Some problems of ,Partitio numerorum=: I1. Proof that every
large number is the sum of at most 21 biguadrates.

By
G. H. Hardy in Oxford and J. E. Littlewood in Cambridge.

1. Introduction.

1.1. This memoir is essentially a sequel to one which we published
recently in the Gottinger Nachrichten'). It could not in any case be
intelligible to a reader unacquainted with our earlier memoir; and we
shall therefore quote formulae from the latter without further explanation.

In the memoir referred to we laid the foundations of our new method
for the solution of Waring’s Problem, carrying our analysis just so far as
was necessary for the proof of Hilbert’s Theorem, the fundamental exis-
tence theorem for the numbers g (k) and G (k). Here our object is to
find the best possible inequality for the particular number G'(4). A good
deal of our analysis, however, is valid for a general b, and will be useful
to us when we proceed to the corresponding general problem. It will be
found that the special interest of the case k== 4 is quite sufficient to
justify its consideration in a separate memoir.

1.2. It is known that

19<g(4) <87, 1656G(4)<397,

these inequalities, from left to right, being due to Waring, Wieferich,
Kempner, and Wieferich respectively. For detailed references we may
refer to the dissertations of Kempner?) and of Baer?®). We need men-

) G.H.Hardy and J.E.Littlewood, Some problems of ‘Partitio numerorum’;
I: A new solution of Waring’s Problem, Gdttinger Nachrichten 1920, S. 83—54. We
shall refer to this memoir as W. P.

% A.J. Kempner, Uber das Waringsche Problem und einige Verallgemeine-
rungen, Inaugural-Dissertation, GSttingen 1912.

% W, 8. Baer, Beitrige zum Waringschen Problem, Inaugural-Dissertation,
Gottingen 1913.
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tion only that the deepest result, viz. g(4) < 87, was obtained in 1909 by
Wieferich, whose analysis is a refinement upon that by which Landau,
in 1907, had proved that g(4) < 88. Here we shall prove nothing con-
cerning ¢(4); but we shall improve the upper bound for @(4) very
notably, by proving

Theorem A: G(4)<L21.

2. A sharpening of our earlier analysis.
2.1. In §9.2. of W. P. we proved that, assuming always
s=2K +1=29"41,
(2.11) Ty s (1) == Onse=1 8 | O (nse#ts) |- O (pse+ax—a=1ite)
- Qk,s(n) <40 (naanw) -+ O(n””"'“*”'*'),

§ =X (%) e, (— np).

It will be necessary now to replace the term O (n#¢#+¢) by a term of
lower order*).

where

2.2, It will be found, on an examination of the analysis of W. P,
that the critical error term O (m?@#+*) arises in two places only. All
other errors are of lower order than that of the dominant factor n#e—1,
either independently of the value of s, or at any rate when 8 > 2K 1.
The two critical errors arise as follows.

In the first place we have

(Feent . e
S P Z;zqw, __..;{,,l:,rdm . 0(n3a +-‘!),
where m is a typical minor arc of the Farey dissection.
Secondly, when we consider the corresponding sum connected with

the major arcs, we are confronted by a sum D]a,,,, where

oy = | 2L da]
i 1=l

and 9% is a typical major arc of the dissection, and we write

ng'q =z O(nmxw) .
It will be observed that these two errors arise in exactly the same

way. The upper bounds are obtained by substituting in the integrals the
crude approximations, f==O(n%<*+¢) on a minor arc and & = O (n®**?)

[EESRE—

4) The formula (2. 11) would lead only to G (4)£ 88, in itself a new result.
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on a major arc. Here we refine on our previous argument by the use
of a single new idea. This idea consists in an appropriate use of a known
result, viz. that the number of positive integral solutions of the equation
wk4-gyk=mn is O(n*) for every k>-1%), or, as we may express it in

our notation,
Tk, 2 (n) == () ( %").
2.3. We have

23 (r) =0 (J ] dwdy) = O (n**).

{o (Bt |y | B S e
Hence

SHCIEEE @) el < [ F(Re) | a0

—=0( Y (rea(»)"BY).

Now

n
2/ (7,2 () == (277'“(')/) < Max 7’}5‘3(?":)) O (ntet);
0

»<n

and so, since R = 1—w :

bY f|f<w> *|dz| = O(n¥os).

Hence

S,=0( X fir@)*1f(2) "~ |da))

f (n(s-4)wx+ﬂ ijl f‘(x) !“ i dx ‘) —.4) (’}’b(‘”"“) an»(eﬁ(»Vr)'

Again, we have

i@l jda)= X[ 1~ * da =o(Z[i “Jdal)+0( 3 1pl* da)

n m W

e= O (ntate) +-0(2f1<p1"‘ldwi)
Dt

%) For a formal proof of this result see D. Caner, Neue Anwendungen der
Pieifferschen Methode zur Abschiitzung zahlentheoretischer Funktionen, Inaugural-
Dissertation, Gottingen 1914, S. 88. ¥or k=2 (when the result includes a fortiors
the corresponding results for 4, 6, ...) see E. Landau, Uber die Anzahl der Gitter-
punkte in gewissen Bereichen, Géttinger Nachrichten, 1912, S. 750.
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Spa* v —i0(7*q0)

S fipttda)=0 ZZf

=1 p

a= O (EZ qtU-stey=ta 90> =0 (Zq‘q*“i(l——u) +”-n4“-q—1n“*1)
q

¢ »
0 <n5a—1+821> = O (nba=14¢) = (O (n2ate) (k> 4)
<n5a— 2] ~1+F> = O(nPa=1+5) = O (pra+e) (k=3).
Thus
X101 1az]= 0 (o) (k>2),
an

Zwap‘q"‘"ﬂéjf'r(n_}_l [da) =0 (2] [P |d] )
m
;—0( >7f;¢ & 4|¢i xclxl)
= (wwwmws-yz [@iﬂdm\) = O (nle-Hantats),
m

2.4. The argument of W. P. showed that
Th.s(n) == Cn?=18 4- O (n?),

where 1< sa —1 if sax<sa—1, i.e if s> kK =Fk2"". Tt is now
clear that this result bolds if only

(s—4)ax-+2a<lsa~—1,
s (k—2)K +4

For k =4 these inequalities reduce to s >- 32 and s >»20 respectively,
so that the improvement is very substantial. And if only we can estab-
lish the existence of a positive constant o such that

|8 >0

i e. if

when s 2> 21, we shall have proved not only Theorem A but the more
precise theorem

Theorem B: 7, ,(n) ~ Cnts—*8 (s = 21).
The proof of this theorem is in fact reduced to a discussion of the

singular series S.
Mathematische Zeitsohrift. IX. 2
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3. Factorization of the singular series.

8.1. The discussion of the singular series is greatly simplified by
the following fundamental lemma.

Lemma 1. If

so that
S=1+A,+A,+4,+...= D4,
if s=2K-+1, and if (q,q") =1, then
Agy = A, Ay
S = o raly - = M g,
where n is prime®) and

%nn;;1+A”+Ane+~Ana+...

and

We have
-y hkpq/k—l v h’kqu””.l
Spa”"”l,qsz:a’“”l,q’ “"% e(""““"q ’ f‘../ ¢ ¢ )
) {1

where % and A’ describe complete systems of residues to moduli ¢
‘. t
and ¢’ Bu (h’“pq ~t o b Epgt 1) (IJ p)
e it + R e
q q 79

where ) = hgq’ 1+ h'q; and, since (g,¢’)=1, b describes a complete
system of residues to modulus gg’. Hence

(3.11) 8, g0 = Spgr-1,,8, k=1 -

P.qd Py
Next we observe that, if p describes a complete system of residues
prime to modulus ¢, and p’ a similar system for modulus ¢’, then
p==pq -+ p'q describes a similar system for modulus g¢’. Also

o ((pg'+p'g) g/ F A RE 'k ;
Sp k1,4 7 > <P q > % (19('] Y > %7 <p,; > 8p.q-
Hence

(99')’ 4,4y *’Z(Sp,q)?(‘gp'yq')s e ("‘ n (“g -+ 1;‘7,))

9

WEE(S”"H’”) Syui=i, )" e (= 5p)

mZ(’gP,aq')s &gy (— np) = (99’)SAM' ;
)

which proves the lemma.

%) The symbol x is used in this sense down to the end of 5.2, after which it
is used in the ordinary sense.
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4. Rules for the calculation of 4 ,

4.1. Lemma 1 is true for any value of k. The lemmas which follow
are also true generally, provided only that & is not divisible by n. Thus
when k= 4 they hold for = > 2.

The sum A4 _, involves the argument 7, and we might write
A4 ,=A_,(n). When, as will sometimes happen, n is replaced by
another argument, this argument will be shown explicitly.

Lemma 2. If (7, k)=1, «>0, 0< pu<k, then

A,,alc-}-,u = 0
or

A:v‘””‘:“ =gt S)A“r < azlc>

according as n is not or 48 a multiple of =*%.
(1) We have first

v [ WFp
Sp,nzzk+;am2/ 6<Wwakm>.

2
We write

o= pehti—ly L ' (0 g 2 <<, () g B < nak-hu.—-l),

and we obtain
hlk kph/k-lz
ok T 22 ( rxk-f-,u W_._.... °

The sum with respect to z vanishes unless 4’ is divisible by =, i. e. "= =h,,
where 0 < h, < mek+x~2; in this case the sum is w. Observing that this
range of variation of A, is, to modulus m©@~Vk+x  equivalent to z%~2 de-
scriptions of the range 0 < h, << m@~0%+x, we obtain

] h -
8wk =70 nk_lhzy e <M aﬂ)l’k—fﬁ) =t 8, emnktu-
3

It should be observed that the preceding argument is valid even when
p==0. We obtain in fact
(4.11) 8, gk = ek (e >0)
and otherwise
(4. 12) Sp,:t(‘k+/‘r=na(k—1)8p,n .

(2) We have now

-y P, nak%—‘u np
A en =2, ( v )‘3(“ iy
?

PAd
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We write

p=aztp (m>0),
where 0 < z < 7% and p’ is less than = and not divisible by =. We
have then, by (4.12),

S abbu = mek-1) g

P Pl

8
= X (Spr A nz np’
— gp— 08 AT — JE
A”ak-i-,u =7 2_/ 2/ < e ) e< a0k, gakiu)”
2

The sum with respect to z vanishes unless # is divisible by =**. If however
n = n*ky, where v is an integer, we have

!
k—8) E Ll 3 com (R~ 8) o
Anak-i-,u = el ( nﬂ ? 7 ‘A‘:rll ﬂak '

s p@k—1 §

Pl

and

2l
4.2. Lemma 3. If (m, k)=1,>>0,
A =0 (n7- 0 (mod mek~1)),
A_up=— nok-9-1 (n 20 (modn*k-1), n |. 0 (mod k),
A _up=(7— 1)7*E8=1 (n - 0 (modx*¥)).
By (4.11), we have

Writi ‘
riting
pe=gz--p (0K 2z, 0. p <o),

N7 nz np’
s g8 - SRS 4
An“k 7 22/ 6( ak-—- ]rak>‘
P %

The sum with respect to 2 is zero unless n is a multiple of m##-1. If
n = n**=1y  we have

-A ak""’"ﬂa(k o 12 ( )‘ >

The last sum is —1 or = — 1, a.ccordxng a8 » is not or is divisible by s.
This proves the lemma.

4.8. Lemma 4. If (m, k)=1, 1 << pu <k,

we obtain

4,,=0 (n==0 (mod 1),
4, =—qrit (nz=0 (modm#-1), ngf0 (modm)),
A = (x—1zar-2-t (nz=0 (modz~)).

(1) In the equation

Sp.mc == g € < Jﬁ)

E 1
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we Write ,
h=artz4-b (0£e<q, 0 <h <Carl);

phllc kp hrk-lz
8= ) 3 o (B 21TE),

Bz

and we obtain

The sum with respect to z vanishes unless 5 = 0 (mod ), or unless 4’ == h,,
where 0 < A, << m#~2. In this case the exponential is unity (since u << %),
and we obtain

S

Pt me gplt—1,

(2) We have thus
=t Ml —"E
A p=m s% e( n,,)-

- Writing
p=nz-+p (0Lz<art, 0<p < x)

2‘7 §‘1 np’ nz
An“ wm gy e(... _!L — ».MT),
¢ I‘L"‘

pr 2 T

we obtain
nt

and the sum with respect to z vanishes unless n == z#~1», where » is an
integer. In this case

Y vy’
— g1 .
P
0

and the sum is —1 or = — 1, according as » is not or is divisible by =.

5. The form of y (k=4,7n>2).

5.1. We now suppose % == 4, so that all the results of § 4 hold for
> 2. Taking first the case w==0, we have

|A,,alci § e k=2)
by Lemma 3.

Next, if u==1, we have | A4.| < x and so

| A_ s | < met=a+1,

by Lemma 2.
Finally, if 1< u <k, we have

|4 <,
by Lemra 4, and
;Anak““ < na(k—t)ﬂcwa’
by Lemma 2.
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Thus the terms of y_ may be exhibited in the form®)

144, -+ [n‘.!——a] e [nﬁ--a] o 1_{7"««1—-3!

s ([1] 4[] + [r2=s] A [0] 4o [ =0))
+ 2k ([1] 4 [n] - [ne—s} -+ [n"*‘“} S [kax»x]‘)
where [«] denotes a number whose modulus is less than 2. Hence (pro-
vided only s> k) we have

X ™ 1 +AW+BW:
where
k—s 2§

k~s k-8 2 g
! T — I bud x —r

Taking now k == 4, s =~ 20, we have
]Bﬂ[ e + 27:"17(1 e n"”) Rt L 77‘”“,
(5.11) 2, =1 A, 4 [a—1].

5.2. When we come to consider 4,, it is necessary to distinguish
different cases.

Suppose first that = is of the form 4m - 3. Then the residues of
7' to modulus x are the same as those of %°, and 8,.» reduces to an
ordinary Gaussian sum. Thus |8, < V7 and

l-Arz' < nl—%ﬂ < 79,

=1 [a] 4[] = L [75] (7= b B).
Next, suppose = of the form 4sm -- 1. Then®)
| S| << 8V

and |
x| L
Ifnul7,|A7]<17(.2)" “:110:
(5.21) Ko = 1+ [5] 4 [17-24] = 14} ].
If n>20>27, 3" <a (‘/_,,> <a¥, | Ay <,
7

") It should be observed that, owing to the vanishing of 4, «x and 4 ak+s
when n does not satisfy certain congruence conditions, z,, is in all cases a finife series;
but this is irrelevant for our argument.

8) See H. Weber, Lehrbuch der Algebra, Bd. 1, S. 584. In Weber’s notation,
Sp,= is one of the numbers

E=4n+1=\n+(i,9)+ (=i, 9).
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and
(5.22) 7, 1 [a 23] [n~®] =1+ [7"2] (o=4m -+ 1>29).
From Lemma 1, (5.11), (5.21), and (5.22), it follows that
8= gaty tay (113D [ (A 4= [T (1 +[a—5]).

v*4m+1229 =4 w3

Thus in order to establish our conclusion when s==21, it is only ne-
cessary to show that

| >0>0, (gi>0 |zul>0
5.3. We find by direct calculation that?)

2ord 4 et
e foldy

‘g1,nm1+4ed: Sg5m1+465, evs ey
Sps] SV 17+ 80082 =\ 154 2 V3.

It is however (as we have to consider the case of 18 also) more convenient
to proceed as follows. The numbers Sy, 5 are the roots of the equation®®)

(2% 415)" = 20(5 — 1)"",

frém which

E1P< 15 4+ 2VE < 19478,
|8, 5= 0] <4413,
|4, | < 4(8826)™ < 201,
1201+ [57 ] =14[3],
25| > T==0.

5.4. Similarly the various values of §, ,, are the roots of

(&* +389)" =52(¢ — 37,

from which B
¢ =+Vi8+iy/26+6V13,
1217 <39+ 6V1I8 <607,
|8, =] <78,
| A, | < 12(6)™ < 002,
80 that

lxxsj:)a-

?) From thiz point onwards « is wsed in the ordinary Bense.
1) Weber, L ¢, p. 584.
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The proof of Theorems A and B is thus reduced to o proof that
| 21>
6. Diseussion of y,.

6. 1. The arguments of § 8 fail when = ==2, and it is necessary to go
back to the definitions of A,, 4,,... The first step is to calculate the
sums S, ,». We find by direct calculation that

8, 0=0, 8, ,=2(1+et?™), 8  =4(14ei?™), 8, 8(14exr),
If »>5,

-Z (M) (0 h<27).
h=2""24+0" (0L2<8, 0Kh 2",

pﬁ“WZZ (ph‘ Pph )

and the sum with . respect to z is zero unless ' is even. Supposing
‘b’ = 2h,, so that 0 < h, < 2% we obtain

N7 hy
=8 e o(21) =88, 1res.

Sp.ﬂia»hu“ﬂzaasp,w; (C‘t:ﬁ'o, 0 « /i m 4—)

6.2. Observing that A4, == 0, we write

Zaml+(A1+As+A10)+(A04+A198+A2M)"Jf""-'
:1+(A4+A5+A16)’+“B
For ¢ >0, 2L u< 4, we have

Writing

we obbtain

Thus

- 2440!-("” (2—'6! )s - Z/t (g d) a’

| N Pp2# np
= S (585

IAa4“+‘3 'I—Aaw-ks -+ A244x+a4, ‘ < 28-2“’”""

~17
|B| <28 ~—~2—.-1«5 < 27 00025,

to=1+4 A, + Ay + A, +[-00025].
6.3. Of the terms 4,, 4,, 4,, the most important is the last. We have

4,= Z’ (cos%)glexp (gfgi?—ﬁﬂﬁ)mm + U, + U A,

p=1,8,...,18
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where ¥, iz given by p==1, 15, % by p=13, 18, and so on.

N 15\ \ o -
(cos %) = — (cos 2%} = 665350 + [3-107°],
U, = — (18307 + [107]) cos (77 —"7);

(cosglgflz (cos 1?6 > = 020736 +[107°],

oA, = (10415 + [107]) oos (& + 227,

(cos w-~>“=~«~ (cosllmf> =[5-107°],

at
and so also for (cos Zg) . Thus
8[5+917m[2-10"5}.

Similarly we may write

Asmz (cos%) exp (21’;”~—"ﬂ”i>wﬁi+ﬂt;,

1,8,5,7

where %, is given by p=1, 7, and so on: and

(oos §>m F e (cos .38??_)21: 189636 - [107°],

Ay = — (*8793 + [107*]) cos (38”' + %”“>;

(s "= — (32" = 1207

8 8
Ay =[1077].
Finally ’
4, =] (cos %’—,) exp (21?‘1 -~ ﬁ’»ﬂ) [277%] == [0014].
1,3

Collecting our results, we may write

fp =1 — 13807 cos (32 — %%) 4- 0415 cos (5 + *57)

— 3793 oos (3 -+ 27) -+ 8[-00017 +[0017],

and the total possible error is [-002].

6.4. We have now to verify that the sum of the first four terms of z,

And

Lo
[l

is in all cases greater than '002. It is easy to see that the least fa-

7T

vourable cases are those in which cos (~5w- — —-~) has its greatest possible

16

value, viz. cos—«i%,

This happens when n == 2, 3 (mod 16). We have then
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Lo
(=3

7o =1 — 13307 cos % — 0415 cos 5 {8793 cos ] -} [002]
== 1 — 13051 -~ "0845 - 8504 -+ 3[0001] -1~ [-002]
= 0108 -+ [0028] > 0085 == ¢ > 0.
It will easily be verified that, when » has any other residue to
modulus 16, the margin is much greater.

7. Coneclusion.

7.1. We have now proved Theorem B when s - 21, and Theorem A
is an obvious corollary. It is not immediately obvious that, if Theorem B
is true for s =21, it is also true for s> 21. All our arguments are
valid for s > 21, except those of §§ 6. 3—06. 4; but the numerical discussion
of these two paragraphs has, strictly, to be repeated for each value of g
in question. Our own calculations refer only to the cases s == 21, 31, 83,
in which we have, at various times, been particularly interested. No
point of principle is involved, and the calculations in other cases may
be left to anyone who may be sufficiently interested in the matter to
make them?).

It is evident that we may, with the help of the singular series, study
as closely as we wish the variations of 7, #(n) as n assumes various
residues to modulus 16. It is clear, for example, that the numbers
16m -+ 2 and 16m -4 3 are, to put it roughly, less readily expressible
by 21 biquadrates than any other numbers, and something like 200 times
less readily expressible than the numbers 16m -4 10 and 16m -- 11.

There is no difficulty in applying the methods of this paper to the
proof that
(7.11) Gk) L (k—2)2" " 45
for any particular value of k, as for example 3, 5, 6 or 7. We find
thus that @(8)<9, G(5)< 53, G(6)< 133, and Q(7) £ 325. The
first of these inequalities is not new??), and in fact Landau has proved
that G'(3) < 8: but the numbers 53, 133, 825 compare very favourably
with the 58, 478, 3806 at present known. The proof that (7.11) is true
generally, however, presents certain algebraical difficulties, of complication
rather than of principle, and we must postpone it to a later memoir.
We have not indeed worked out this proof in detail, the analysis which
we possess carrying us only so far as the less favourable inequality

Gk)< k2" 1
indicated by our earlier researches.

1) See however the following note of Herr Ostrowski.
¥) The accompanying asymptotic formula is of course new.
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We conclude with one final remark. It might well be supposed that
the proof of (7. 11) for (say) k=7 or 13 would be more difficult than
for k== 4. This is not so; the proof for k ==4 is, in essentials, more
delicate and critical than for any'other value of k. The fact is that
it 15 only for k=4 that our inequality expresses something near the
ultimate truth. It is known that G (4) > 16, and, the difference be-
tween 16 and 21 is comparatively small: this corresponds to the facts
that the eritical factor of § 6 nearly vanishes in the least favourable case,
and that there is a term in y, which is sometimes actually greater than
the leading term 1. When % is larger, our value is much too high, and
the singular series tends (for such values of s as are contemplated in our
analysis) to be dominated completely by its leading term.

(Eingegangen im Januar 1920.)



