
A DMN-based Approach for Dynamic
Deployment Modelling of Cloud Applications

Frank Griesinger1, Daniel Seybold1, Jörg Domaschka1, Kyriakos Kritikos2, and
Robert Woitsch3

1 University of Ulm, Institute of Information Resource Management, Ulm, Germany
{firstname.lastname, joerg.domaschka}@uni-ulm.de

2 ICS, FORTH, Heraklion, Greece
kritikos@ics.forth.gr

3 BOC Asset Management, Vienna, Austria
robert.woitsch@boc-eu.com

Abstract. Cloud computing is well suited for applications with a dis-
tributed architecture and dynamic demand of resources. Yet, current
approaches to model cloud application deployment do not cater for the
application’s dynamic nature and its rapidly changing business require-
ments. The static description of deployments results in a lack of reusabil-
ity and also lacks an integrated way to adapt to the current context. To
reuse and refine the deployment model, we introduce a simple decision
layer on top of a cloud application description, which abstracts from
the actual deployment language and allows assembling the deployment
model from existing model fragments. Those fragments are chosen based
on the input of the decision process. We define an architecture for the
decision layer and sketch an implementation based on CAMEL, DMN,
and ADOxx. The benefits of the decision layer are illustrated by two
use cases. Our approach shifts the focus from a static to a dynamic and
reusable modelling process, which also reduces the modeller’s effort.

Keywords: DMN, DevOps, MDE, cloud, deployment modelling

1 Introduction

The cloud computing paradigm promises the unlimited offering of computational
resources in a pay-as-you-go model. This helps organisations, especially SMEs,
with unplannable or highly dynamic resource demands, to dynamically reserve
IT resources as needed without having a huge upfront investment.

The benefits of cloud computing come along with an additional technical
depth, which may hinder the migration to the cloud. Hence, industry and academia
investigate approaches easing the cloud adoption. A well established approach to
reduce technical complexity is model-driven engineering (MDE). Within MDE,
domain specific languages (DSLs) for the cloud computing domain evolved, in-
cluding TOSCA [4] and CAMEL [5]. Such DSLs ease the cloud adoption by
enabling a complex cloud application deployment model on a higher level. A

2 Frank Griesinger et al.

cloud orchestration tool (COT), such as Cloudiator [2] can then process this
deployment model.

Still, the specification of a deployment requires a certain degree of technical
knowledge to create the deployment model, which is static in nature. Current
modelling approaches do not reflect the dynamic in changing business require-
ments that impact an implemented deployment model at run-time. As shown in
the first lane of Fig. 1, any requirement change leads to the remodelling of the
deployment model, which is error-prone and cost-intensive.

deployment
model

decision
layer

business
requirements

deployment
model

deployment
model

deployment
model

business
requirements

Fig. 1. Dynamic deployment modelling

In this position paper, we propose a
novel approach by adding (i) dynamic
and (ii) reusability to cloud applica-
tion modelling. We introduce a sim-
ple decision layer on top of the mod-
elling, enabling the transformation of
business requirements into a techni-
cal deployment model at both design-
and run-time as shown in the second
lane of Fig. 1. Based on two use cases,
we demonstrate how our approach en-
hances the scope of cloud application
modelling and therefore eases cloud adoption.

The remainder of the paper is structured as follows: Section 2 analyses the
problem. Section 3 presents our approach and sketches an implementation. The
usage is presented on two use cases in Section 4. Section 5 discusses the approach,
while Section 6 summarises the related work. Section 7 concludes the paper.

2 Problem Statement

Modelling cloud applications is technically challenging and therefore error-prone.
In addition, most approaches have a steep learning curve. The process of current
modelling approaches is a static sequence of the steps (cf. Fig 1): (i) business
experts define high level business requirements, (ii) technical experts manually
map these requirements to a technical deployment model using a cloud DSL,
(iii) the deployment model is put into a COT. The shortcomings of this process
are founded in the dynamic nature of cloud applications, and as soon as a re-
quirement changes, the complete process has to start from the beginning. Due to
its complexity, the repetition of all steps is cost-intensive and error-prone. This
is also caused by the fact that current cloud modelling approaches do not focus
on the automated reuse of model fragments and manual involvement increases
the risk of failure. In addition, decisions are only implicitly integrated and hard-
coupled into the deployment model. This hinders the employment of a feedback
loop in this process to re-evaluate the business requirements when needed.

The following scenarios exemplify the shortcoming of a static procedure: (i)
A customer-specific deployment model that requires minor adjustments, con-
cerning the cloud provider or data location, will result in an independent model

A DMN-based Approach for Dynamic Deployment Modelling 3

per customer. (ii) Update roll-outs are an important feature of DevOps tools.
With the release of a version the deployment model changes. In cloud modelling
approaches, there is no support to model the dependency of the version in respect
to the deployment model. (iii) The service configuration, such as cloud provider
or virtual machines specification, highly depends on business requirements, such
as the available budget.

We argue that these shortcoming can be removed by adding (i) dynamic and
(ii) reusability to the modelling process.

3 Dynamic Cloud Modelling

This sections is structured as follows. First, we present a solution for adding dy-
namic to the modelling process. Followed by a realisation sketch of this solution.

3.1 Introducing a Decision Layer

We propose a novel approach to ease the process of cloud application modelling
by adding a simple decision layer on top of existing cloud DSLs. The proposed
decision layer operates between higher level (business) requirements and low level
concrete model fragments. Business requirements are integrated as influencing
factors of a decision process which maps them to concrete model fragments.
These model fragments are used to assemble the deployment model.

abstract deployment model

simple decision layer

business requirements

concrete deployment model

model fragments

(b)(a)

business
expert

(c)

Fig. 2. Simple decision layer on top of deployment model.

As shown on Fig. 2, the simple decision layer handles business requirements
and concrete model fragments. The decision layer abstracts from the actual
language, by using an abstract deployment model that comprises anchor points
for a decision process to concretise the deployment model by the output values
of an evaluated decision. In contrast to the concrete deployment model, it is
not completely described and therefore not executable in a COT. The business
requirements are fed into the layer by business experts (Fig. 2 (a)). The mapping
of requirements to model fragments is done based on a business knowledge model

4 Frank Griesinger et al.

(Fig. 2 (b)). When requirements arrive or change, the decision layer executes a
decision process. After evaluating the business requirements, appropriate model
fragments are selected and used to enhance the abstract deployment model and
create a concrete deployment model that is executable by a COT (Fig. 2 (c)).

Based on the requirements, the decision layer operates on an abstract de-
ployment model and a decision set that is defined just once, to reuse existing
model fragments in order to create multiple concrete deployment models.

While in current approaches the concrete deployment model has to be mod-
elled per business requirement set, this approach requires to model one abstract
deployment model and define its business knowledge model for arbitrary re-
quirement sets. In order to extend available business requirements, additional
mapping decision can be added to the business knowledge model. The simple
decision layer is then able to reuse those model fragments for new incoming
business requirements, as well as for other abstract deployment models.

In order to deal with changing requirements at run-time, the decision layer
will reevaluate the decisions and update the respective model fragments. Thus,
the proposed decision layer enables dynamic redefinition of the required model
fragments based on the predefined decision set.

3.2 Realisation Sketch

We propose a realisation of our approach based on the Decision Model and
Notation (DMN) [3] as decision layer and CAMEL [5] as the cloud modelling
DSL.

The DMN standard provides a human-readable common notation for mod-
elling and automating decisions. We choose decision tables (DTs) to represent
decisions as these are well known to business experts. An example of a DT is
shown in Table 1. A DT consists of three column types: (i) a hit policy, (ii) an
input variable set, and (iii) an output variable set. The hit policy defines the
selection over overlapping decisions with policies like Unique, i.e., only a single
decision will be selected or Collect, i.e., all decisions can be selected. Each input
variable can potentially map to a respective output variable of a sub-decision
table. Hence, there is a possible cascade of decisions leading to hierarchical de-
cision tables. Any DT is associated with a business knowledge model (BKM)
defining the decision logic, i.e., the mapping between the input and output pa-
rameters. DMN is chosen as it is an impact gaining standard and it is already
well adopted on the business level.

CAMEL models encompasses all technical details to deploy an application
in the cloud, including specific cloud resources such as virtual machines and
deployment structure. A concrete deployment model can be transformed into
a set of cloud-provider specific deployment actions. We favoured CAMEL over
other cloud application modelling languages like TOSCA as CAMEL supports
the specification of a provider-independent deployment model, as well as an
instance model.

Our proposed realisation is depicted in Fig. 3 implementing the decision layer
as a hierarchical set of DTs enabling the dynamic CAMEL modelling. The DTs

A DMN-based Approach for Dynamic Deployment Modelling 5

business value A

decision table A

business value B

decision table B

decision table C

business
knowledge
model

business
knowledge
model

result Bresult A

business
knowledge
model

CAMEL
fragment

CAMEL
fragment

CAMEL
fragment

concrete CAMEL deployment model

Fig. 3. Dynamic CAMEL modelling

are specified by BKM fragments, which define the actual decisions in the DTs.
We distinguish between two different types of output values, DMN results, used
as input for other DTs, and derived CAMEL fragments.

Both languages are integrated into the meta-modelling platform ADOxx4,
providing a modelling tool for dynamically generating CAMEL models via DMN.
ADOxx is able to provide a modelling user interface and the integration of
algorithms to implement the usage of meta models. The main scenarios taken
into consideration are (i) the specification of DMN via a graphical user interface,
and (ii) the support of the execution of DMN to generate the CAMEL model.

4 Use Cases

We present use cases from the areas of DevOps and business-IT-alignment. We
exemplify achieving their requirements by integrating our approach.

4.1 Customer-specific and Continuous Deployment

A common requirement in DevOps environments is having a customer-specific
deployment that differs slightly due to customers’ specific favors, and continu-
ous deployment on version updates. Introducing a decision process enables in
this case the reusability of the cloud application model. The application is only
modelled once, but the concrete deployment model is generated dynamically for
different requirements of the customers and of the application version.

A sample excerpt of a DT is shown in Table 1. The input of this DT are the
trusted cloud provider and the privacy level. The output is the VM image and
region for the model to be used for the service deployment.

4 https://www.adoxx.org/

6 Frank Griesinger et al.

Table 1. Image and Region DT

Hit Policy Input Output
C Privacy Level Provider VM Image Region

String String String String

1 low Provider X Image X US
2 low Provider Y Image Y Europe

.

4.2 Business Process as a Service

CloudSocket5 introduces the concept of Business Process as a Service (BPaaS)
by modelling business processes (BPs) on the highest level and semi-automatically
align the BPs to the technical description of the required cloud services for the
BP execution [8]. The BPaaS approach comprises a sequence of mappings from
higher level business descriptions to low level technical descriptions. This chain
contains points where decisions are made to create models of different levels of
detail. The proposed layer caters for this mapping as it allows to integrate the
business requirements to the model creation process. The decisions that have
to be made in the BPaaS approach define, (i) which service to use, (ii) which
configuration, such as cloud provider and hardware, the service will have and
(iii) the service’s behaviour at run-time.

5 Discussion

The presented approach has a major impact on evolving the current state of
the art with respect to managing cloud applications through COTs and also for
the features supported by COTs. As the input parameters for decision processes
may change during run-time, COTs have to be able to update a deployed ap-
plication on-the-fly according to the changes in the model. To implement this,
a COT will need to create a change set between old model and new model and
apply actions that implement the changes. This will involve adaptation actions
currently not supported by any COT such as the migration of components onto
different clouds.

In current modelling environments, the modeller directly interacts with a
DSL or a direct (graphical) editor. Our approach shifts this view for modellers
to a paradigm above the actual DSL. She will outline the deployment model by
specifying the decisions that lead to the actual deployment. This will increase
the reusability of cloud description fragments and cater for the dynamic nature
of cloud-based applications and lower the learning curve for decision makers.

Although the paper motivates the importance of integrating business require-
ments in the decision process of cloud modelling, the presented approach is able
to involve any kind of requirements, e.g. technical requirements, as the decision
process is agnostic to the type of requirement. Also the rules described in the

5 https://www.cloudsocket.eu/

A DMN-based Approach for Dynamic Deployment Modelling 7

decision tables of the introduced layer can be translated into adaptation rules
in the DSL. Obviously, this would demand the specification of the correlation
between business requirements and e.g., the number of component instances in
the case of scaling rules.

By applying our approach, application modeller can create abstract models
and distribute them in a marketplace-like manner. Companies can choose from
those abstract deployment models, customise them, and create concrete deploy-
ment models by the means of a company’s specific business requirements. In
contrast to similar application libraries of current COTs, our approach does not
suffer from static models that needs low level adjustments to customise it.

6 Related Work

Besides DMN, there are numerous approaches for decision engines like Gandalf6

or the IBM Operational Decision Management7 that also apply decision tables
to define business rules. Those can also be used to run the decision layer.

The usage of interconnected ordered decision tables as a selection method for
cloud services can be categorised as a multi-criteria decision-making (MCDM)
process [7]. In contrast to optimisation-based approaches realising MCDM deci-
sions using utility functions, we are convinced that our approach is more user-
friendly and -intuitive, due to the use of human-readable tables as interfaces.

Cloud orchestration tools mainly use DSLs to specify the deployment mod-
els [1]. However, they do not automatically create a set of differences to integrate
modifications due to a decision process. This becomes necessary, when business
requirements are evaluated on run-time and a feedback loop is integrated.

DevOps tools like Puppet8 support updating an application at run-time on
the basis of the differences between the latest and the currently active configura-
tion. However, those DevOps tools operate on the level of the single component.
They do not consider the overall view on the cloud-based application. The au-
tonomous provisioning of infrastructure or platform resources is also out of scope
of such tools. Our model-driven approach integrates the update functionality by
using the application version as input for the decision process.

ToscaMart [6] introduces the idea of reusing model fragments for modelling
by employing a marketplace of predefined application components to be used
by the modellers to assemble their applications. This approach lacks a general
decision-making process but instead relies on lowest technical requirements of
the application to be assembled.

7 Summary

Cloud deployment models are described in domain specific languages (DSLs).
Current DSLs are static and the creation comes along with the complexity of

6 https://gndf.io/
7 http://www-03.ibm.com/software/products/de/odm
8 https://puppet.com/

8 Frank Griesinger et al.

many technical details. Whereas modelling decisions are taken at design-time,
influencing factors, such as technical or business requirements require to update
fragments of the deployment model at run-time. Current modelling approaches
only cater for updates of the complete deployment model and do not consider
the reusability of constant model fragments.

In this position paper, we proposed a simple decision layer residing above
current DSLs. This decision layer enhances the modelling scope by considering
decisions affecting the deployment model at design and run-time.

We sketch a realisation based on the decision model and notation (DMN)
as decision layer. DMN enables the semi-automatic creation of the deployment
model from the results of DMN decision tables. Our realisation proposes the us-
age of DMN with the cloud DSL CAMEL in the ADOxx modelling environment.
The suitability of the approach is discussed based on two use cases types.

Future work will encompass a prototype implementation of the presented
decision layer based on the outlined technologies. Based on the prototype an
evaluation on the impact of model creation and execution will be performed.

Acknowledgements The research leading to these results has received funding
from the EC’s Framework Programme FP7/2007-2013 under grant agreement
number 317715 (PaaSage) and the EC’s Framework Programme HORIZON 2020
(ICT-07-2014) under grant agreement number 644690 (CloudSocket).

References

1. Baur, D., Seybold, D., Griesinger, F., Tsitsipas, A., Hauser, C.B., et al.: Cloud
orchestration features: Are tools fit for purpose? In: 2015 IEEE/ACM 8th Int. Conf.
on Utility and Cloud Computing (UCC). pp. 95–101. IEEE (2015)

2. Domaschka, J., Baur, D., Seybold, D., Griesinger, F.: Cloudiator: A Cross-Cloud,
Multi-Tenant Deployment and Runtime Engine. In: 9th SummerSoC (2015)

3. Group, O.M.: Decision model and notation. Tech. rep., OMG, http://www.omg.

org/spec/DMN/1.1/ (2015)
4. OASIS: Topology and Orchestration Specification for Cloud Applications Version

1.0 Committee Specification Draft 08 (2013)
5. Rossini, A.: Cloud Application Modelling and Execution Language (CAMEL) and

the PaaSage Workflow. In: Adv. in Service-Oriented and Cloud Comp.—Workshops
of ESOCC 2015. CCIS, vol. 567, pp. 437–439. Springer (2016)

6. Soldani, J., Binz, T., Breitenbcher, U., Leymann, F., Brogi, A.: Toscamart: A
method for adapting and reusing cloud applications. Journal of Systems and Soft-
ware 113, 395 – 406 (2016)

7. Sun, L., Dong, H., Hussain, F.K., Hussain, O.K., Chang, E.: Cloud service selection:
State-of-the-art and future research directions. Journal of Network and Computer
Applications 45, 134 – 150 (2014)

8. Woitsch, R., Utz, W.: Business process as a service: Model based business and it
cloud alignment as a cloud offering. In: 2015 Int. Conf. on Ent. Sys. (ES). pp. 121–
130. IEEE (2015)

