 192.3:889-906,
2013.

S. J. H. Buiter. A review of brittle compressional wedge models. Tectonophysics, 530:1-17,
2012.

C. Burstedde, L. C. Wilcox, and O. Ghattas. pdest: Scalable algorithms for parallel adaptive
mesh refinement on forests of octrees. SIAM J. Sci. Comput., 33(3):1103-1133, 2011.

F. Crameri, H. Schmeling, G. J. Golabek, T. Duretz, R. Orendt, S. J. H. Buiter, D. A. May,
B. J. P. Kaus, T. V. Gerya, and P. J. Tackley. A comparison of numerical surface topography
calculations in geodynamic modelling: An evaluation of the ‘sticky air’ method. Geophysical
Journal International, 189(1):38-54, 2012.

C. R. Dohrmann and P. B. Bochev. A stabilized finite element method for the stokes problem
based on polynomial pressure projections. International Journal for Numerical Methods in
Fluids, 46:183-201, 20014.

J. Donea, A. Huerta, J.-Ph. Ponthot, and A. Rodriguez-Ferran. Arbitrary Lagrangian-FEulerian
Methods. John Wiley & Sons, Ltd, 2004.

Y. Deubelbeiss and B. J. P. Kaus. Comparison of eulerian and lagrangian numerical techniques
for the stokes equations in the presence of strongly varying viscosity. Physics of the Earth and
Planetary Interiors, 171:92—111, 2008.

T. Duretz, D. A. May, T. V. Garya, and P. J. Tackley. Discretization errors and free surface
stabilization in the finite difference and marker-in-cell method for applied geodynamics: A
numerical study. Geoch. Geoph. Geosystems, 12:Q07004/1-26, 2011.

306

[GTZ+12]

[H*11]
[HBH*05]

[Jeall]

[Kaul0]

[KHB12]

[KMM10]

[MD04]

[MQL*07]

[RDvHW11]

[RvHO0]

[SBE*+08]

[SP03]

[STOO1]

[Thil5)

[TMK14]

M. Gurnis, M. Turner, S. Zahirovic, L. DiCaprio, S. Spasojevic, R. D. Miiller, J. Boyden,
M. Seton, V. C. Manea, and D. J. Bower. Plate tectonic reconstructions with continuously
closing plates. Computers & Geosciences, 38:35-42, 2012.

M. A. Heroux et al. Trilinos web page, 2011. http://trilinos.sandia.gov.

M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B.
Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S.
Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley. An overview of the Trilinos
project. ACM Trans. Math. Softw., 31:397-423, 2005.

Jean-Luc Guermond and Richard Pasquetti and Bojan Popov. Entropy viscosity method for
nonlinear conservation laws. Journal of Computational Physics, 230:4248-4267, 2011.

B.J.P. Kaus. Factors that control the angle of shear bands in geodynamic numerical models of
brittle deformation. Tectonophysics, 484:36-47, 2010.

M. Kronbichler, T. Heister, and W. Bangerth. High accuracy mantle convection simulation
through modern numerical methods. Geophysics Journal International, 191:12-29, 2012.

B. J. P. Kaus, H. Miithlhaus, and D. A. May. A stabilization algorithm for geodynamic numerical
simulations with a free surface. Physics of the Earth and Planetary Interiors, 181(1):12-20,
2010.

C. Morency and M.-P. Doin. Numerical simulations of the mantle lithosphere delamination.
Journal of Geophysical Research: Solid Earth (1978-2012), 109(B3), 2004.

L. Moresi, S. Quenette, V. Lemiale, C. Meriaux, B. Appelbe, and H. B. Miihlhaus. Computa-
tional approaches to studying non-linear dynamics of the crust and mantle. Phys. Earth Planet.
Interiors, 163:69-82, 2007.

J. Ritsema, A. Deuss, H. J. van Heijst, and J. H. Woodhouse. S40rts: a degree-40 shear-
velocity model for the mantle from new rayleigh wave dispersion, teleseismic traveltime and
normal-mode splitting function measurements. Geophysical Journal International, 184:1223—

1236, 2011.

J. Ritsema and H. J. van Heijst. Seismic imaging of structural heterogeneity in earth’s mantle:
Evidence for large-scale mantle flow. Sci. Progr., 83:243-259, 2000.

H. Schmeling, A. Y. Babeyko, A. Enns, C. Faccenna, F. Funiciello, T. Gerya, G. J. Golabek,
S. Grigull, B. J. P. Kaus, G. Morra, S. M. Schmalholz, and J. van Hunen. A benchmark
comparison of spontaneous subduction models—towards a free surface. Physics of the Earth
and Planetary Interiors, 171:198-223, 2008.

D. W. Schmid and Y. Y. Podladchikov. Analytical solutions for deformable elliptical inclusions
in general shear. Geophysical Journal International, 155(1):269-288, 2003.

G. Schubert, D. L. Turcotte, and P. Olson. Mantle Convection in the Earth and Planets, Part
1. Cambridge, 2001.

C. Thieulot. ELEFANT: a user-friendly multipurpose geodynamics code. Technical report,
Utrecht University, 2015.

M. Thielmann, D. A. May, and B. J. P. Kaus. Discretization errors in the hybrid finite element
particle-in-cell method. Pure and Applied Geophysics, 171:2165-2184, 2014.

307

[VKKS'97] P. E. van Keken, S. D. King, H. Schmeling, U. R. Christensen, D. Neumeister, and M.-P. Doin.
A comparison of methods for the modeling of thermochemical convection. J. Geoph. Res.,
102:22477-22495, 1997.

[Wil99] S. D. Willett. Rheological dependence of extension in wedge models of convergent orogens.
Tectonophysics, 305:419-435, 1999.

[Worl2] J. Worthen. Inverse Problems in Mantle Convection: Models, Algorithms, and Applications.
PhD thesis, University of Texas at Austin, in preparation, 2012.

[Zho96) S. Zhong. Analytic solution for Stokes’ flow with lateral variations in viscosity. Geophys. J.
Int., 124:18-28, 1996.

308

Index of run-time parameter entries

The following is a listing of all run-time parameters that can be set in the input parameter file. They are
all described in Section 5 and the listed page numbers are where their detailed documentation can be found.
A listing of all parameters sorted by the section name in which they are declared is given in the index on

page 314 below.

Al, 119, 160

A2, 119, 161

A3, 119, 161

Activation energies, 124, 234

Activation energies for diffusion creep, 110

Activation energies for dislocation creep, 110

Activation volume, 124, 234

Activation volumes for diffusion creep, 110

Activation volumes for dislocation creep, 111

Additional refinement times, 133, 178, 182

Additional shared libraries, 45, 200, 210, 250,
253, 255, 273, 284

Additional tangential mesh velocity boundary
indicators, 71

Adiabatic surface temperature, 16, 45

Adiabatic temperature gradient, 90

Age bottom boundary layer, 88

Age top boundary layer, 89

alpha, 70

Ambient temperature, 93

Amplitude, 89, 99

Angle, 99

Angle of internal friction, 115

Angular mode, 100, 270

Averaging operation, 106

B1, 119, 161

B2, 119, 161

B3, 120, 161

Base model, 106, 108

Bell shape limit, 106

beta, 70, 123, 163

Bilinear interpolation, 131

Bottom composition, 52, 53

Bottom temperature, 57, 58, 171, 181, 188
Boundary indicator to temperature mappings, 59
Boundary refinement indicators, 137

Box origin X coordinate, 73, 75

Box origin Y coordinate, 73, 75

Box origin Z coordinate, 73, 75

C1, 120, 161
C2, 120, 161
C3, 120, 162

309

Cells along circumference, 80

Center X, 94

Center x, 154

Center Y, 94

Center y, 154

Center Z, 94

Center z, 154

CFL number, 43, 45, 198, 272

Checkpoint on termination, 166

Chunk inner radius, 77

Chunk maximum latitude, 77

Chunk maximum longitude, 77

Chunk minimum latitude, 78

Chunk minimum longitude, 78

Chunk outer radius, 78

Coarsening fraction, 133, 179

Coefficient of yield stress increase with depth,
124, 234

Cohesion, 115

Cohesive strength of rocks at the surface, 124,
234

Command, 146

Composition polynomial degree, 41, 69

Composition solver tolerance, 41, 45

Composition viscosity prefactor, 115, 120, 128,
202, 268

Composition viscosity prefactor 1, 106

Composition viscosity prefactor 2, 106

Compositional field scaling factors, 137

Compressibility, 115, 120, 268

Compressible, 131

Coordinate system, 138, 139

Corresponding phase for density jump, 116, 267

cR, 71

Crust composition number, 85

Crust defined by composition, 86

Crust depth, 86

D1, 120, 162

D2, 121, 162

D3, 121, 162

Data directory, 51, 56, 62, 64, 67, 91, 95, 96, 108,
131, 152, 164, 227, 230

Data file name, 51, 56, 62, 67, 91, 152, 164

Data file time step, 51, 56, 62, 64

Data output format, 147, 196

Decreasing file order, 52, 57, 62, 64

Define transition by depth instead of pressure,
116

Densities, 111, 124, 126, 234

Density differential for compositional field 1, 107,
116, 121, 128, 193, 194, 202, 242, 263

Density differential for compositional field 2, 107,
194

Depth, 78

Depth dependence method, 109

Depth list, 109

Depth subdivisions, 79

Dimension, 29, 31, 43, 46, 168, 170, 181, 187,
202, 216, 222, 233, 251, 253, 256, 261

Discontinuous penalty, 70

E1, 121, 162

E2, 121, 162

East-West subdivisions, 79

Eccentricity, 79

Effective viscosity coefficient, 111

End step, 166, 235

End time, 29, 43, 46, 170, 187, 202, 216, 222, 251,
254, 256, 261, 272

Evaluation points, 147

File name, 167

Filename for initial geotherm table, 100

First data file model time, 52, 57, 62, 64

First data file number, 52, 57, 63, 65

Fixed composition boundary indicators, 140

Fixed temperature boundary indicators, 140, 172,
181, 186, 188, 198, 217, 223, 230, 233,
271, 293

Free surface boundary indicators, 140, 198

Free surface stabilization theta, 71, 198

Function constants, 44, 59, 61, 63, 68, 82, 85, 90,
92, 109, 138, 139, 151, 152, 164, 165,
171, 182, 186, 188, 234, 243, 244, 263

Function expression, 44, 59, 61, 63, 68, 82, 85, 90,
92, 110, 138, 139, 151, 152, 165, 171,
182, 186, 188, 190, 194, 196, 198, 203,
210, 212, 224, 234, 235, 243, 244, 263

Grain size, 111
Grain size exponents for diffusion creep, 111

Half decay times, 86
Heat capacity, 111, 125, 234
Heating rates, 86

310

Include adiabatic heating, 141, 172, 198, 202, 271

Include latent heat, 141

Include shear heating, 141, 172, 198, 202, 217,
221, 223, 230, 271

Inclusion gradient, 94

Inclusion shape, 94

Inclusion temperature, 94

Initial adaptive refinement, 29, 43, 133, 173, 178,
182, 189, 203, 217, 224, 235, 252, 255,
257, 263

Initial concentrations crust, 86

Initial concentrations mantle, 86

Initial condition file name, 95, 96, 227

Initial global refinement, 29, 43, 133, 173, 178,
182, 189, 203, 217, 224, 235, 252, 255,
257, 263

Inner composition, 55

Inner radius, 81, 216, 223, 270

Inner temperature, 60, 217, 224

Integration scheme, 148

Interpolate output, 155

Interpolation scheme, 148

Interpolation width, 230

Isotherm depth filename, 91

Isotherm temperature, 91

Jump height, 200

Latent heat, 131

Lateral viscosity file name, 131

Lateral wave number one, 93, 99

Lateral wave number two, 93, 99

Latitude repetitions, 78

Left composition, 53

Left composition lithosphere, 54

Left temperature, 57, 58, 171

Left temperature lithosphere, 58

Linear solver A block tolerance, 41, 46

Linear solver S block tolerance, 41, 46

Linear solver tolerance, 41, 46, 170, 202, 258

List of material properties, 160

List of model names, 83

List of normalized fields, 66

List of output variables, 146, 156, 193, 203, 264,
297

List of postprocessors, 29, 41, 143, 173, 182, 189,
192, 193, 195, 198, 203, 217, 224, 235,
243, 252, 255, 257, 259, 264, 294

List of tracer properties, 148, 196

Lithosphere thickness, 65, 98

Lithosphere thickness amplitude, 99

Lithospheric thickness, 75

Load balancing strategy, 149
Longitude repetitions, 78
Lower viscosity, 200

Magnitude, 82, 83, 93, 172, 177, 182, 202, 262,
271

Magnitude at surface, 83

Mass fraction cpx, 121, 163

Material averaging, 42, 101, 202, 203

Material file names, 131

Max nonlinear iterations, 47

Max nonlinear iterations in pre-refinement, 47

Maximal composition, 54

Maximal temperature, 60

Maximum lateral viscosity variation, 132

Maximum latitude, 154

Maximum longitude, 154

Maximum order, 95, 97

Maximum pyroxenite melt fraction, 122

Maximum radius, 154

Maximum relative deviation, 167

Maximum strain rate ratio iterations, 111

Maximum time step, 47, 233

Maximum tracers per cell, 149

Maximum viscosity, 112, 115, 132

Maximum x, 153

Maximum y, 153

Maximum z, 153

Mesh refinement, 299

Minimal composition, 54

Minimal temperature, 60

Minimum latitude, 155

Minimum longitude, 155

Minimum radius, 155

Minimum refinement level, 133

Minimum strain rate, 112, 125, 234

Minimum tracers per cell, 149

Minimum viscosity, 112, 115, 132

Minimum x, 153

Minimum y, 153

Minimum z, 154

Model name, 29, 43, 44, 50, 55, 67, 72, 81, 84, 87,
101, 163, 168, 171, 172, 181, 182, 187,
188, 190, 192, 194, 198, 200, 202, 203,
212, 216, 217, 220, 222-224, 227,
233-235, 242-244, 251, 252, 254, 256,
257, 259, 262, 263, 267, 270, 271, 273,
285, 287, 291

Names of fields, 66, 159, 234
Names of vectors, 160
NE corner, 79

311

Non-dimensional depth, 100

Nonlinear solver scheme, 47, 233

Nonlinear solver tolerance, 47

Normalize individual refinement criteria, 133
North-South subdivisions, 79

Number of cheap Stokes solver steps, 48
Number of elements, 86

Number of fields, 66, 190, 203, 212, 234, 263
Number of grouped files, 39, 158, 217, 225
Number of tracers, 150, 195, 196

Number of zones, 146, 235

NW corner, 79

Opening angle, 81, 216, 270

Outer composition, 55

Outer radius, 81, 216, 223, 270

Outer temperature, 61, 217, 224

Output directory, 29, 39, 43, 48, 170, 187, 202,
216, 222, 251, 254, 256, 261, 272

Output format, 33, 146, 159, 203, 217, 225, 235

Output mesh velocity, 159

Particle generator name, 150

Peridotite melting entropy change, 122

Phase transition Clapeyron slopes, 116, 267

Phase transition density jumps, 116, 267

Phase transition depths, 117, 267

Phase transition pressure widths, 117

Phase transition pressures, 117

Phase transition temperatures, 117, 267

Phase transition widths, 117, 267

Point one, 65, 230, 231

Point two, 65, 230, 231

Position, 89

Preexponential constant for viscous rheology law,
125, 234

Prefactors for diffusion creep, 112

Prefactors for dislocation creep, 112

Prescribe internal velocities, 210

Prescribed traction boundary indicators, 141

Prescribed velocity boundary indicators, 142,
172, 181, 186, 188, 198, 217, 223, 230,
251, 254, 256, 259, 271, 292

Pressure normalization, 15, 42, 48, 170, 202, 251,
252, 254, 256

Pyroxenite melting entropy change, 122

rl, 123, 163

r2, 124, 163

Radial layers, 155

Radial viscosity file name, 132
Radiogenic heating rate, 84

Radius, 80, 89

Radius repetitions, 78

Reaction depth, 107, 195

Reference compressibility, 127

Reference density, 43, 107, 114, 118, 122, 127,
129, 130, 172, 193, 200, 202, 262, 267,
270, 273

Reference specific heat, 107, 114, 118, 122,
128-130, 172, 200, 267, 270, 273

Reference strain rate, 115, 125, 234

Reference temperature, 43, 93, 95, 97, 107, 112,
114, 118, 122, 125, 126, 129, 130, 172,
193, 200, 227, 234, 267, 270, 273

Reference viscosity, 112, 114, 125, 132

Refinement criteria merge operation, 134

Refinement criteria scaling factors, 134

Refinement fraction, 134, 178, 263

Relative density of melt, 122

Remove degree 0 from perturbation, 95, 97, 227

Remove nullspace, 142, 271

Remove temperature heterogeneity down to
specified depth, 95, 97, 227

Resume computation, 39, 43, 48, 183, 272

Right composition, 53, 54

Right composition lithosphere, 54

Right temperature, 58, 171

Right temperature lithosphere, 58

Rotation offset, 100, 270

Run on all processes, 146

Run postprocessors on initial refinement, 135

Scale factor, 52, 57, 63, 65, 67, 92, 164

SE corner, 79

Semi-major axis, 80

Shape radius, 94

Sigma, 100

Sign, 100

Solidus filename, 98

Specific heats, 126

Specify a lower maximum order, 96, 97

Spline knots depth file name, 96, 97, 227

Start time, 48, 187, 202, 251, 253, 256, 261

Steps between checkpoint, 66, 183, 225

Stokes velocity polynomial degree, 69, 180, 252,
254, 257

Strain rate residual tolerance, 113

Strategy, 135, 217, 224, 235, 263, 299

Stress exponents for diffusion creep, 113

Stress exponents for dislocation creep, 113

Stress exponents for plastic rheology, 125, 234

Stress exponents for viscous rheology, 126, 234

Subadiabaticity, 89

312

Subtract mean of dynamic topography, 147, 160
Supersolidus, 98

Surface pressure, 15, 49, 171

Surface temperature, 91

Surface velocity projection, 71

SW corner, 80

Tangential velocity boundary indicators, 143,
172, 181, 186, 188, 198, 202, 217, 223,
230, 233, 251, 254, 256, 259, 262, 271

Temperature amplitude, 99

Temperature polynomial degree, 41, 69, 180, 211

Temperature solver tolerance, 41, 49, 170

Temporary output location, 159

Terminate on failure, 146

Termination criteria, 166, 235, 299

Thermal conductivities, 127

Thermal conductivity, 108, 114, 118, 123,
128-130, 172, 188, 192, 194, 200, 268,
270, 273

Thermal diffusivity, 113, 126, 234

Thermal expansion coefficient, 108, 114, 118, 123,
128-130, 173, 189, 193, 194, 200, 202,
216, 222, 242, 268, 270, 273

Thermal expansion coefficient in initial
temperature scaling, 96, 98, 227

Thermal expansion coefficient of melt, 123

Thermal expansivities, 113, 126, 127, 234

Thermal viscosity exponent, 108, 118, 123, 129,
268

Time between checkpoint, 66

Time between data output, 150, 196

Time between graphical output, 147, 159, 173,
182, 189, 193, 195, 198, 203, 217, 225

Time in steady state, 167

Time step, 230

Time steps between mesh refinement, 137, 173,
178, 182, 189, 217, 224

Timing output frequency, 49

Top composition, 53, 54

Top temperature, 58, 59, 172, 181, 188

Tracer weight, 151

Upper viscosity, 200

Use artificial viscosity smoothing, 70, 212

Use conduction timestep, 49

Use direct solver for Stokes system, 49

Use discontinuous composition discretization, 69

Use discontinuous temperature discretization, 69

Use lateral average temperature for viscosity, 132

Use locally conservative discretization, 69, 205,
252, 254, 257

Use simplified adiabatic heating, 84
Use years in output instead of seconds, 12, 50,
170, 187, 216, 222, 261

Variable names, 44, 60, 61, 63, 68, 82, 85, 90, 92,
110, 138, 139, 151, 153, 165, 166, 171,
182, 186, 188, 190, 194, 196, 198, 203,
210, 212, 234, 235, 243, 244, 263

Velocity file name, 65, 230

Vertical wave number, 93

Viscosities, 127

Viscosity, 43, 108, 118, 123, 128-130, 173, 189,
193, 194, 202, 216, 222, 242, 262, 268
270, 273

Viscosity averaging scheme, 113, 127

Viscosity depth file, 109

Viscosity jump, 251, 257

Viscosity list, 109

Viscosity parameter, 259

Viscosity prefactors, 119, 268

Vs to density scaling, 96, 98, 227

313

Write in background thread, 159

X extent, 73, 75, 168, 171, 181, 187, 202, 233,
251, 254, 256, 262

X periodic, 73, 75

X periodic lithosphere, 75

X repetitions, 74, 76, 233

Y extent, 74, 76, 168, 171, 181, 187, 202, 233,
251, 254, 256, 262

Y periodic, 74, 76

Y periodic lithosphere, 76

Y repetitions, 74, 76

Y repetitions lithosphere, 76

7 extent, 74, 76, 181, 262

7 periodic, 74, 77

7 repetitions, 74, 77

7Z repetitions lithosphere, 77

Zero velocity boundary indicators, 143, 172, 181,
186, 188, 198, 202, 217, 223, 251, 254,
256, 271

Index of run-time parameters with section names

The following is a listing of all run-time parameters, sorted by the section in which they appear. To find

entries sorted by their name, rather than their section, see the index on page 309 above.

Additional shared libraries, 45, 200, 210, 250,
253, 255, 273, 284
Adiabatic conditions model
Model name, 50
Adiabatic surface temperature, 16, 45

Boundary composition model

Ascii data model
Data directory, 51
Data file name, 51
Data file time step, 51
Decreasing file order, 52
First data file model time, 52
First data file number, 52
Scale factor, 52

Box
Bottom composition, 52
Left composition, 53
Right composition, 53
Top composition, 53

Box with lithosphere boundary indicators
Bottom composition, 53
Left composition, 53
Left composition lithosphere, 54
Right composition, 54
Right composition lithosphere, 54
Top composition, 54

Initial composition
Maximal composition, 54
Minimal composition, 54

Model name, 50, 235

Spherical constant
Inner composition, 55
Outer composition, 55

Boundary temperature model

Ascii data model
Data directory, 56
Data file name, 56
Data file time step, 56
Decreasing file order, 57
First data file model time, 57
First data file number, 57
Scale factor, 57

Box
Bottom temperature, 57, 171, 181, 188
Left temperature, 57, 171

314

Right temperature, 58, 171
Top temperature, 58, 172, 181, 188
Box with lithosphere boundary indicators
Bottom temperature, 58
Left temperature, 58
Left temperature lithosphere, 58
Right temperature, 58
Right temperature lithosphere, 58
Top temperature, 59
Constant
Boundary indicator to temperature
mappings, 59
Function
Function constants, 59
Function expression, 59
Maximal temperature, 60
Minimal temperature, 60
Variable names, 60
Initial temperature
Maximal temperature, 60
Minimal temperature, 60
Model name, 55, 171, 181, 188, 202, 217,
224, 234, 251, 254, 257, 262
Spherical constant
Inner temperature, 60, 217, 224
Outer temperature, 61, 217, 224

Boundary traction model

Function
Function constants, 61
Function expression, 61
Variable names, 61

Boundary velocity model

Ascii data model
Data directory, 62
Data file name, 62
Data file time step, 62
Decreasing file order, 62
First data file model time, 62
First data file number, 63
Scale factor, 63
Function
Function constants, 63, 186, 188
Function expression, 63, 186, 188
Variable names, 63, 186, 188
GPlates model
Data directory, 64, 230

Data file time step, 64

Decreasing file order, 64

First data file model time, 64

First data file number, 65

Interpolation width, 230

Lithosphere thickness, 65

Point one, 65, 230

Point two, 65, 230

Scale factor, 65

Time step, 230

Velocity file name, 65, 230
Burstedde benchmark

Viscosity parameter, 259

CFL number, 43, 45, 198, 272
Checkpointing
Steps between checkpoint, 66, 183, 225
Time between checkpoint, 66
Composition solver tolerance, 41, 45
Compositional fields
List of normalized fields, 66
Names of fields, 66, 234
Number of fields, 66, 190, 203, 212, 234, 263
Compositional initial conditions
Ascii data model
Data directory, 67
Data file name, 67
Scale factor, 67
Function
Function constants, 68, 243, 244, 263
Function expression, 68, 190, 194, 203,
212, 234, 243, 244, 263
Variable names, 68, 190, 194, 203, 212,
234, 243, 244, 263
Model name, 67, 190, 194, 203, 212, 234,
243, 244, 263

Dimension, 29, 31, 43, 46, 168, 170, 181, 187,
202, 216, 222, 233, 251, 253, 256, 261
Discretization
Composition polynomial degree, 41, 69
Stabilization parameters
alpha, 70
beta, 70
cR, 71
Discontinuous penalty, 70
Use artificial viscosity smoothing, 70, 212
Stokes velocity polynomial degree, 69, 180,
252, 254, 257
Temperature polynomial degree, 41, 69, 180,
211

315

Use discontinuous composition
discretization, 69

Use discontinuous temperature
discretization, 69

Use locally conservative discretization, 69,
205, 252, 254, 257

End time, 29, 43, 46, 170, 187, 202, 216, 222, 251,
254, 256, 261, 272

Free surface
Additional tangential mesh velocity
boundary indicators, 71
Free surface stabilization theta, 71, 198
Surface velocity projection, 71
Function
Function expression, 196
Variable names, 196

Geometry model
Box
Box origin X coordinate, 73
Box origin Y coordinate, 73
Box origin Z coordinate, 73
X extent, 73, 168, 171, 181, 187, 202, 233,
251, 254, 256, 262
X periodic, 73
X repetitions, 74, 233
Y extent, 74, 168, 171, 181, 187, 202, 233,
251, 254, 256, 262
Y periodic, 74
Y repetitions, 74
7 extent, 74, 181, 262
7Z periodic, 74
7 repetitions, 74
Box with lithosphere boundary indicators
Box origin X coordinate, 75
Box origin Y coordinate, 75
Box origin Z coordinate, 75
Lithospheric thickness, 75
X extent, 75
X periodic, 75
X periodic lithosphere, 75
X repetitions, 76
Y extent, 76
Y periodic, 76
Y periodic lithosphere, 76
Y repetitions, 76
Y repetitions lithosphere, 76
7 extent, 76
7 periodic, 77
7 repetitions, 77

7 repetitions lithosphere, 77
Chunk
Chunk inner radius, 77
Chunk maximum latitude, 77
Chunk maximum longitude, 77
Chunk minimum latitude, 78
Chunk minimum longitude, 78
Chunk outer radius, 78
Latitude repetitions, 78
Longitude repetitions, 78
Radius repetitions, 78
Ellipsoidal chunk
Depth, 78
Depth subdivisions, 79
East-West subdivisions, 79
Eccentricity, 79
NE corner, 79
North-South subdivisions, 79
NW corner, 79
SE corner, 79
Semi-major axis, 80
SW corner, 80
Model name, 29, 72, 168, 171, 181, 187, 202,
216, 223, 233, 251, 252, 254, 256, 262,
270, 287
Sphere
Radius, 80
Spherical shell
Cells along circumference, 80
Inner radius, 81, 216, 223, 270
Opening angle, 81, 216, 270
Outer radius, 81, 216, 223, 270

Gravity model

Function
Function constants, 82
Function expression, 82
Variable names, 82
Model name, 81, 172, 182, 188, 202, 217,
224, 235, 251, 252, 254, 257, 259, 262
271, 291
Radial constant
Magnitude, 82, 271
Radial linear
Magnitude at surface, 83
Vertical
Magnitude, 83, 172, 177, 182, 202, 262

Heating model

Adiabatic heating

Use simplified adiabatic heating, 84
Constant heating

Radiogenic heating rate, 84

316

Function
Function constants, 85
Function expression, 85
Variable names, 85

List of model names, 83

Model name, 84, 220

Radioactive decay
Crust composition number, 85
Crust defined by composition, 86
Crust depth, 86
Half decay times, 86
Heating rates, 86
Initial concentrations crust, 86
Initial concentrations mantle, 86
Number of elements, 86

Initial conditions

Adiabatic
Age bottom boundary layer, 88
Age top boundary layer, 89
Amplitude, 89
Function/Function constants, 90
Function/Function expression, 90
Function/Variable names, 90
Position, 89
Radius, 89
Subadiabaticity, 89

Adiabatic boundary
Adiabatic temperature gradient, 90
Data directory, 91
Isotherm depth filename, 91
Isotherm temperature, 91
Surface temperature, 91

Ascii data model
Data directory, 91
Data file name, 91
Scale factor, 92

Function
Function constants, 44, 92, 171, 182, 234
Function expression, 44, 92, 171, 182, 188,

198, 203, 224, 234, 263
Variable names, 44, 92, 171, 182, 188, 198,
234

Harmonic perturbation
Lateral wave number one, 93
Lateral wave number two, 93
Magnitude, 93
Reference temperature, 93
Vertical wave number, 93

Inclusion shape perturbation
Ambient temperature, 93
Center X, 94

Center Y, 94

Center 7, 94

Inclusion gradient, 94
Inclusion shape, 94
Inclusion temperature, 94

Sign, 100

Spherical hexagonal perturbation

Angular mode, 100, 270
Rotation offset, 100, 270

Linear solver A block tolerance, 41, 46
Linear solver S block tolerance, 41, 46
Linear solver tolerance, 41, 46, 170, 202, 258
List of tracer properties, 196

Shape radius, 94
Model name, 44, 87, 171, 182, 188, 198, 203,
217, 224, 227, 234, 251, 254, 257, 262
270, 291
S40RTS perturbation
Data directory, 95, 227
Initial condition file name, 95, 227

Material model
Averaging

Maximum order, 95

Reference temperature, 95, 227

Remove degree 0 from perturbation, 95,
227

Remove temperature heterogeneity down
to specified depth, 95, 227

Specify a lower maximum order, 96

Spline knots depth file name, 96, 227

Thermal expansion coefficient in initial
temperature scaling, 96, 227

Vs to density scaling, 96, 227

SAVANTI perturbation

Data directory, 96

Initial condition file name, 96

Maximum order, 97

Reference temperature, 97

Remove degree 0 from perturbation, 97

Remove temperature heterogeneity down
to specified depth, 97

Specify a lower maximum order, 97

Spline knots depth file name, 97

Thermal expansion coefficient in initial
temperature scaling, 98

Vs to density scaling, 98

Solidus

Data/Solidus filename, 98
Lithosphere thickness, 98
Perturbation/Lateral wave number one, 99
Perturbation/Lateral wave number two, 99
Perturbation/Lithosphere thickness
amplitude, 99
Perturbation/Temperature amplitude, 99
Supersolidus, 98

Spherical gaussian perturbation

Amplitude, 99

Angle, 99

Filename for initial geotherm table, 100
Non-dimensional depth, 100

Sigma, 100

317

Averaging operation, 106
Base model, 106
Bell shape limit, 106

Composition reaction model

Composition viscosity prefactor 1, 106

Composition viscosity prefactor 2, 106

Density differential for compositional field
1, 107, 194

Density differential for compositional field
2,107, 194

Reaction depth, 107, 195

Reference density, 107

Reference specific heat, 107

Reference temperature, 107

Thermal conductivity, 108, 194

Thermal expansion coefficient, 108, 194

Thermal viscosity exponent, 108

Viscosity, 108, 194

Depth dependent model

Base model, 108

Data directory, 108

Depth dependence method, 109

Depth list, 109

Viscosity depth file, 109

Viscosity depth function/Function
constants, 109

Viscosity depth function/Function
expression, 110

Viscosity depth function/Variable names,
110

Viscosity list, 109

Diffusion dislocation

Activation energies for diffusion creep, 110

Activation energies for dislocation creep,
110

Activation volumes for diffusion creep, 110

Activation volumes for dislocation creep,
111

Densities, 111

Effective viscosity coefficient, 111

Grain size, 111

Grain size exponents for diffusion creep,
111

Heat capacity, 111

Maximum strain rate ratio iterations, 111

Maximum viscosity, 112

Minimum strain rate, 112

Minimum viscosity, 112

Prefactors for diffusion creep, 112

Prefactors for dislocation creep, 112

Reference temperature, 112

Reference viscosity, 112

Strain rate residual tolerance, 113

Stress exponents for diffusion creep, 113

Stress exponents for dislocation creep, 113

Thermal diffusivity, 113

Thermal expansivities, 113

Viscosity averaging scheme, 113

Drucker Prager

Reference density, 114

Reference specific heat, 114
Reference temperature, 114
Reference viscosity, 114

Thermal conductivity, 114

Thermal expansion coefficient, 114
Viscosity/Angle of internal friction, 115
Viscosity /Cohesion, 115

Viscosity /Maximum viscosity, 115
Viscosity /Minimum viscosity, 115
Viscosity /Reference strain rate, 115

Inclusion

Viscosity jump, 257

Latent heat

Composition viscosity prefactor, 115, 268

Compressibility, 115, 268

Corresponding phase for density jump,
116, 267

Define transition by depth instead of
pressure, 116

Density differential for compositional field
1, 116

Phase transition Clapeyron slopes, 116,
267

Phase transition density jumps, 116, 267

Phase transition depths, 117, 267

Phase transition pressure widths, 117

Phase transition pressures, 117

Phase transition temperatures, 117, 267

Phase transition widths, 117, 267

Reference density, 118, 267

Reference specific heat, 118, 267

Reference temperature, 118, 267
Thermal conductivity, 118, 268
Thermal expansion coefficient, 118, 268
Thermal viscosity exponent, 118, 268
Viscosity, 118, 268

Viscosity prefactors, 119, 268

Latent heat melt

A1, 119

A2, 119

A3, 119

B1, 119

B2, 119

B3, 120

beta, 123

C1, 120

C2, 120

C3, 120

Composition viscosity prefactor, 120

Compressibility, 120

D1, 120

D2, 121

D3, 121

Density differential for compositional field
1, 121

E1, 121

E2, 121

Mass fraction cpx, 121

Maximum pyroxenite melt fraction, 122

Peridotite melting entropy change, 122

Pyroxenite melting entropy change, 122

rl, 123

r2, 124

Reference density, 122

Reference specific heat, 122

Reference temperature, 122

Relative density of melt, 122

Thermal conductivity, 123

Thermal expansion coefficient, 123

Thermal expansion coefficient of melt, 123

Thermal viscosity exponent, 123

Viscosity, 123

Material averaging, 42, 101, 202, 203
Model name, 43, 101, 172, 188, 192, 194,

200, 202, 216, 222, 234, 242, 251, 254,
257, 259, 262, 267, 270, 273, 285

Morency and Doin

Activation energies, 124, 234

Activation volume, 124, 234

Coefficient of yield stress increase with
depth, 124, 234

Cohesive strength of rocks at the surface,

124, 234 Thermal expansion coefficient, 130

Densities, 124, 234 Viscosity, 130
Heat capacity, 125, 234 Simpler with crust model
Minimum strain rate, 125, 234 Jump height, 200
Preexponential constant for viscous Lower viscosity, 200
rheology law, 125, 234 Reference density, 200
Reference strain rate, 125, 234 Reference specific heat, 200
Reference temperature, 125, 234 Reference temperature, 200
Reference viscosity, 125 Thermal conductivity, 200
Stress exponents for plastic rheology, 125, Thermal expansion coefficient, 200
234 Upper viscosity, 200
Stress exponents for viscous rheology, 126, SolCx
234 Viscosity jump, 251
Thermal diffusivity, 126, 234 Steinberger model
Thermal expansivities, 126, 234 Bilinear interpolation, 131
Multicomponent Compressible, 131
Densities, 126 Data directory, 131
Reference temperature, 126 Latent heat, 131
Specific heats, 126 Lateral viscosity file name, 131
Thermal conductivities, 127 Material file names, 131
Thermal expansivities, 127 Maximum lateral viscosity variation, 132
Viscosities, 127 Maximum viscosity, 132
Viscosity averaging scheme, 127 Minimum viscosity, 132
Simple compressible model Radial viscosity file name, 132
Reference compressibility, 127 Reference viscosity, 132
Reference density, 127 Use lateral average temperature for
Reference specific heat, 128 viscosity, 132
Thermal conductivity, 128 VoT model
Thermal expansion coefficient, 128 Reference density, 273
Viscosity, 128 Reference specific heat, 273
Simple model Reference temperature, 273
Composition viscosity prefactor, 128, 202 Thermal conductivity, 273
Density differential for compositional field Thermal expansion coefficient, 273
1, 128, 193, 202, 242, 263 Viscosity, 273
Reference density, 43, 129, 172, 193, 202, Max nonlinear iterations, 47
262, 270 Max nonlinear iterations in pre-refinement, 47
Reference specific heat, 129, 172, 270 Maximum time step, 47, 233
Reference temperature, 43, 129, 172, 193, Mesh refinement, 299
270 Additional refinement times, 133, 178, 182
Thermal conductivity, 129, 172, 188, 192, Boundary
270 Boundary refinement indicators, 137
Thermal expansion coefficient, 129, 173, Coarsening fraction, 133, 179
189, 193, 202, 216, 222, 242, 270 Composition
Thermal viscosity exponent, 129 Compositional field scaling factors, 137
Viscosity, 43, 129, 173, 189, 193, 202, 216, Initial adaptive refinement, 29, 43, 133, 173,
222,242, 262, 270 178, 182, 189, 203, 217, 224, 235, 252,
Simpler model 255, 257, 263
Reference density, 130 Initial global refinement, 29, 43, 133, 173,
Reference specific heat, 130 178, 182, 189, 203, 217, 224, 235, 252,
Reference temperature, 130 255, 257, 263
Thermal conductivity, 130 Maximum refinement function

319

Coordinate system, 138
Function constants, 138
Function expression, 138
Variable names, 138
Minimum refinement function
Coordinate system, 139
Function constants, 139
Function expression, 139, 235
Variable names, 139, 235
Minimum refinement level, 133
Normalize individual refinement criteria, 133
Refinement criteria merge operation, 134
Refinement criteria scaling factors, 134
Refinement fraction, 134, 178, 263
Run postprocessors on initial refinement, 135
Strategy, 135, 217, 224, 235, 263, 299
Time steps between mesh refinement, 137,
173, 178, 182, 189, 217, 224
Model settings
Fixed composition boundary indicators, 140
Fixed temperature boundary indicators, 140,
172, 181, 186, 188, 198, 217, 223, 230,
233, 271, 293
Free surface boundary indicators, 140, 198
Include adiabatic heating, 141, 172, 198, 202,
271
Include latent heat, 141
Include shear heating, 141, 172, 198, 202,
217, 221, 223, 230, 271
Prescribed traction boundary indicators, 141
Prescribed velocity boundary indicators,
142, 172, 181, 186, 188, 198, 217, 223,
230, 251, 254, 256, 259, 271, 292
Remove nullspace, 142, 271
Tangential velocity boundary indicators, 143,
172, 181, 186, 188, 198, 202, 217, 223,
230, 233, 251, 254, 256, 259, 262, 271
Zero velocity boundary indicators, 143, 172,
181, 186, 188, 198, 202, 217, 223, 251,
254, 256, 271

Nonlinear solver scheme, 47, 233
Nonlinear solver tolerance, 47
Number of cheap Stokes solver steps, 48

Output directory, 29, 39, 43, 48, 170, 187, 202,
216, 222, 251, 254, 256, 261, 272

Point one, 231

Point two, 231

Postprocess
Command

320

Command, 146
Run on all processes, 146
Terminate on failure, 146
Depth average
List of output variables, 146
Number of zones, 146, 235
Output format, 146, 225, 235
Time between graphical output, 147, 217,
225
Dynamic Topography
Subtract mean of dynamic topography,
147
List of postprocessors, 29, 41, 143, 173, 182,
189, 192, 193, 195, 198, 203, 217, 224,
235, 243, 252, 255, 257, 259, 264, 204
Point values
Evaluation points, 147
Tracers
Data output format, 147, 196
Function/Function constants, 151
Function/Function expression, 151
Function/Variable names, 151
Generator/Ascii file/Data directory, 152
Generator/Ascii file/Data file name, 152
Generator /Probability density
function/Function constants, 152
Generator /Probability density
function/Function expression, 152
Generator /Probability density
function/Variable names, 153
Generator/Uniform box/Maximum x, 153
Generator/Uniform box/Maximum y, 153
Generator/Uniform box/Maximum z, 153
Generator/Uniform box/Minimum x, 153
Generator/Uniform box/Minimum y, 153
Generator/Uniform box/Minimum z, 154
Generator/Uniform radial/Center x, 154
Generator/Uniform radial/Center y, 154
Generator/Uniform radial/Center z, 154
Generator/Uniform radial/Maximum
latitude, 154
Generator /Uniform radial/Maximum
longitude, 154
Generator/Uniform radial/Maximum
radius, 154
Generator/Uniform radial/Minimum
latitude, 155
Generator/Uniform radial/Minimum
longitude, 155
Generator/Uniform radial/Minimum
radius, 155

Generator /Uniform radial/Radial layers,
155

Integration scheme, 148

Interpolation scheme, 148

List of tracer properties, 148

Load balancing strategy, 149

Maximum tracers per cell, 149

Minimum tracers per cell, 149

Number of tracers, 150, 195, 196

Particle generator name, 150

Time between data output, 150, 196

Tracer weight, 151

Visualization

Compositional fields as vectors/Names of
fields, 159

Compositional fields as vectors/Names of
vectors, 160

Dynamic Topography/Subtract mean of
dynamic topography, 160

Interpolate output, 155

List of output variables, 156, 193, 203,
264, 297

Material properties/List of material
properties, 160

Melt fraction/A1, 160

Melt fraction/A2, 161

Melt fraction/A3, 161

Melt fraction/B1, 161

Melt fraction/B2, 161

Melt fraction/B3, 161

Melt fraction/beta, 163

Melt fraction/C1, 161

Melt fraction/C2, 161

Melt fraction/C3, 162

Melt fraction/D1, 162

Melt fraction/D2, 162

Melt fraction/D3, 162

Melt fraction/E1, 162

Melt fraction/E2, 162

Melt fraction/Mass fraction cpx, 163

Melt fraction/rl, 163

Melt fraction/r2, 163

Number of grouped files, 39, 158, 217, 225

Output format, 33, 159, 203, 217, 225

Output mesh velocity, 159

Temporary output location, 159

Time between graphical output, 159, 173,

321

182, 189, 193, 195, 198, 203, 217, 225

Write in background thread, 159
Prescribe internal velocities, 210
Prescribed Stokes solution

Ascii data model

Data directory, 164

Data file name, 164

Scale factor, 164

Model name, 163
Pressure function

Function constants, 164

Function expression, 165

Variable names, 165

Velocity function

Function constants, 165

Function expression, 165

Variable names, 166
Prescribed velocities

Indicator function
Function expression, 210
Variable names, 210

Velocity function
Function expression, 210
Variable names, 210

Pressure normalization, 15, 42, 48, 170, 202, 251,

252, 254, 256
Resume computation, 39, 43, 48, 183, 272

Start time, 48, 187, 202, 251, 253, 256, 261
Surface pressure, 15, 49, 171

Temperature solver tolerance, 41, 49, 170
Termination criteria, 299
Checkpoint on termination, 166
End step, 166, 235
Steady state velocity
Maximum relative deviation, 167
Time in steady state, 167
Termination criteria, 166, 235
User request
File name, 167
Timing output frequency, 49

Use conduction timestep, 49
Use direct solver for Stokes system, 49

Use years in output instead of seconds, 12, 50,

170, 187, 216, 222, 261

	Introduction
	Referencing ASPECT
	Acknowledgments

	Equations, models, coefficients
	Basic equations
	A comment on adiabatic heating
	Boundary conditions
	Comments on the final set of equations

	Coefficients
	Dimensional or non-dimensionalized equations?
	Static or dynamic pressure?
	Pressure normalization
	Initial conditions and the adiabatic pressure/temperature
	Compositional fields
	Constitutive laws
	Numerical methods
	Simplifications of the basic equations
	The Boussinesq approximation: Incompressibility
	Almost linear models
	Compressible models

	Free surface calculations
	Arbitrary Lagrangian-Eulerian implementation
	Free surface stabilization

	Nullspace removal

	Installation
	System prerequisites
	Software prerequisites
	Obtaining ASPECT and initial configuration
	Compiling ASPECT and generating documentation
	Compiling a static ASPECT executable
	Installing and running ASPECT on Mac OS X

	Running ASPECT
	Overview
	Selecting between 2d and 3d runs
	Debug or optimized mode
	Visualizing results
	Visualization the graphical output using Visit
	Visualizing statistical data
	Large data issues for parallel computations

	Checkpoint/restart support
	Making ASPECT run faster
	Debug vs. optimized mode
	Adjusting solver tolerances
	Adjusting solver preconditioner tolerances
	Using lower order elements for the temperature/compositional discretization
	Limiting postprocessing
	Switching off pressure normalization
	Regularizing models with large coefficient variation

	Run-time input parameters
	Overview
	The structure of parameter files
	Categories of parameters
	A note on the syntax of formulas in input files

	Global parameters
	Parameters in section Adiabatic conditions model
	Parameters in section Boundary composition model
	Parameters in section Boundary composition model/Ascii data model
	Parameters in section Boundary composition model/Box
	Parameters in section Boundary composition model/Box with lithosphere boundary indicators
	Parameters in section Boundary composition model/Initial composition
	Parameters in section Boundary composition model/Spherical constant
	Parameters in section Boundary temperature model
	Parameters in section Boundary temperature model/Ascii data model
	Parameters in section Boundary temperature model/Box
	Parameters in section Boundary temperature model/Box with lithosphere boundary indicators
	Parameters in section Boundary temperature model/Constant
	Parameters in section Boundary temperature model/Function
	Parameters in section Boundary temperature model/Initial temperature
	Parameters in section Boundary temperature model/Spherical constant
	Parameters in section Boundary traction model
	Parameters in section Boundary traction model/Function
	Parameters in section Boundary velocity model
	Parameters in section Boundary velocity model/Ascii data model
	Parameters in section Boundary velocity model/Function
	Parameters in section Boundary velocity model/GPlates model
	Parameters in section Checkpointing
	Parameters in section Compositional fields
	Parameters in section Compositional initial conditions
	Parameters in section Compositional initial conditions/Ascii data model
	Parameters in section Compositional initial conditions/Function
	Parameters in section Discretization
	Parameters in section Discretization/Stabilization parameters
	Parameters in section Free surface
	Parameters in section Geometry model
	Parameters in section Geometry model/Box
	Parameters in section Geometry model/Box with lithosphere boundary indicators
	Parameters in section Geometry model/Chunk
	Parameters in section Geometry model/Ellipsoidal chunk
	Parameters in section Geometry model/Sphere
	Parameters in section Geometry model/Spherical shell
	Parameters in section Gravity model
	Parameters in section Gravity model/Function
	Parameters in section Gravity model/Radial constant
	Parameters in section Gravity model/Radial linear
	Parameters in section Gravity model/Vertical
	Parameters in section Heating model
	Parameters in section Heating model/Adiabatic heating
	Parameters in section Heating model/Constant heating
	Parameters in section Heating model/Function
	Parameters in section Heating model/Latent heat
	Parameters in section Heating model/Radioactive decay
	Parameters in section Heating model/Shear heating
	Parameters in section Initial conditions
	Parameters in section Initial conditions/Adiabatic
	Parameters in section Initial conditions/Adiabatic/Function
	Parameters in section Initial conditions/Adiabatic boundary
	Parameters in section Initial conditions/Ascii data model
	Parameters in section Initial conditions/Function
	Parameters in section Initial conditions/Harmonic perturbation
	Parameters in section Initial conditions/Inclusion shape perturbation
	Parameters in section Initial conditions/S40RTS perturbation
	Parameters in section Initial conditions/SAVANI perturbation
	Parameters in section Initial conditions/Solidus
	Parameters in section Initial conditions/Solidus/Data
	Parameters in section Initial conditions/Solidus/Perturbation
	Parameters in section Initial conditions/Spherical gaussian perturbation
	Parameters in section Initial conditions/Spherical hexagonal perturbation
	Parameters in section Material model
	Parameters in section Material model/Averaging
	Parameters in section Material model/Composition reaction model
	Parameters in section Material model/Depth dependent model
	Parameters in section Material model/Depth dependent model/Viscosity depth function
	Parameters in section Material model/Diffusion dislocation
	Parameters in section Material model/Drucker Prager
	Parameters in section Material model/Drucker Prager/Viscosity
	Parameters in section Material model/Latent heat
	Parameters in section Material model/Latent heat melt
	Parameters in section Material model/Morency and Doin
	Parameters in section Material model/Multicomponent
	Parameters in section Material model/Simple compressible model
	Parameters in section Material model/Simple model
	Parameters in section Material model/Simpler model
	Parameters in section Material model/Steinberger model
	Parameters in section Mesh refinement
	Parameters in section Mesh refinement/Boundary
	Parameters in section Mesh refinement/Composition
	Parameters in section Mesh refinement/Maximum refinement function
	Parameters in section Mesh refinement/Minimum refinement function
	Parameters in section Model settings
	Parameters in section Postprocess
	Parameters in section Postprocess/Command
	Parameters in section Postprocess/Depth average
	Parameters in section Postprocess/Dynamic Topography
	Parameters in section Postprocess/Point values
	Parameters in section Postprocess/Tracers
	Parameters in section Postprocess/Tracers/Function
	Parameters in section Postprocess/Tracers/Generator
	Parameters in section Postprocess/Tracers/Generator/Ascii file
	Parameters in section Postprocess/Tracers/Generator/Probability density function
	Parameters in section Postprocess/Tracers/Generator/Uniform box
	Parameters in section Postprocess/Tracers/Generator/Uniform radial
	Parameters in section Postprocess/Visualization
	Parameters in section Postprocess/Visualization/Compositional fields as vectors
	Parameters in section Postprocess/Visualization/Dynamic Topography
	Parameters in section Postprocess/Visualization/Material properties
	Parameters in section Postprocess/Visualization/Melt fraction
	Parameters in section Prescribed Stokes solution
	Parameters in section Prescribed Stokes solution/Ascii data model
	Parameters in section Prescribed Stokes solution/Pressure function
	Parameters in section Prescribed Stokes solution/Velocity function
	Parameters in section Termination criteria
	Parameters in section Termination criteria/Steady state velocity
	Parameters in section Termination criteria/User request

	Cookbooks
	How to set up computations
	Simple setups
	Convection in a 2d box
	Convection in a 3d box
	Convection in a box with prescribed, variable velocity boundary conditions
	Using passive and active compositional fields
	Using tracer particles
	Using a free surface
	Using a free surface in a model with a crust
	Averaging material properties
	Prescribed internal velocity constraints
	Artificial viscosity smoothing
	Tracking finite strain

	Geophysical setups
	Simple convection in a quarter of a 2d annulus
	Simple convection in a spherical 3d shell
	3D convection with an Earth-like initial condition
	Using reconstructed surface velocities by GPlates
	Reproducing rheology of Morency and Doin, 2004
	Crustal deformation

	Benchmarks
	Running benchmarks that require code
	The van Keken thermochemical composition benchmark
	The SolCx Stokes benchmark
	The SolKz Stokes benchmark
	The ``inclusion'' Stokes benchmark
	The Burstedde variable viscosity benchmark
	The ``Stokes' law'' benchmark
	Latent heat benchmark
	The 2D cylindrical shell benchmarks by Davies et al.
	The Crameri et al. benchmarks

	Extending ASPECT
	The idea of plugins and the SimulatorAccess and Introspection classes
	How to write a plugin
	Materials, geometries, gravitation and other plugin types
	Material models
	Heating models
	Geometry models
	Gravity models
	Initial conditions
	Prescribed velocity boundary conditions
	Temperature boundary conditions
	Postprocessors: Evaluating the solution after each time step
	Visualization postprocessors
	Mesh refinement criteria
	Criteria for terminating a simulation

	Extending ASPECT through the signals mechanism
	Extending the basic solver

	Future plans for ASPECT
	Finding answers to more questions
	References
	Index of run-time parameter entries
	Index of run-time parameters with section names

