High-energy monitoring of NGC 4593 with XMM-Newton and NuSTAR

Francesco Ursini

P.-O. Petrucci, G. Matt, S. Bianchi, M. Cappi, B. De Marco,A. De Rosa, J. Malzac, A. Marinucci, G. Ponti, A. Tortosa

AGN 12

A joint XMM+NuSTAR monitoring

Obs.	Satellites	Obs. Id.	Start time (UTC) yyyy-mm-dd	Net \exp . (ks)
1	$XMM-Newton\ NuSTAR$	0740920201 60001149002	2014-12-29	$\begin{array}{c} 16\\ 22 \end{array}$
2	$XMM-Newton\ NuSTAR$	0740920301 60001149004	2014-12-31	$\begin{array}{c} 17\\22\end{array}$
3	$XMM-Newton\ NuSTAR$	0740920401 60001149006	2015-01-02	$\begin{array}{c} 17\\21\end{array}$
4	XMM–Newton NuSTAR	$\begin{array}{c} 0740920501 \\ 60001149008 \end{array}$	2015-01-04	$\begin{array}{c} 15\\ 23\end{array}$
5	$XMM-Newton\ NuSTAR$	$0740920601 \\ 60001149010$	2015-01-06	21 21

XMM/pn 0.5–2 keV + 12.5 Counts/s 10.0 1 7.5 5.0 'and 2.5 XMM/pn 2–10 keV + 4.0 Counts/s 3.0 2.0 M.3. 0.45 XMM/pn 2–10 keV/0.5–2 keV Hardness ratio ----0.40 0.35 0.30 NuSTAR 3–10 keV + 1.6 Counts/s 1.2 0.8 0.75 NuSTAR 10–50 keV + Counts/s 0.60 0.45 0.30 NuSTAR 10-50 keV/3-10 keV Hardness ratio 0.6 0.4 0.2 1×10⁵ 2×10⁵ 3×10⁵ 0

Time (s)

XMM/pn and NuSTAR/FPMA+FPMB light curves and hardness ratios

XMM/pn and NuSTAR/FPMA data fitted with a power law

The iron line(s)

Narrow Fe K α line flux and EW versus primary flux

Variable primary cut-off power law + 2 reflection components + soft excess

cut-off PL XILLVER (Rs~0.3-0.6) RELXILL (Rs~0.2) (Rin=40 Rg)

 1.8×10^{-11} Flux(3-10 keV) 1.5×10^{-11} ρ=0.98, p=8×10⁻⁴ 1.2×10^{-11} 9.0×10^{-12} 3.0×10^{-11} Flux(10-50 keV) 2.5×10^{-11} ρ =0.95, p=3.3×10⁻³ 2.0×10^{-11} 1.85 + 1.80 Photon index 1.75 ρ=0.97, p=1.8×10⁻³ 1.70 1.65 1.60 3×10⁻¹² 6×10⁻¹² 4×10^{-12} 7×10^{-12} 5×10^{-12}

Correlation between soft excess and primary emission

DISKBB Flux(0.3–2 keV)

Timing

Main results

- Remarkable variability, both in flux and spectral shape over ~days and down to ~ks
- Significant variations of Gamma (1.6-1.8) and cut-off (~100 keV up to >500 keV): temperature/optical depth variations?
- 2 reflection components, giving rise to a narrow and a broad Fe K alpha lines. One (XILLVER) is from neutral and distant matter, one (RELXILL) from an ionized disc with Rin~40 Rg
- Soft excess correlated with primary emission: warm Comptonization? Link with the UV? (in progress)
- See Ursini et al. 2016, MNRAS, 463, 382

