Table 7 Detection of infected red blood cells on Dataset A using the original YOLOv4 and modified models
Modifications Model Precision (%) Recall rate (%) F1-score (%) mAP (%) Training time (h) Inference time (per image) (ms) B-FLOPS Size (MB)
B-FLOPS Billion floating point operations, F1-SCoRE balance between precision and recall, mAP mean average precision
Original YOLOv4 84 95 89 93.87 48 726.66 59.57 244.40
Residual block pruning YOLOv4-RC3 84 92 88 91.65 35 678.53 47.59 242.40
YOLOv4-RC4 83 92 87 92.84 37 703.82 51.21 233.20
YOLOv4-RC5 85 89 87 92.47 37 704.48 57.61 222.10
YOLOv4-RC3_4 83 89 86 88.09 32 676.18 37.35 221.50
YOLOv4-RC3_5 77 77 77 76.56 32.5 680.01 45.64 220.4
Backbone replacement YOLOv4- ResNet-50L 70 84 76 79.70 28 719.50 37.33 209.30
YOLOv4- ResNet-50 M 74 86 80 81.43 28 884.82 37.33 209.30