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Introduction

» We propose the open development of PlasmaPy: a
community-developed and community-driven core
Python package for plasma physics

> In recent years, researchers in several different subfields of
physics and astronomy have collaboratively developed core
Python packages such as Astropy,® SunPy,? and SpacePy?

» These packages provide core functionality, common
frameworks for data analysis and visualization, and
educational tools

» A similar package for plasmas would greatly benefit our field

» The goals of this poster are to:

» Make the case for the creation/open development of PlasmaPy
» Recruit plasma physicists to join the PlasmaPy project from
the very beginning

! Astropy Collaboration (2013, A&A, 558, 833)
2SunPy Community (2015, CS&D, 8, 014009)
3Morley et al. (2014, ASCL:1401.002)



Current status of scientific programming in plasma physics

» Major codes often use low-level languages such as Fortran

» Programmers are often self-taught

» Compiling and installing codes is difficult and time-consuming
» Different codes lack interoperability

» Documentation is usually inadequate

» Access to major codes is often restricted in some way

» Somewhat unusual to share code

» Many versions of software do essentially the same thing

» Research is difficult to reproduce

There is a considerable need for open, general-purpose
software for plasma physics using modern best practices
for scientific programming.




Why choose Python?

» Free and open source

> High-level, interpreted language

» Programming style emphasizes readability

> Can “glue” together software written in different languages

» Can reach near-compiled speeds using packages such as
Numba and Cython, or by calling C or Fortran routines

» Well-developed numerical and scientific analysis packages
> Active user community

» Can learn from and collaborate with ongoing highly successful
projects such as Astropy, SunPy, and SpacePy

> Will help users learn programming skills that will be useful in
finding employment outside of plasma physics



PlasmaPy will use best practices for scientific computing®

to ensure that code is easy-to-use and maintainable

» Simple and intuitive application program interface (API)
» Readable and consistent style (such as PEP 8 standard)
» Embed documentation in code

» Use modular, object-oriented programming

» Version control with git and GitHub
» Avoid prematurely optimizing code
» Use high-level languages when possible
» Use Slack for text-based chat team communication and
community building, with in-person development meetings
> Use automated unit testing, issue tracking tools, and
pre-merge code reviews

» Ensure that the community is welcoming and inclusive

*G. Wilson et al., “Best Practices for Scientific Computing,” PLOS Biology
12, e1001745 (2014)



Initial development plan

» Short-term development priorities

» Create a plasma class that allows easy calculation of plasma
parameters (using units module from Astropy)

» Implement commonly used analytical functions

» Create simple tools for analyzing magnetic field data

» Long-term development possibilities

» Standardize data representations

Build tools for analysing and visualizing experimental results
Implement a flexible Grad-Shafranov solver

Incorporate easy-to-use fluid and particle-in-cell simulation
capabilities

» Design tools for the analysis of magnetic topology
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> Follow Astropy model by using main package for core
functionality, and affiliated packages for extensions

» The development plan is still under development, so please
share ideas!



Goals for upcoming year

» Recruit team members from a variety of subfields within
plasma physics
» Host initial discussions on Slack and telecons

» Survey existing Python software for plasma physics, and
contemplate ways to unify efforts

» Figure out short-term and long-term development plans, and
begin development in earnest

» Decide on an organizational structure and open source-license
» Implement unit testing (for example, with Travis Cl)

» Have an in-person development meeting

» Find long-term funding mechanisms

» Host a Python training or Software Carpentry workshop at
next year's APS DPP meeting?



What does PlasmaPy need to succeed?

» Open development

> Need a critical mass of developers
» Low barrier to entry

> A welcoming and inclusive environment
» Provide a culture of appreciation for contributors to PlasmaPy

» Use the Contributor Covenant® as the initial code of conduct

and anti-harassment policy
» A sustainable funding model®

» Astropy development is mostly a volunteer, grassroots effort

» Most work on Astropy has been done by graduate students and
postdocs, with little direct funding support

» There is a need for funding agencies and large institutions to
support open development of general purpose software

®Online at http://contributor-covenant.org/version/1/4/
5This issue is described thoroughly by D. Muna et al. in The Astropy
Problem (arXiv:1610.03159)



Becoming involved

Please contact Nick Murphy at namurphy@cfa.harvard.edu
or Yi-Min Huang at yiminh@princeton.edu to join the
PlasmaPy team on Slack and email list

» People at all levels of experience with Python are welcome
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GitHub repository:
https://github.com/PlasmaPy/

v

Sign up for the PlasmaPy email list at:

https://groups.google.com/d/forum/plasmapy

v

The website will eventually most likely be:

http://www.plasmapy.org



Summary

» We propose that our community begins open
development of PlasmaPy: a core Python package for
plasma physics

» PlasmaPy should be useful for experimentalists, theorists,
numericists, and observers in plasma astrophysics, space
physics, heliophysics, and laboratory plasma physics

» The success of PlasmaPy depends on active community
participation, a welcoming and inclusive environment, and a
sustainable funding/development model
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