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Abstract
This paper provides a brief overview of the formation of stellar fossil magnetic �elds and what potential instabilities may occur
given certain con�gurations of the magnetic �eld. In particular, a purely magnetic instability can occur for poloidal, toroidal,
and mixed poloidal-toroidal axisymmetric magnetic �eld con�gurations as originally studied in Tayler (1973), Markey & Tayler
(1973), and Tayler (1980). However, most of the magnetic �eld con�gurations observed at the surface of massive stars are non-
axisymmetric. Thus, extending earlier studies of the axisymmetric Tayler instability in spherical geometry (Goossens, 1980),
we introduce a formulation for the global change in the potential energy contained in a convectively-stable region given an
arbitrary Lagrangian perturbation, which permits the inclusion of both axisymmetric and non-axisymmetric magnetic �elds.
With this tool in hand, a path is shown by which more general stability criterion can be established.

1 Motivation
The radiative core of main-sequence low-mass stars and

the radiative envelope of main-sequence massive stars likely
host a fossil magnetic �eld (Neiner et al., 2015; Braithwaite &
Spruit, 2015). This �eld is a remnant of the �eld built during
the star’s birth and subsequently reinforced during convec-
tive phases of its evolution toward the main-sequence (Ale-
cian et al., 2013). In particular, massive stars with an observed
magnetic �eld typically possess a non-axisymmetric oblique
magnetic dipole or a similarly simple magnetic �eld geome-
try (Moss et al., 1990; Walder et al., 2012; Wade et al., 2016). If
a comparison is drawn between the stably-strati�ed regions
of massive and low-mass stars (Strugarek et al., 2011), given
their hydrodynamic similarity, such non-axisymmetric mag-
netic �elds may also exist within these regions for low-mass
stars. Fossil magnetic �elds have also been proposed as an
important source of angular momentum transport and mix-
ing across the Hertzsprung-Russell diagram (e.g., Gough &
McIntyre, 1998; Heger et al., 2005; Mathis & Zahn, 2005). So,
constraining the stability of a large class of magnetic �elds
within the convectively-stable, radiative regions is important
for characterizing their in�uence on the transport of angu-
lar momentum over evolutionary timescales, understanding
their topology that is observed at the surfaces of intermedi-
ate and high mass stars, and their consequences for the local
stellar environment (e.g., Petit et al., 2012).

As an example of how such fossil �elds can form, the pro-
cess of freezing out the magnetic �eld as the star evolves
along the pre-main-sequence is depicted in Figure 1, where
gravitational contraction decreases the radius of the star. As
the star slowly collapses, the gradual increase of the den-
sity and temperature deep within the star tends to lower the

opacity, which eventually leads transition from convective
heat transport to di�usive heat conduction at the edge of the
core. During these phases, rotationally-constrained convec-
tive motions will generate the magnetic �eld. In contrast,
once convection has halted in the stably-strati�ed layers, the
�eld will undergo a slow Ohmic decay if the �eld has a sta-
ble con�guration or a fast Alfvénic decay if it is unstable.
One way to distinguish which of these decay paths the mag-
netic �eld will take is to assess its stability to small (linear)
displacements of �uid elements. If the growth rate of those
small perturbations is real and positive, the magnetic �eld
undergoes the Tayler instability.

2 The Tayler Instability
The stability of axisymmetric magnetic �eld con�gura-

tions within a quiescent, stably-strati�ed medium have been
understood for quite some time, with Tayler (1973) address-
ing toroidal �eld con�gurations and Markey & Tayler (1973)
poloidal con�gurations. The typical local instabilities aris-
ing in those systems are shown in Figure 2, where there
are three situations shown. The equilibrium situation occurs
when the magnetic �eld has no associated current (e.g., if it
is potential), or if the Tayler stability criterion are met. Yet
for su�ciently large currents or su�ciently strong Lorentz
forces, two other instabilities can be excited: the axisymmet-
ric m = 0 varicose instability, or the m = 1 kink instabil-
ity. The latter of which grows most rapidly when excited.
Furthermore, such analyses indicate that only certain mixed
(poloidal and toroidal) con�gurations of axisymmetric mag-
netic �elds are stable within the radiative regions of stars
(Tayler, 1980; Braithwaite, 2009). The presence of rotation
modi�es the stability characteristics of these axisymmetric
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Figure 1: Transition from an initially fully convective, pre-main-sequence star to a main-sequence star with a stable radiative
interior. The fossil �eld results from the magnetic �eld established by the convective dynamo, but once convection has halted,
it relaxes into a stable con�guration during the evolution of the stable region. The stellar magnetic �eld is a superposition of
dynamo-generated and fossil �elds. The red arrow denotes the contraction of the convective envelope, the convectively-stable
core is the yellow region encirled by a black line.

systems in that it tends to further stabilize them through the
Coriolis force (Pitts & Tayler, 1985). The precise form of the
equilibrium states of the mixed-morphology magnetic �elds
has been considered extensively in both non-rotating and ro-
tating systems (Prendergast, 1956; Braithwaite & Nordlund,
2006; Braithwaite, 2008; Duez & Mathis, 2010; Duez et al.,
2010; Duez, 2011; Braithwaite & Cantiello, 2013; Emeriau &
Mathis, 2015).

3 Generalizing the Tayler Instability
The class of local stability analysis established by Tayler

(1973) can be generalized to global-scale geometries as
can be found in Goossens (1980). However, axisymmetric
magnetic �elds are not the �nal story in the study of the
Tayler instability. Rather, the analysis can be extended to
con�gurations with both non-axisymmetric magnetic �elds
and di�erential rotation as shall be shown in an upcoming
paper (Augustson et al., 2016). The resulting stability criteria
are assessed here. Such criteria help to restrict the number
of magnetic �eld con�gurations that are possible within the
stable regions of low-mass stars, thereby limiting the routes
of angular momentum transport in the radiative interior and
means of interaction with the dynamo-generated magnetic
�elds established in their overlying convective layers.

The linearized equation of motion under the Cowling ap-
proximation (Cowling, 1941) for a �uid element in a general,
but non-rotating, coordinate system is

ρ
∂2ξ

∂t2
=

1

4π
[(∇×δB)×B + (∇×B)×δB]− δρ∇Φ−∇δP ,

(1)

where ξ is the displacement,B the magnetic �eld, ρ the den-
sity, P the pressure, Φ the gravitational potential. The Eule-
rian perturbations δ of those quantities follow directly from
the continuity, pressure, and induction equations as

δρ = −∇·(ρξ), (2)
δP = −ξ·∇P − γP∇·ξ, (3)
δB =∇×(ξ×B). (4)

Therefore, one has that

ρ
∂2ξ

∂t2
= F [ξ; ρ, P,Φ,B]

=∇·(ρξ)∇Φ +∇[ξ·∇P + γP∇·ξ] (5)
+ [(∇×∇×(ξ×B))×B + (∇×B)×(∇×(ξ×B))] ,

where γ is the ratio of speci�c heats.
As was shown in Bernstein et al. (1958) and to decide upon

the stability of this system, one can consider simple solutions
of the form ξ = Re [ψψψ(x) exp (iωt)], for which the equation
of motion yields −ω2ρψψψ = F [ψψψ]. This is not general since
one has not yet proven that these basis functions form a com-
plete set on the Hilbert space for the Eulerian system. Yet it
can be shown that the vector function F is self-adjoint, a
proof of which will be reserved for the upcoming paper (Au-
gustson et al., 2016). With a properly de�ned inner product
for the solutions ξ, one can see that the dispersion relation-
ship for a general displacement in an arbitrary coordinate
system is given by

ω2 = −〈ψ
ψψ,F [ψψψ]〉
〈ρψψψ,ψψψ〉

= −
∫
ψψψ∗ ·FdV

[∫
ρψψψ∗ ·ψψψdV

]−1

,

= 2∆W

[∫
ρψψψ∗ ·ψψψdV

]−1

, (6)

where the integral is taken over the region of interest, which
for stars are their convectively-stable zones.

The displacement is unstable if the change in the poten-
tial energy of the system (∆W ) is negative. In general,
one �nds that this energy can be split into three parts as
∆W = ∆WL + ∆WB + ∆WP , with ∆WL being the work
due to Lorentz forces, ∆WB being the work due to buoy-
ancy, and with ∆WP being the pressure work. To �nd gen-
eral classes of magnetic �elds that are stable in a given ra-
diative region, one needs to be able to �nd an expression for
the work that can be minimized. This is possible within the
context of separable coordinate systems. For this work, the
spherical coordinate system is used. Therefore, for compact-
ness and expedience, ψψψ, ρ, P , Φ, and B are projected onto
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Figure 2: Tayler instabilities in a cylindrical current channel.
From left to right: shows an equilibrium con�guration for
an azimuthal magnetic �eld, a varicose (m=0) instability, and
a kink type (m=1) instability. Field lines are marked with
arrows.

the spherical spin vector harmonics (SVH). The SVH are a
complete orthonormal set of vector functions that are formed
from speci�c combinations of the spherical harmonics and
their derivatives (Varshalovich, D. A. et al., 1988). In partic-
ular, they correspond to the joint eigenstates of the angular
momentum and spin-1 operators. Relative to the RST basis
(Rieutord, 1987), vector operations such as the dot and cross
products are simpler to perform on SVH-projected vector-
valued functions. An explicit representation of the SVH in
terms of scalar spherical harmonics is as follows:

Ym
`,1 =

1√
(`+ 1) (2`+ 1)

[− (`+ 1) r̂ + r∇]Y m` , (7)

Ym
`,0 =

−ir√
` (`+ 1)

r̂×∇Y m` , (8)

Ym
`,−1 =

1√
` (2`+ 1)

[`r̂ + r∇]Y m` , (9)

where the second lower index ν on the Ym
`,ν indicates the

corresponding spin-1 basis vector. Indeed, when the work
integrands are expanded on the SVH basis, one can show that

∆WL =

∫ rt

rb

drr2
4∑
i=1

∑
`,m,ν,µ,λ
`i,mi,νi

wµ,λ`,m,ν
`i,mi,νi

, (10)

with,

4∑
i=1

wµ,λ`,m,ν
`i,mi,νi

=

λ,µL
m1,m2

`1,`2
ν1,ν2

(
ψm3

`3,ν3
Bm4

`4,ν4

)
ψ∗m
`,ν J

`2,m2,λ
`3,m3,ν3
`4,m4,ν4

J `,m,ν`1,m1,ν1
`2,m2,ν2

, (11)

where each ` ranges from zero to in�nity, each m ranges be-
tween −` and `, and where ν, µ, and λ range between −1
and 1. The integral is taken between radii rb and rt, which
demark the bottom and top boundaries of the radiatively sta-
ble region. The J coe�cients arise from the projection of
the cross products of the SVH basis vectors in Equation 5
back onto the basis. The L symbol is a function of radius
that arises from the Lorentz force, and thus it is a second-
order di�erential operator involving the radial functions of
the displacement and the magnetic �eld as

λ,µL
m1,m2

`1,`2
ν1,ν2

(
ψm3

`3,ν3
Bm4

`4,ν4

)
=

−
Bm1

`1,ν1

4π

[
E`2,m2

ν2,λ

∂2

∂r2
+
F `2,m2

ν2,λ

r

∂

∂r
+
G`2,m2

ν2,λ

r2

]
ψm3

`3,ν3
Bm4

`4,ν4
Iλ,µ

+
1

4π

[
D`1,m1

ν1,λ

∂Bm1

`1,λ

∂r
+ C`1,m1

ν1,λ

Bm1

`1,λ

r

]
×[

D`2,m2
ν2,µ

∂

∂r
+
C`2,m2
ν2,µ

r

]
ψm3

`3,ν3
Bm4

`4,ν4
, (12)

where the coe�cient matrices C , D, E, F , and G describe
the projection of the curl and double curl operators onto the
spin vector harmonic basis, and I is the unit tensor. Assum-
ing that the star is spherically symmetric, namely that the
gradient of the gravitational potential is only in the radial di-
rection, then one has that g = −∂rΦ. So, tackling the buoy-
ancy work integral, it can be seen that

∆WB =
∑
`,m,`1
`2,m2,ν2

∫ rt

rb

dr
(−1)

m2 gr2

2`+ 1

(√
`+ 1ψ∗m

`,1 −
√
`ψ∗m

`,−1

)
[
√
`+ 1

(
∂

∂r
+
`+ 2

r

)
K−m,m2

`1;
`,1
`2,ν2

−
√
`

(
∂

∂r
− `− 1

r

)
K−m,m2

`1;
`,−1
`2,ν2

]
ρm2−m
`1

ψm2

`2,ν2
.

(13)

Similarly, the pressure work integral can be identi�ed as
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∆WP =

∫ rt

rb

drr2
∑
`,m,`1
`2,m2

1√
(2`+ 1) (2`2 + 1)[√

`+ 1

(
∂

∂r
+
`+ 2

r

)
ψ∗m+m2

`,1

+
√
`

(
− ∂

∂r
+
`− 1

r

)
ψ∗m+m2

`,−1

]
{∑

ν1

(
ψm`1,ν1

[√
`2 + 1

(
∂

∂r
− `2

r

)
Km,m2

`;
`1,ν1
`2,1

−
√
`2

(
∂

∂r
+
`2 + 1

r

)
Km,m2

`;
`1,ν1
`2,−1

]
Pm2

`2

)

+ (−1)
m+m2 γH`,`1,`2

m,m2

Pm`1

[√
`2 + 1

(
∂

∂r
+
`2 + 2

r

)
ψm2

`2,1

+
√
`2

(
− ∂

∂r
+
`2 − 1

r

)
ψm2

`2,−1

]}
. (14)

Here,H andK are coe�cients related to the 3-j and 6-j sym-
bols that arise from integrals over products of SVH that are
then either projected onto the scalar spherical harmonics,
which, along with J , are closely related to those de�ned in
Varshalovich, D. A. et al. (1988) and Strugarek et al. (2013).

4 Conclusions
With the expanded form ∆W in hand, one can then �nd

conditions under which the system with a chosen general
magnetic �eld is linearly stable or unstable to an arbitrary
displacement by integrating the terms with radial derivatives
of ψψψ by parts and then explicitly minimizing the radial in-
tegrals with respect to ψψψ. This will be demonstrated more
completely in an upcoming paper (Augustson et al., 2016). As
applied to stellar radiative zones, this will permit the deter-
mination of the stability of certain classes of magnetic �elds
that have a broad range of non-axisymmetric components.
In particular, it may be possible to assess why the magnetic
�eld con�guration where the magnetic axis of symmetry is
oblique to the rotation axis of the star is the most commonly
observed.
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