
Some problems of ,,Partitio numerorum": II. l)roof that  every 
large number is the sum of at most 21 biquadrates. 

By 

G. H. Hardy in Oxford and 5. E. Littlewood in Cambridge. 

1. Introduction. 

1. ]. This memoir is essentially a sequel to one which we published 
recently in the GSttinger ~achrichtenl). It  could not in any case be 
intelligible to a reader unaequainte& with our earlier memoir; and we 
shall therefore quote formulae from the latter without further explanation. 

In the memoir referred to we laid the foundations of our new method 
for the solution of Waring's Problem, carrying our analysis just so far as 
was necessary for the proof of Hilbert's Theorem, the fundamental exis- 
tence theorem for the numbers g(k) and G(k). Here our object is to 
find the best possible inequality for the particular number G(4). A good 
deal of our analysis, however, is valid for a general k, and wi]I be useful 
to us when we proceed to the corresponding general problem. I t  will be 
found that the special interest of the case k ~ 4 is quite suffident to 
justify its consideration in a separate memoir. 

1.2, i t  is known that 

t 9 _ ~ g ( 4 ) s  37, 16 ~ G ( 4 )  s 37, 

Vkese inequalities, from left to right, being due to War ing ,  Wie fe r i ch ,  
K e m p n e r ,  and Wiefer ioh  respectively. For detailed references we may 
refer to the dissertations of K e m p n e r  ~) and of Baera). We need men ~ 

1) G. H. Hardy and J. E. Littlewoo d, Some problems of 'Par~itio numerorum'; 
I: A new solution of Waring's Problem, G6~tiager Na~hrichten 1920, S. 88-54. We 
shall refer to this memoir as W. P. 

:) A. g. Kempner, Uber das Wsringsohe Problem und einige Versllgemeine- 
rungen~ Inaugural-Dissertation, GSttingen 1912. 

~) W. S. Baer, Beitr~ge zum Waringschen Problem, Inaugursl-Dissert~ion~ 
G~ittingen 1913. 
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tion only that the deepest result, viz. g (4) ~ 37, was obtained in 1909 by 
Wie fe r i ch ,  whose analysis is a refinement upon that by which Landau ,  
in 1907, had proved Vhat g ( 4 ) ~  38. Here we shall prove nothing con- 
cerning 9(4); but we shall improve the upper bound for G(4) very 
notably, by proving 

T h e o r e m  A: G ( 4 ) ~ 2 1 .  

(2. 11) 

where 

% A sharpening of our earlier analysis. 

2.1. In w 9.2. of W. P. we proved that, assuming alw@s 

s~_2K + l=2~+1,  

It  will be necessary now to replace the term O(n  ,~+~') by a term of 
lower order ~). 

2.2. It  will be found, on an examination of the analysis of W. P., 
that the critical error term O(n 8~+~) arises in two places only. All 
other errors are of lower order than that of the dominant factor ~s~-t, 
either independently of the value of s, or at any rate when s __~ 2 K @  1. 
The two critical errors arise as follows. 

In the first place we have 

v..!. .  ~-J 2~i J ,x~+1 dx~  
,'*n 

where m is a typical minor arc of the Farey dissection. 
Secondly, when we consider the corresponding sum connected with 

-? (/ w h e r e  ~he major arcs, we are confronted by a sum , ~  ~,e, 

= 

and ~r~ is a typical major arc of the dissection, and we write 

It  will be observed that these two errors arise in exace2y the same 
way. The upper bounds are obtained by substituting i.a the integrals the 
crude approximations, f== O(n  ~'+') on a minor arc a~d r  0 ( ~  "~+') 

~) The formula (2.11) would lead only t~ G(4)~a3, in itself a new result. 
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on a major arc. Here we refine on our previous argument by the use 
of a single new idea. This idea consists in an appropriate use of a known 
result, viz. that the number of positive integral solutions of the equation 
x~-~-y~==n is O(n ~) for every k > l S ) ,  or, as we may express it in 
our notation, 

2.3. We have 

Hence 

~ow 

llt  0 

= o 

~t ~b 

"7 

0 0 ~:'~_~ 

] 
and so, since R = I - -  h '  

Z fir(x) 
1|1 

Hence 

'zflr( )l' 
1II 

..... o (.,.-,,..+. 5" f lri )l'l  l) ....... 

m 

&gain, we have 

= oI,+o+./+ o(ZjI~I'Le~L), 

5) For a formal proof of this result see D. Cauer ,  Neue A nwendungen der 
Pfeiffersehen Methode zur Absch~tzung zahlentheoretischer ~unktionen, I~,ugu~al- 
Dissertation, GSttingen 1914, S. 88. For k = 2 (when the resul~ includes a f o r t i o ~  
the corresponding results for 4, 6, . .  ,) see E. L a n d a u ,  Uber die Anzahl der Git.ter- 
punl~e in gewissen Bereichen~ G6ttinger Nachrieh~en, 1912, S. 750. 
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na 0o 

~t 1=i ~p __O ~ 

= o ( $ 2 ~ - , , ~ - = + . , - , . O o ) :  o (>3~.~-,,,-= +,. ~,o.~-~ =o-~) 
q ~ 

O(,~=a-~§176176176247 (k>__4) 
. . ~  q 

o ( ~ ~  = o (n~o-,+~) = o (,~=o+.) ( ~ = a ) .  
q 

Thus 

=~.~r .... _,.~.~ ~ f  

2.4. The argument of W. P. showed that 

where 2 < ( s a - - 1  it s a z < s a - - 1 ,  i.e. if s > k K = k 2  k-1 
clear that  this resul~t holds if only 

(s -- 4 ) a u - ~  2a  < s a  - -  1 ,  

i .e.  if 
=>(k-  2)K+4. 

i t  is now 

For b := 4 these inequalities reduce to s i"~ 32 and s > 20 respective!y, 
so that the improvement is very substantial. And if only we can estab- 
lish the existence of a positive constant a such that 

Isl>~ 
when s ~ 21, we shall have proved not only Theorem .& but the more 
precise theorem 

The proof of this theorem is in fact ~edueed to a discussion of the 
singular series S. 

Mathematische Zeitschrift, IX. 2 
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3. Factorization of the singular series. 

3. 1. The discussion of the singular series is greatly simplified by 
the following fundamental lemma. 

Lemma 1. I /  
( s ,  / , 

A q = Z \'-q-"i eq (-- n ~' ) , 

so tha~ 
S : = 1  -~- A~ + As + A4 + ...... = ~ A,x 

i/ s ~ 2 K -+ l , and i/ ( q , q' ) ~= l , then 

and 

where ~ is prime ") and 

Aqq, =AqAe, ;  

S = g~ Zsg~ . ' .  =' H:Z,r 

;/~ = :  1 + A~-~- An,+ A~s + . . .  
We have 

S2aq, k - I  q S~qk-1,  q, = ~ e . . . . . . . . .  e, 
' h, q ' q '  ) '  

where h ~ and h' describe complete systems of residues to moduli q 
and q'. But 

e q + .......... -q~, ........... i = e , 

where I] = hq '  + h 'q ;  and, sir~ce (q, q ' ) =  i ,  ~) describes a complete 
system of residues to modulus q q'. Hence 

(8.11) 
Next we observe that, if p describes a complete system of residues 

prime to modulus q, and p' a similar system for modulus q', then 
p = p q ' +  p'q describes a similar system for modulus q q'. Also 

S~q ,k -x ,~  h q h 

Hence  

which proves the lemma. 

8) The symbol ~ is used in this sense down to the end of 5.2,  after which i~ 
is used in the ordinary sense. 
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4. Rules for the calculation of A , .  

4.1. Lemma 1 is true for any value of k. The lemmas which follow 
are also true generally, provided only that k is not divisible by ~r. Thus 
when k =  4 they hold for ~ > 2. 

The sum A ,, involves the argument n, and we might write 
A ~ = A  ~(n). When, as will sometimes happen, n is replaced by 
another argument, this argument will be shown explicitly. 

L e m m a  2. I] ( ~ , k ) = l ,  ~ > 0 ,  O < t , t < k ,  then 

0~" 

Az~ak+, .  = 0 

according as n is not or is a multiple o/~r a~. 

(1) We have first 

h 

We write 

h = ~ + , ' , - ~ z  + h' (0 ~ z < ~:, 0 ~ h' < ~.k+,,.-~), 

and we obtain 
( ph 'k kp h 'k-1 z 1 

z 

The sum with respect to z vanishes unless h' is divisible by ~,, i. e. h ' =  ~h~, 
where 0 ~ h~ < ~r"~+~*-2; in this case the sum is z. Observing that this 
range of variation of h~ is, to modulus ~r ("-~)~+z, equivalent to ~r ~-~ de- 
scriptions of the range 0 =< h I < ~r ("-~)~+,, we obtain 

( ;oh~ ~ ~-~S~,= 

h~ 

It  shotfld be observed tha~ the preceding argument is valid even when 
# = 0. We obtair~ in fac~ 

(4. 11) S ,,~ = ~"(~-~) (a > O) 

and otherwise 

(4. 12 ) Sp,,,~+,, .--- ~(~-~) S~,,~,,. 

(2) We have now 

A z a ~ + ~  == a k+ ztal~+~t " 

2* 
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We write 
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(~ > 0), 

We 

, z + . p '  

where 0 ~ z < = ~  and p '  is less than z,p and not divisible by z. 

have then, by (4. 12), 

Sl, , .<, ,~+,,  " = ~<~(~-:..<$<, ..,,, = ~ o , k - ~ ) ~  ,,~,,, ; 

and 
- a s  ~-~ \ ~  s __ __ 

A .<,~,+p = ~ / ~  ~ :, <,~. .<,'s~+,,)" 

The sum wi~h respect ~o z vanishes unless n is divisible by z~ <'~. 
n = ~z~v,  where v is an integer, we have 

-~=o,,+,, = , , + ' > Z  (~< :"/'~ (- ~:1 .,,<~-.>.~,,, ( " )  .. \ - - , ~7 -1  \ ~,'<i ...... ~ +< ~ " 

4.2. L e m m a  3. I /  ( ~ , k ) =  1, a > O ,  

A ~  ~= 0 

A=a]~ ~ -- xe a(k-s)-I 

A . ~  = (~, - 1 ) .  " (~ -"~ -~  

By (4 .11) ,  we have 

If  i~owever 

Writing 

we obtain 

'p' if 

The sum with respect to z is zero unless n is a multiple of , ~ - ~ .  If 
n = ~ k - l , , ,  we have 

A , , ~  = - ~  ~ (-",:~'~ 
7g ,,'," 

The last sum is --  1 or ~ --  ! ,  according as ~ is not or is divisible by ~r. 
This proves the lemma. 

4.3.  L e m m a  4. I /  ( ~ , k ) = l ,  l < f f < k ,  

A p = 0 (n§ ( m o d a l - l ) ) ,  

A ,~ = (~-- ] )~ . , , -e . . ,  ( n ~ 0  ( m o d e , < ) ) .  

(1) In the equation 

p ~= =z + p' (0 =< z < ~'+-~, 0 .~ ~' < ~), 

(n : [ -0  (mod ~"k-~)), 

( n - 0  (modnc'~-l) ,  n l. 0 (mod : r~ ) ) ,  

(n 0 (mod~rc~)). 
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we write 

and we obtain 

The sum with respect to z vanishes unless h ' - -  0 (rood ~.), or unless h' = ~,hx, 
where 0 ~ h~ < ~ , -~ .  In this case the exponential is unity (since # </~) ,  
and we obtain 

S ~  , ~ ,u, =~:: 7l:/r 

(2) We have thus 

, Writing 

we obtain 

z s (  - A t~ ~ = ~ - 8  e ,u-1 ' 

and the sum with respect to z vanishes unless n = ~ - 1  ~, where ~ is a n 
integer. In this case 

and the sum i s -  1 or ~ -  l ,  according as ~, is not~ or is divisible by :~. 

5. The form of X~ ( k = ~ 4 , ~ 9 ) .  

5.1. We now suppose k ~ 4, so that all the results of w 4 hold for 
:> 2. Taking first the case # ~ 0, we have 

by Lemma 3. 

Next ,  i f  # ~ i ,  we have i A~ t <~ ~ and so 

by Lemma 2. 

Finally, if 1 -< # <: k, we ha~e 

by Lemma 4, and 

by Lemma 2. 
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Thus the terms of Z= may be exhibited in the forinT) 

1 + A~ + [~o-,] + [=8-,] + . . .  + ii:~k.~~ 
+ =,~-,([1 ] + [~] + [ ~ - , ]  + [~,,-,] + . . .  + [:~-,-,,]) 

+ =,<~-,~ ([1] + [=] + [=~-,] + [=,,-,,] +. . . -+.  [ ~.k.-,-,,]) 
�9 �9 . �9 . �9 . . . . . . �9 �9 . , , e . . . . . 

where Ix]  denotes a number whose modulus is less than x. Hence (pro- 
vided only s > k) we have 

Z=.= I-~-A.-,+B~, 
w h e r e  

IB~]< ~ ~ ~ _ ~ _ ,  1 + ~ + ~  7 

Taking now k = 4, s :',. 20, we have 

(5 .11)  Z~ --= 1 + A~ + [=-t4].  

5.2. When we come to consider A~, it is necessary to distinguish 
different cases. 

Suppose first that ~ is of the form 4m-+-3 .  Then the residues ot 
h a to modulus z are the same as those of h~, and S~.,, reduces to an 
ordinary Gaussian sum. Thus ]S~., I _s g '~ and 

z~ = ~ + [=-~] + [,~-'~] = 1 + i =  ,-~] (~ =o ~m + a). 

Next, suppose = of the form 4~n-+-i. Then s) 

and ]S~,= ] <1 a 1/~ 

(;)' 
If = - =  17, [A~71 < 17(})  '~ < ~ , ,  

(5 .21 )  Z~, = 1 + [~6] + [ 17.t~] = 1 +. [{iJ. 

If = : > 2 9 >  27, 3 ~'~ (-~-10"~ _ < =~ , < = -8 '5 ,  I A ~  I < =-,.,.5, 
\ V ~ I  . . . . . . . . . . . .  

~) It should be observed that, owing to the vanishing of A ~ k  and A~h~+,, 
when n does not satisfy certain congruence conditions, Z~ is in all cases a fin~,t,e series; 
but this is irrelevant for our argument. 

s) See H. Weber, Lehrbuch der Algebra, Bd. 1, S. 584. In Weber's notation, 
Sl,,~ is one of the numbers 

c = 4,; + 1 = ~/-~ + (~, ,7) + ( -  ~, ,~). 
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and 

(5 .22)  %.~ - 1 + [~-~'~] + [~-14]_~ 1 + [~-2]  (~ = 4 m  + 1 > 29).  

.From Lemma 1, (5. 11), (5 .21) ,  and (5 .22 ) ,  it follows that  

Thus i n  order to establish our conclusion w h e n  s =~ 21, it is only  ne- 

cessary to show that 

t z ~ i > ~ > o ,  t z ~ i > o ,  lz~:~{::-. 
5.3.  We find by direct calculation that  9) 

$1, ~ l + 4 e  ~ S~ ~ I + 4 e  ~ 

I t  is however (as we have to consider the case of 13 also) more convenient 
to proceed as follows. The numbers S~,~ are the roots of the equation ~~ 

($~ + 15)" = 20 (S -- 1) ~, 
from which 

2i/5:, 

~I~__< 15 + 2-r < 19.473, 

t s ~ . o i =  I~l < 4"~18, 
A51 < 4( '8820)  '~ < .291, 

Z~ '-= 1 + [ '291] + [5 - ~ ]  = 1 + [ '3] ,  

tz~t > "7 == ~. 
5.4.  Similarly the various values of Sr,~, are the roots of 

($~" + 39) ~ = 52(~" --  39", 
from which 

t~ ] ~ s  39 + 6 V'1-3 < 60"7, 

t,s~, ~ t----I~i < 7.s, 

!A~s t < ~2 (.S) '~ < .oo2, 
so ~ha~ 

l z ~ s l > o .  
~) From this point onwards :~ is used in the ordinary sense. 

~o) Weber,  1. c., p. 584. 
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The ~roo] o] Theorems A and B is thus reduced to a ~proo[ that 

6. Discussion of Xa. 

6. 1. The arguments of w 3 fail when = = 2, and it is necessary to go 
back to the  definitions of A~, A~, .... The first step is to 
sums Sr,~,.  We find by direct calculation that 

S , . , = O .  S, . ,  =2(l+e~;'='),  S , . ,  = ~ ( l +  e"~') .  S~... 

If ~ > 5 ,  

=22e (o h < 

Writing 
h-~2"-'~z+.h ' ( O ~ z < 8 .  0 s 1 7 6  

we obtain 

k~1o, 9 ~' --.r.,.~..~..., \ ~ ,  
h' z 

and the sum with. respect to z is zero unless h'  is 
" h ' = 2 / h ,  so that 0 ~ h x < 2  "-4, we obtain 

h~ 
Thus 

calculate the 

For 

even. Supposing 

28~ ( a > 0  

6.2. Observing that A~ ~ 0, we write 

= 1 + (A~ + A~ + A~6) + g .  

0 , :  t~ :~i; 4). 

a > 0 ,  2 ~ / ~  _<4,, we have 

IA~+.~ q- A ~ + 8  q- A~,~+4 ] <: 28,2 -17'~, 

2-17 , 2  -18 I Bi< 28 ~_--_,y~ <~ < '00025, 

g~ == 1 ~ . A ,  + A  8 ~+~ A~6 q- ['00025]. 

6.3. Of the terms A~, A s , Az6 the most important is the last. We have 

~=1,8,...,15 
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where 2~ is given by p ~ 1 , 1 5 ,  ~s by p = ~ 3 , 1 3 ,  and so on. And 

cos i-6)'u= --  \cos-~6- / - -  "665 350 -~- [3 .10-6 ] ,  

~, = - t ,  ~o~ + f~0-'ll oo~ (~; - 7 ) ;  
3 x "~1 

COS "16) ~--" f 13:r~:x - -  ~cos-f6-] = "020736 q- [10-(~], 

~, (-o415+ [lo-'])oos(~ 3,,x~ = -r--~-); 

COS 5 zc~'n f 11 ;t~ ~l : ~ j  = - ~,~ = [ 5 .  l O - " ] ,  

f 7=\  ~* and so also for ~cos~6:) . Thus 

~ + ~ = [2. lO-~ 
Similarly we may  write 

1, 3, 5, 7 

where ~I: is given by :p ~ 1, 7, and so on: and 

(~os "~?' - (cos-~-~-?'= .~s968~ + E10-'l, 
8"/ == 8 / 

,z; (.379~ + [~o-"]) cos + 

(oo, 7)~ _ (oo,.~)~ i,o-,j, 
I % = [lO-~J. 

Finally 

\ 4 2 1 
1,8 

Collecting oar results, we may write 

and the total possible error is [ '002]. 

6. 4. We have now to verify that  the sum of the first four ~erms of Z-. 
is in all cases greater than "002. I t  is easy to see that  the least fa- 

(5~ -8 =) has its greatest possible vouxable cases are those in which cos 16 

value, viz. ~ This happens when n ~  2, 3(rood 16). We have then 
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3 ~  :r 
;~ == 1 -- 1"3307 cos-/6- -- "0415 cos i6- ~~} "3793 cos- s -t" I'002] 

= 1 - r 3 0 5 1  ..- -03 5 + .3504 + 3 [-0001 :l [ .002] 
:--- -0108 -k ['0023J > "0085 --=- ~ > 0. 

I t  will easily be verified that, when n has any other residue to 
modulus 16, the margin is much greater. 

7. Conclusion. 

7.1. We have now proved Theorem B when s ~ 21, and Theorem A 
is an obvious corollary. It  is not immediately obvious that, if Theorem B 
is true for s-----21, it is also true for s :> 21. All our arguments are 
valid for s :> 21, except those of w167 6. 3--6. 4; but the numerical discussion 
of these two paragraphs has, strictly, t() be repeated for each value of g 
in question. Our own calculations refer only to the cases s =,~ ~1, 31, 33, 
in which we have, at various times, been particularly interested. No 
point of principle is involved, and the calculations in other cases may 
be left to anyone who may be sufficiently interested in the matter to 
make them 11). 

It  is evident that we may, with the help of the singular series, study 
as closely as we wish the variations of r~,~(n) as n assumes various 
residues to modulus 16. I t  is clear, for example, that the numbers 
16 m-~-2 and 16~n ~-3 are, to put it roughly, less readily expressible 
by 21 biquadrates than any other numbers, and something like 200 times 
less readily expressible than the numbers 16 m-+. 10 and 16m ~t-11. 

There is no difficulty in applying the methods of this paper to the 
proof that 

(7.11) G(k) ~ ( k - -  2)2 ~-~ + ~, 

for any Tarticular value of /c, as for example 3, 5, 6 or 7. We find 
thus that G(3 )< :9 ,  G ( 5 ) ~ 5 3 ,  G(6)<:133,  and G ( 7 ) ~ 3 2 5 .  The 
ilrst of these inequalities is not new12), and in fact L a n d a u  has proved 
that G ( 3 ) < : 8 :  but the numbers 53, 133, 325 compare very favourably 
with the 58,478, 3806 at present known. The proof that (7.11) is true 
generally, however, presents certain algebraical difficulties, of complication 
rather than of principle, and we must postpone it to a later memoir. 
We have not indeed worked out this proof in detail, tim analysis which 
we possess carrying us only so far as the less favourable inequality 

G(k)=< + i 

indicated by our earlier researches. 

~1) See however the following note of Herr Ostrowski. 
~) The accompanying asymptotic formula is of course new. 
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We conclude with one final remark. It might well be supposed that 
the proof of (7. 11) for (say) k-----7 or 13 would be more difficult than 
for k ==-4. This is not so; the proof for /~ ~ 4 is, in essentials, more 
delicate and critical than for any ~ other value of k. The fact is that 
it is only /or lc-~ 4 that our inequality expresses something near the 
ultimate truth. It  is known that G ( 4 ) ~  16, and, the difference be- 
tween 16 and 21 is comparatively small" this corresponds to the facts 
that the critical/actor o/ w 6 nearly vanishes in the least/avourable case, 
and that there is a term in 2~ which is sometimes actually greater than 
the leading term 1. When k is larger, our value is much too high, and 
the singular series tends (for such values of s as are contemplated in our 
analysis) to be dominated completely by its leading term. 

(Eingegangen im Januur 1920.) 


