
5
Search-Based Heuristics for Modal

Application

Due to the growing number of electronic control units (ECUs) in contemporary
cars, sometimes reaching even 100, the automotive industry gradually resigns
from their paradigm of using a separate unit for each functionality [99]. The
requirement of placing a number of ever more sophisticated functionalities in
one chip resulted in appearance of multi-core ECUs [158]. The AUTOSAR
(AUTomotive Open System ARchitecture) standard [1] assumes a static (i.e.,
compile-time) mapping of atomic software components, named runnables,
into cores since it is less complex and more predictable than dynamic resource
allocation [94].

Due to the hard real-time constraint in automotive systems, the cores have
to execute all the tasks on time even for their worst-case execution behavior,
where they take worst-case execution time (WCET), which is usually much
higher than the average execution time [152]. One possibility of decreasing
the difference between the worst and average task execution times stems
from the modal nature of such applications, i.e., from the fact that they
can behave in a limited, known at design-time, number of ways, named
modes. If each mode is analysed independently, the average execution time
may be closer to the WCET determined for that mode [118]. In [104], six
modes have been identified in a 4 cylinder gasoline torque based system, for
example Cranking, Idle and Wide Open Throttle. It has been stressed there
that execution times of particular runnables differ significantly for various
modes of an ECU and thus applying different mappings for each operating
mode may be beneficial. This way a lower number of cores could be needed
than that of the corresponding system design not considering operating modes.
However, introducing different mapping for modes imposes significant design
complications, which have not been analysed in [104].

The contexts of runnables that are executed on different cores in different
modes have to be migrated from one core to another, setting additional
requirements for the available communication bandwidth. The process of
mode switching usually incurs overhead (both in execution time and energy),

73

74 Search-Based Heuristics for Modal Application

which is to be taken into account at run-time to decide whether to switch
to a different mode or not. In hard real-time systems, it is essential to satisfy
all the timing constraints even during the mode switching process, i.e., the
migration time of tasks must be time bounded [146]. Therefore, the worst
case switching time has to be assumed to provide the timing guarantees.

During the migration process, the taskset schedulability must not be
violated. To guarantee this property, we propose to treat a migration process as
any other asynchronous process in schedulability analysis, i.e., to use so-called
periodic servers, which are periodic tasks executing aperiodic jobs. When a
periodic server is executed, it processes pending task migration. If there is
no pending migration, the server simply holds its capacity. To reduce the
migration time, a recursive greedy algorithm for reducing the amount of data
transferred during a mode change is proposed. It aims to decrease the number
of periodic server instances used during a single mode switching. The proposed
approach can be applied to any hard real-time systems, where different
operating modes can be identified, and automotive systems in particular.

As an example, throughout this chapter we will analyse an engine ECU
code named DemoCar. We will identify its operating modes and apply
clustering to decrease their number and to eliminate task migration between
neighbouring mode pairs (i.e., two modes from which at least one mode
can be directly transferred to the second one) if the mode change is to be
finished rapidly. The mappings for each mode will be determined using a
genetic algorithm. This algorithm applies two optimizing criteria: runnable
schedulability in terms of a number of deadline violations and migration
cost in terms of the context length of the transmitted runnables. The typical
schedulability analysis is used to determine the necessary network bandwidth
to guarantee that the mode switching migration finishes in the required time.

In the next section, the state-of-the-art solutions are described followed by
the proposed approach and a discussion on providing performance guarantees
during mode changes.

5.1 System Model and Problem Formulation

5.1.1 Application Model

In this work we assume application model is consistent with the AUTOSAR
standard [1]. A taskset Γ is comprised of an arbitrary number of periodic run-
nables, Γ = {τ1, τ2, τ3, . . .}, grouped in tasks with hard real-time constraints.
The j-th occurrence (j-th job) of runnable τi is denoted with τi,j . The taskset
is known in advance, including the WCET of each runnable, Ci, its period
Ti, priority Pi and its relative deadline Di equal to this period. Runnables
are atomic schedulable units communicating each other with so called labels,

5.1 System Model and Problem Formulation 75

N = {ν1, . . . , νr}, which are memory locations of a particular length. The
order of read and write operations to labels denotes the runnable dependencies,
as the write operation to a particular label should be completed before its
reading. Deadlines for mode changing time between each neighbouring pair of
modes are also provided. We assume that the labels are stored in the same node
that the runnable that reads these labels. If more than one runnable mapped
to different cores read from the same label, its content is to be replicated to
all the reading nodes and the writer should update the label value at all the
locations. It means that the writer is aware of all its readers and knows their
locations in all the possible modes.

Example 1 Throughout this chapter, we consider a lightweight engine control
system named DemoCar as an example application. The flow graph of this
application is depicted in Figure 5.1. It consists of 18 runnables and 61
labels. All runnables are periodic: 8 runnables (highlighted in green) are
to be executed every 10 ms, whereas period of 6 runnables (red, blue and
yellow) equals 5 ms, two (violet) runnables are executed every 20 ms and
the period of two (orange) runnables is 100 ms. In Figure 5.2 (upper part),
11 identified modes of this application are presented. These modes have been
identified by inspecting the code of the runnable named OperatingModeSWC,
which computes values of transaction and output functions of the Finite State
Machine steering this engine. For example, label FuelEnabled is read by two
runnables: TransFuelMassSWC and ThrottleChangeSWC. If these runnables
are mapped to different cores, the label is to be replicated and kept in both
the cores where these runnables were mapped to. It is a role of the writer,
OperatingModeSWC, to update these values coherently not violating any
timing constraints.

5.1.2 Platform Model

The hardware platform assumed in this chapter is a mesh Network on Chip
(NoC) with a certain number of cores π ∈ Π and routers ψ ∈ Ψ, as shown
in Figure 5.3. Each link is modelled as a single resource, so, for example,
to transfer a portion of data from π0,1 to appropriate sink π2,0 we need such
resources allocated simultaneously: π0,1 − ψ0,1, ψ0,1 − ψ1,1, ψ1,1 − ψ2,1,
ψ2,1 − ψ2,0, ψ2,0 − π2,0. In every mode, each runnable is mapped to one
core and a label is stored in local memories of the cores requesting that label.
Data transfer overhead is taken into consideration, assuming constant time for
transferring a single flit (Flow control digIT, a piece of a network package
whose length usually equals the data width of a single link) between two
neighbouring cores if no contentions are present. Timing constants for packet

76 Search-Based Heuristics for Modal Application

F
ig

ur
e

5.
1

Fl
ow

gr
ap

h
of

th
e

D
em

oC
ar

ex
am

pl
e;

th
e

ru
nn

ab
le

s
be

lo
ng

in
g

to
th

e
sa

m
e

ta
sk

ar
e

hi
gh

lig
ht

ed
w

ith
th

e
sa

m
e

co
lo

ur
,l

ab
el

s
ar

e
no

th
ig

hl
ig

ht
ed

.S
om

e
flo

w
s

ar
e

dr
aw

n
in

di
ff

er
en

tc
ol

ou
rs

fo
r

re
ad

ab
ili

ty
.

5.1 System Model and Problem Formulation 77

Figure 5.2 Finite State Machine describing mode changes in DemoCar use case: before
(upper part) and after (lower part) the clustering step.

Figure 5.3 An example many-core system platform.

latencies while traversing one router and one link are denoted as dR and dL,
respectively. The priority of data transfer packets are assumed to be equal to
the priority of the runnable sending them.

5.1.3 Problem Formulation

Given a platform and an application model with a defined set of operating
modes, the problem is to determine schedulable mappings for each mode so
that the amount of data to be migrated during the allowed mode changes is
minimized. During mode changing, the taskset should be still schedulable
despite the additional network traffic generated by the task migrations. The
neighbouring modes (i.e., the modes connected with a link in the FSM

78 Search-Based Heuristics for Modal Application

describing the allowed mode transitions) with similar runnables’ execution
time can be clustered to decrease the frequency of task migrations. The
deadlines for mode changing time between each neighbouring pair of modes
must not be violated.

5.2 Proposed Approach

In this section, steps of the proposed design flow are described. Since it has
been assumed that the tasksets of the considered application are known in
advance, it is possible to perform some preliminary computations statically.
Consequently, the mapping problem can be split into two stages: off-line
(static) and on-line (dynamic), as shown in Figure 5.4. The computation time
of the off-line part is not crucial and thus heuristics with even high complexity
may be used for runnable and label mappings. It seems promising to combine
the most effective approaches, such as multi-objective simulating annealing or
genetic algorithms. The possibility of extending genetic operators benefiting
from the full knowledge of the system domain, such as mutation in a way
similar to [109], makes the genetic approach the first choice at this step.

During run time, detection of the current mode is assumed to be done
by observing certain variable. (In DemoCar such variable is named –sm and
is stored in runnable OperatingModeSWC.) When a value of this variable
has been changed, the current runnable and label mapping might have to
be switched. The mappings have been chosen during the design time with
respect to minimize the amount of data to be migrated. Schedulability analysis
guarantees that even the worst case switching time does not violate the deadline
required for mode changes. If such violation is unavoidable, either the states
can be clustered, or the network bandwidth is to be increased.

The off-line part of the proposed approach is comprised of five steps,
which are covered in the following subsections.

5.2.1 Mode Detection/Clustering

The reasons for introducing the mode detection & clustering step are twofold.
Firstly, some neighbouring modes can be characterized with similar runtime

Figure 5.4 Steps of dynamic resource allocation method benefiting from modal nature of
applications.

5.2 Proposed Approach 79

and resource consumption. Then there is little benefit in preparing different
mappings for such modes and migrating the runnables when a transition
between these neighbouring modes is made. Moreover, some transitions are
required to be done immediately, whereas others can be less time tight.
If a runnable migration is to be performed quickly, for example between
two consecutive runnable occurrences, the bandwidth needed to transfer the
appropriate amount of data in that time may be unreasonably high. Therefore,
it may be more sensible to merge two modes with such rapid task switching
time and generate only one mapping for them.

Example 2 (continuation of Example 1) In DemoCar, transitions between
modes: Stalled, Cranking, IdleOpenLoop, IdleClosedLoop, Drive, Wait-
ForOverrun, Overrun, WaitForAFRFeedback and WaitForPowerDownDelay
are to be performed between two consecutive executions of their runnable
occurrences, which is upperbounded with 5 ms for 9 runnables. Since perform-
ing task migration during such short time window would require a bandwidth
of considerable size, these modes have been clustered into Cluster 1. Finally,
three modes can be identified after the clustering step: PowerDown, PowerUp
and Cluster 1, as presented in Figure 5.2 (lower part).

5.2.2 Spanning Tree Construction

To minimize the amount of data to be migrated between two consecutive
modes with the technique proposed in this chapter, the FSM describing mode
changes should include weights denoting state transition probabilities. Since
probabilities of staying in the current mode are not relevant at this step, they
can be omitted for simplicity. The probabilities can be given or determined
during long simulation of the modal system. The FSM has also to have all
its cycles removed to guarantee halting of the Static mapping for non-initial
modes step. In this regard, for an FSM treated as a weighted connected graph
G(V,E), where V is the set of vertices and E denotes the set of edges, a
maximum spanning tree can be constructed. We recollect that a spanning tree
of a graph G is its subgraph T (V,E′), which is connected and whose number
of edges is equal to the number of vertices minus 1, |E′| = |V |−1. If T denotes
the set of all spanning trees of G, a maximum spanning tree Tmax(V,Emax)
of G is a spanning tree iff:

∀
T (V,E′)∈T

∑
(v,z)∈Emax

w(v, z) ≥
∑

(v,z)∈E′
w(v, z),

where w(v, z) is the weight value assigned to the edge from a vertex v to z.
A maximum spanning tree can be constructed in time O(|E|log|V |), e.g., by
the classic Prim’s algorithm [108].

80 Search-Based Heuristics for Modal Application

The operation performed in this step neither influences the application
behaviour nor limit the possible mode transitions. It only makes the least
frequent transitions not optimized during stage Static mapping for not initial
modes minimizing amount of data to be migrated (Figure 5.4).

Example 3 (continuation of Example 2) For DemoCar, probabilities of mode
changing have been shown in Figure 5.5 (left). The maximum spanning tree,
constructed with the Prim’s algorithm, is presented in Figure 5.5 (right).

5.2.3 Static Mapping for Initial Mode

Since mapping for each mode is performed off-line, even heuristics known
from their high computational cost, such as genetic algorithms, can be applied.
A genetic algorithm used for hard real-time systems shall guarantee that under
the chosen schedule all timing constraints are satisfied. This can be performed
in several ways. For example, each missed deadline can impose a certain
penalty to the fitness function value, and thus each schedule with unsatisfied
constraints should be eliminated during the evolutionary process. A particular
mapping is portrayed as a chromosome, stored as a bit string, representing on
each gene the processing core where the task would be mapped to, similarly
to [61]. The bit string one-point crossover operator and flip bit mutation have
been applied together with the tournament selection of the individuals.

Below, an algorithm encompassing the aforementioned properties is
described.

In Algorithm 5.1, it is presented a pseudo-code of a genetic algorithm that
can be used during Static mapping for initial mode step, the third off-line step
of the proposed approach, as depicted schematically in Figure 5.4. We propose
to use two fitness functions – measuring (i) the number of deadline violations
and (ii) makespan (also known as response time). Both these functions apply
the interval algebra described in Chapter 2. The first fitness function value is
of primary importance, as in a hard real-time system no deadline violation
is allowed. But among fully schedulable mappings, the one leading to a

Figure 5.5 Spanning tree construction for DemoCar.

5.2 Proposed Approach 81

Algorithm 5.1 Pseudo-code of no deadline violation with makespan
minimisation algorithm for the initial mode mapping

inputs : Workload Γ;
Resource set Π;

outputs : Task mapping;

1 Choose an initial random population of task mappings
2 while not termination condition do
3 Evaluate the number of deadline violations using IA; //criterion (i)
4 Evaluate the makespan using IA; //criterion (ii)
5 Create clusters of individuals with the same number of deadline violations;
6 Sort the clusters by increasing number of deadline violations;
7 Sort individuals in each cluster wrt their makespan;
8 Perform tournament selection; //criterion (i) has higher priority than criterion

(ii)
9 Generate individuals using crossover and mutation;

10 Create a new population with the best found mappings;
11 end

lower makespan is chosen, since idle intervals can be used to decrease energy
consumption or execute tasks of lower criticality levels.

In the algorithm, the following steps can be singled out.
Step 1. Initial population initialisation (line 1). An arbitrary number of

random task mappings (individuals) is created.
Step 2. Creating a new population (lines 3–10). For each individual, values

of two fitness functions are computed - the number of deadline violations and
the makespan (lines 3–4). Individuals with the same number of deadline misses
are grouped together (line 5). The groups are then sorted with respect to the
number of deadline violations in the ascending order (line 6). Inside each
group, individuals are sorted according to their growing makespan (line 7).
The tournament selection is then performed – individuals from a group with
lower number of deadline violations are always preferred, whereas among
individuals from one group the one with the lowest makespan is to be chosen
(line 8). The individuals winning the tournament are then combined using a
typical crossover operation and mutated (line 9). A new population is created
(line 10). Step 2 is repeated in a loop as long as a termination condition is not
fulfilled, which can be a maximal number of generated populations or lack of
improvement in a number of subsequent generations.

Example 4 (continuation of Example 3) For the PowerUp (initial) mode of
DemoCar to be executed on a multi-core embedded system, we evaluate
makespan and number of violated deadlines during one hyperperiod (i.e.,

82 Search-Based Heuristics for Modal Application

the least common multiple of all runnables’ periods) by allocating runnables
and labels to different cores.

The size of the NoC mesh has been initially configured as 2x2 with no idle
cores, since this size has been earlier checked (also using Algorithm 5.1) and
is large enough to execute DemoCar in the most computational intensive
mode, Cluster 1, not violating any of its timing constraints. The genetic
algorithm is executed again to perform assignment of tasks to cores with
timing characteristics for the initial PowerUp mode. The genetic algorithm
has been configured to generate 100 generations of 20 individuals each. The
first fully schedulable allocation has been found in the 1st generation, which
suggests that it might be possible to allocate the taskset to a lower number of
cores.

After performing further search it has appeared that the taskset in the
initial mode is schedulable even when mapped to one (out of four) active core.
The lowest makespan for the NoC with three idle cores is equal to 8622 μs.

5.2.4 Static Mapping for Non-Initial Modes

It is of primary importance to migrate as little data as possible during mode
changes to minimise the migration time.

Each application A includes a set of tasks and can be represented with
a vector comprised of p runnables and r shared memory locations (labels)
of these tasks, A = [τ1, . . . , τp, ν1, . . . , νr], and platform Π is composed
of s processing cores, Π = {π1, . . . , πs}. A mapping M is a vector of p
core locations, M = [πτ1 , . . . , πτp], where each element corresponds with the
appropriate element of A and can be substituted with any element of set Π.
Each element of weight vector W, W = [wτ1 , . . . , wτp], is equal to the amount
of data that has to be transferred when a particular runnable is migrated,
including the labels to be read.

Let Mα and Mβ be sets of mappings that are fully schedulable in a
given system in state α and β, respectively. The elements of the difference
vector Dmα,mβ

= [dτ1 , . . . , dτp] indicate which runnables are to be migrated
when the mode is changed from α to β. Each element dδ, δ ∈ {τ1, . . . , τp},
takes value 1 if the particular runnable/label is allocated to different cores in
mappings mα ∈ Mα and mβ ∈ Mβ , and 0 otherwise:

dδ =
{

0, if mα,δ = mβ,δ,

1, otherwise
(5.1)

where mα,δ and mβ,δ denote the δ-th element of vectors mα and mβ ,
respectively. The migration cost c between two statesα andβ is then computed
in the following way:

5.2 Proposed Approach 83

cmα,mβ
= Dmα,mβ

· WT. (5.2)

Arecursive greedy algorithm for reducing an amount of data transferred during
mode changes is presented in Algorithm 5.2.

Since some cycles are likely to occur in a graph representing the Finite
State Machine describing transitions between modes, a spanning tree (ST) is to
be built, as described in the previous subsection. Then the mode corresponding
to the initial state of the FSM is selected as the current mode (line 1). For this
mode, a set of schedulable mappings is generated, e.g., with Algorithm 5.2
(line 2). If more than one schedulable mapping is found, an additional criterion
crit (e.g., minimum makespan value) is used to select one of them (line 3).
Then for each direct successor of the ST node corresponding to FSM initial
state, the FindMappingMin procedure is executed (lines 4 and 5).

In the FindMappingMin procedure, a set of schedulable mappings for that
successor node is found using minimal migration cost criterion (5.2) (line 8).
If more than one schedulable mapping is equally evaluated by this criterion,
an additional criterion, crit, is used (line 9). The FindMappingMin procedure
is then recursively run for each direct successor of the ST node provided as the
function parameter (lines 10 and 11). More mappings could be delivered to the
FindMappingMin procedure to browse a larger search space by skipping lines
4 and 9 in the algorithm and providing all elements ofMα instead of just one.

Algorithm 5.2 Pseudo-code of a migration data transfer minimisation
algorithm

inputs : A spanning tree ST based on Finite State Machine (FSM) describing the
system modes with transaction probabilities;
W - size of each runnable memory footprint;
crit - mapping optimality criterion (e.g., minimum makespan value);

outputs : Runnable and label mapping for each mode;

1 Select the initial state of ST and assign it to α;
2 Find a set of schedulable mappings Mα;
3 Select mα ∈ Mα wrt criterion crit;
4 forall β being a direct successor of α in ST do
5 FindMappingMin(α, β, mα);
6 end

7 FindMappingMin(α, β, mα)
8 Find a set of schedulable mappings Mβ minimizing criterion (5.2) using W
9 Select mβ ∈ Mβ wrt criterion crit

10 forall q being a direct successor of β in ST do
11 FindMappingMin(β, q, mβ)
12 end

84 Search-Based Heuristics for Modal Application

Example 5 (continuation of Example 4) Regardless of the mode, the appli-
cation has been mapped in a 2 × 2 mesh Network on Chip without deadline
violations. For the PowerUp mode, schedulable mappings have been found
even if three of the four NoC cores remains idle, as shown in Example 4. It
means that in this mode three cores can be switched off, leading to considerable
energy savings. Similarly, two cores can remain idle in the PowerDown
mode. (PowerDown requires more computations than PowerUp since some
maintenance procedures are to be consistently performed.) However, despite
intensive search using a genetic algorithm, all four cores are needed in the
Cluster 1 mode to have the taskset fully schedulable. Thus, when the current
mode changes from PowerUp to Cluster 1, three cores have to be activated,
whereas two cores can be switched off after leaving the Cluster 1 mode.

Let us focus on the transition between the PowerUp and Cluster 1 modes.
For PowerUp, only one core is active and thus all runnables are to be mapped
to the only active core. However, in other cases a larger set of mappings that
are fully schedulable on active NoC cores would have been identified. From
these mappings, the one with the lowest makespan (an additional criterion)
is chosen. This mapping has been used as a parameter of the FindMapping-
Min procedure (from the algorithm presented in Algorithm 5.2). The set of
schedulable mappings following the minimum criterion (Equation (5.2)) is
identified using a genetic algorithm. By the applied criterion (min(cmα,mβ

)),
a significantly lower amount of data has to be migrated during the mode
change. In the best found case, 3 runnables have to be migrated, whose total
cPowerUp,Cluster 1 = 261968 bytes. However, by not using this criterion, but
the minimal makespan instead, the lowest number of runnables to be migrated
equals 13, which results in cPowerUp2,Cluster 1 = 890162 bytes. In the second
case, the amount of data to be transferred using a periodic server is about
240% higher than in the first mapping pair. Since periodic servers offer equal
throughput during the system execution, the mode change between the latter
mappings would last more than three times as long as between the former pair.

During mode change from Cluster 1 to PowerDown, 2 runnables have to
be migrated and cCluster 1,PowerDown = 113568 bytes. Although the transi-
tion between modes PowerDown and PowerUp are not optimized, in this case
only 2 runnables have to be migrated with cPowerDown,PowerUp = 113536
bytes.

5.2.5 Schedulability Analysis for Taskset During Mode Changes

Since some runnables and labels are expected to be located at different cores in
two different modes, their migration is to be performed during mode changes.
A runnable migration process is schematically depicted in Figure 5.6. Two
mappings mα and mβ of runnables τi, τj , τk into nodes πa and πb are

5.2 Proposed Approach 85

Figure 5.6 Example of two different mappings (mα, mβ) of runnables τi, τj , τk into cores
πa and πb.

used in two different system modes: α and β, respectively. The difference
between these mappings is the assignment of runnable τj . We assume no
deadline violations for both mappings mα and mβ . During hyperperiods
involved in the migration process betweenα and β, the schedulability analysis
for communication resources should take into consideration not only all the
transfers between πa and πb described in the workload, but also an additional
periodic job, i.e., the periodic server of certain policy (polling, sporadic,
deferrable, etc.) with a certain execution time in each period. A technique
for determining this time is presented in this subsection.

When the mode changes from α to β, runnable τj is to be copied from
πa to πb. Since the precopy strategy is applied, τj is still executed on core πa

during the migration. To migrate runnable τj , the periodic server is used. The
whole context of the runnable is transferred during a number of subsequent
hyperperiods. It is worth stressing that the maximal migration time can be
computed statically, since the runnable context size and the periodic server
time slot length and period are known. After this time, it is safe to start
executing τj on πb and remove its copy in πa.

To guarantee schedulability of runnables, one of the schedulability tests,
described for example in [42], shall be applied. It is possible to calculate
the longest possible time interval between the release of runnable τi and its
termination, which is referred as τi’s worst case response time (WCRT) and
is represented by Ri. The schedulability analysis is performed in the way
described in [9], i.e., by checking whether WCRTs of all runnables do not
exceed their deadlines. WCRT of runnable τi can be computed using equation:

Ri = Ci +
∑

∀τj∈hp(τi)

⌈Ri +Rj − Cj

Tj

⌉
Cj , (5.3)

where hp(τi) denotes the set of all runnables that can preempt τi, Ci and Cj

are the worst case execution time of τi and τj , respectively, and Tj denotes the
period of τj . Similarly, the worst case latency rk of packetϕk transmitted over
a link in a mesh NoC with wormhole switching, issued periodically every tk,

86 Search-Based Heuristics for Modal Application

F
ig

ur
e

5.
7

Ta
sk

s’
st

ag
es

in
D

em
oC

ar
:g

re
en

–
ru

nn
ab

le
ex

ec
ut

io
n,

re
d

–
w

ri
te

to
la

be
ls

;r
el

ea
se

tim
es

an
d

de
ad

lin
es

ar
e

pr
ov

id
ed

in
m

s.

5.2 Proposed Approach 87

can be formulated in a similar manner as that of [61, 100, 122]:

rk = ck + bk + lk, (5.4)

where ck is a basic network latency, bk is the maximal blocking time
from lower-priority packages, and lk is the maximal blocking time due to
interference with higher-priority packets. The basic network latency can be
computed with the following equation [61, 100]:

ck = H · (dR + dL) +
⌈PS
FS

⌉
· dL, (5.5)

where dR and dL denote the constant packet latencies while traversing one
router and one link, respectively, PS is the number of bits in the package,
and FS is the flit length in bits. H is the hop number between source and
destination cores. The remaining terms of Equation (5.4) can be computed
with equations [61, 100]:

bk = H · (dR + dL), (5.6)

lk =
∑

∀ϕl∈interf(ϕk)

⌈rk + (rl − cl) +Ri

tl

⌉
(cl + bl), (5.7)

where interf(ϕk) denotes the direct interference set ofϕk, which is the set of
all packets that can preempt ϕk, i.e., have a higher priority and share at least
one link with ϕk. The response time of task τi that releases ϕk, Ri, has been
substituted as a maximum release jitter. The term (rl − cl) is an upper bound
of indirect interference [61].

By applying Equations (5.3) and (5.4), both schedulabilities of indepen-
dent runnables executed on processing cores and packet transmissions can be
verified. However, jobs in the considered applications, possibly executed on
different cores, are characterised with various dependency patterns. Typically,
to start a job execution it is required to have all its parent jobs executed
(which contributes to so-called computation latency) and all the necessary
data transferred to the core where this job is assigned to (communication
latency).

The goal is thus to establish whether all task-chains of an application have
their end-to-end deadlines met in a particular platform, and this assessment
is referred as end-to-end schedulability test. Such test must consider the end-
to-end latency of each task of a task-chain. To check schedulability of a task
chain, it is sufficient and necessary to test the individual end-to-end response
times of all tasks belonging to that chain [73]. In [73], a technique for end-
to-end schedulability analysis is proposed, but it assumes a pipelined task

88 Search-Based Heuristics for Modal Application

execution pattern, where multiple jobs of the same task chain are executed
simultaneously over different cores, but the simultaneous execution of more
than one job of the same task is not allowed. When the execution pattern
does not follow this scheme, meeting end-to-end deadlines can be checked
by assigning an appropriate local deadline for each job in every chain. These
local deadlines shall be chosen in a way that all the jobs on every core are
schedulable and the local deadlines at the chain last stage do not exceed the
respective end-to-end deadline [59].

Example 6 (continuation of Example 5) In DemoCar, each task is composed
with series of three subsequent stages: read from labels, runnable execution,
write to labels. Since the labels are always located in the same core as that of
runnable reading these labels, the read stage can be omitted and two remaining
stages are presented in Figure 5.7 for all tasks, highlighted in green and
red. Runnables belonging to one task and drawn one above the other can be
executed in parallel, whereas the execution order of the runnables follows
dependencies defined by label write and read operations so that each label is
to be written by a runnable prior to be read by another runnable. The end-
to-end deadline has been divided into number of stages in each task and in
that way deadlines for each stage have been determined (in Figure 5.7 these
deadlines are written beneath the end point of each stage).

For example, the release time of runnable ThrottleCtrl is 2ms. By this
time, all the packets with label values required by this runnable are assumed
to arrive at the node executing ThrottleCtrl. The deadline for this runnable
execution is 3 ms, so the WCRT (Ri) must not be higher than this value. The
packages with data are then issued between 2 ms (the runnable release time)
and Ri. They have to reach their destination nodes earlier than 4 ms.

To check schedulability of DemoCar, it is then sufficient to check schedu-
lability for runnables executed in all (green) stages and also data transfers to
and from labels performed in the appropriate (red) stages.

Since the earliest execution starting time of each runnable is limited by
the starting time of the stage including particular runnable, this stage starting
time can be treated as an offset Oi as described in [143]:

Ri = Ci +
∑

∀τj∈hp(τi)

⌈Ri + (Rj − Cj −Oj) −Oi

Tj

⌉
Cj +Oi. (5.8)

Using similar rationale, Equations (5.4) and (5.7) can be rewritten in the
following way:

rk = ck + bk + lk +Ri, (5.9)

5.2 Proposed Approach 89

lk =
∑

∀ϕl∈interf(ϕk)

⌈(rk −Oi) + (rl − cl −Oi′)
tl

⌉
(cl + bl), (5.10)

where term (rk − Oi) reflects an additional jitter imposed by the response
time of task Ri that initiates this transfer and Oi′ denotes an offset of the task
that releases ϕl. One more requirement has to be added to set interf(ϕk).
It includes not only packets having a higher priority and transferred via a
path sharing at least one link, but also timing boundaries of both their sender
executions or traffic stages have to overlap.

As mentioned earlier, the proposed task mapping technique aims to benefit
from a modal nature of applications, but it also possess new challenges.
If the modes are treated independently from each other, the end-to-end
schedulability of runnables and packet transmission in each mode can be
analysed using Equations (5.8) and (5.9). It is the instant of transition between
these modes that requires special attention. The task migration time can be
computed with Equations (5.5), (5.6), (5.9), (5.10), where the packet size,PS,
is equal to the sum of the header length and the size of the payload including
the whole context of runnables and labels to be migrated. If a relatively
large runnable is to be migrated in a highly utilised platform, performing
the migration when the next job of the runnable is due to start could require
rather high bandwidth in order not to violate any deadlines. Thus we assume
to use the precopy strategy, as described in [109]. The job is executed in its
current (source) location during the mode switching, until all the runnables
have been migrated to their new (destination) locations. Then the migrated
runnables are removed from the source location, and their next execution will
be performed in their destination locations. If a runnable is of combinational
nature (its outputs depend solely on input values; all DemoCar runnables have
this property), only the runnable code section is to be migrated. In case of a
sequential nature of a runnable, the whole context is to be migrated.

Similarly to [98], we split a runnable context intro two parts: invariant,
which is not modified at runtime, and dynamic, including all volatile memory
locations. We assume that an upper bound of the dynamic part size of all
runnables is known in advance. This part shall be migrated at once using the
last instance of the periodic server. It means that the local memory locations
that can be modified by the runnable must not be precopied, but migrated after
the last execution of the runnable in the old location. This requirement can
influence the minimum periodic server size and, consequently, the network
bandwidth, as it must be then wide enough to guarantee migration of dynamic
part before the next runnable execution (in the new location). This property
shall be checked using (5.9).

In the proposed approach, any kind of periodic servers can be used,
however, the trade-off between implementation complexity and ability to

90 Search-Based Heuristics for Modal Application

guarantee the deadlines of hard real-time tasks, as described for example in
[40], shall be considered.

The number of the hyperperiods required for performing task migration
depends on the size of runnables and labels to be transferred, mappings, and
network bandwidth, in particular flit size FS and timing constants for packet
latencies while traversing one router and one link dR and dL.

Example 7 (continuation of Example 6) The flit size,FS, has been fixed to 16
bits. A few examples of the number of hyperperiods required to migrate tasks
from PowerUp to Cluster 1, depending on constants dR and dL are presented
in Table 5.1. The hyperperiod length for DemoCar equals 100 ms and this
time is enough to migrate all data when the router and link latencies are equal
to 50 and 100 ns, respectively.

5.2.6 On-Line Steps

In the proposed approach, only two steps are performed on-line: Detection of
current mode and Mapping switching. Both of these steps are characterised
with low computational complexity and thus they impose low overhead for
the system during run time.

We assume that the system states are defined explicitly and there is
a possibility of determining the current state by observing some system
model variables, similarly to [104]. Otherwise, the most efficient multi-choice
knapsack problem (MMKP) heuristics, listed in the brief survey earlier, have
to be applied to identify the current mode on-line, as proposed in [73].

When the mode change is requested, an agent residing in each core prepares
a set of packages with runnables to be migrated via the network. This agent
is configured statically and is equipped with a table with information which
runnables have to be migrated during a particular mode change. Then the
precopy of these runnables is performed. In the following hyperperiods,
runnables are transported using periodic servers of the length determined
statically in step Schedulability analysis for taskset during mode change. The
agent is aware of the number of periodic server instances that have to be used
during the whole migration process (as in example in Table 5.1), and have the

Table 5.1 Number of hyperperiods (100 ms) required for switching between states PowerUp
to Cluster 1 in DemoCar depending on router (dR) and one link latencies (dL)

dR [ns] dL [ns] No. of Hyperperiods
50 100 1

100 200 2
100 400 3
200 500 4
400 800 6
500 1000 7

5.3 Related Works 91

volatile portion of the context identified. If this instance number elapses, the
runnables that have been migrated are killed.

Simultaneously, the same agent can receive migration data from other
agents in the network. After the appropriate number of hyperperiods, the
contexts of these runnables are fully migrated and are ready to be executed by
the operating system.

The details of the agent depend on the underlying operating system.

5.3 Related Works

Systems with distinguishable operating modes are increasingly popular in
research. A number of research activity aims at developing design-time (off-
line) heuristics to reduce the number of operating points, since the amount
of possible scenarios is typically prohibitively high [89]. This Design Space
Exploration (DSE) process can be carried out using classic heuristic techniques
(including genetic algorithms [73, 89, 116], tabu search [115], simulated
annealing [160], particle swarm optimization [103], etc.), or with techniques
for pruning the design space [107], performing statistical analysis for iden-
tifying potentially benefiting operating points, or use a priori knowledge of
the target platform [14]. Then during run-time of that system, a run-time
manager (RTM) chooses an appropriate operating point according to the
available platform resources by solving an instance of multi-dimensional
multi-choice knapsack problem (MMKP). Despite MMKP belongs to the
NP-hard complexity class, there exists a number of light-weight greedy
heuristics facilitating finding a quasi-optimal mapping during run-time [73].
Alternatively, in [104], there is a possibility of determining the current mode
out of explicitly given set by observing some variables of the model. In our
work, the current mode is determined in a similar way.

Two different mapping approaches are proposed in [119]. In the first
one, named global static power-aware mapping, each task is assigned to one
particular processing element independently from the actual scenario. This
approach reduces the amount of memory required for storing the configura-
tions and increases the efficiency of run-time management. However, it results
in increased power consumption in comparison with the second approach,
dynamic power-aware scenario-mapping, where this assumption is relaxed
and different mappings for scenarios are stored. These approaches do not
allow task migration – once a task is assigned to a processing element, it
remains there until finishing its computation. In contrast, Benini et al. [15]
allowed tasks to migrate between processing elements when the envisaged
performance increase is higher than the precomputed migration cost. This
analysis is performed at each instance of configuration change.

92 Search-Based Heuristics for Modal Application

In order to analyse the worst case switching time between two modes, it
is helpful to show the possible modes and transition between them in a formal
way, using for example Finite State Machines (FSMs), as proposed in [118].
In this way it is possible to enumerate all allowed modes and transitions,
and to check the cost of mode switchings. In [55], an average switching time
overhead for H.264 decoder has been measured to be equal to 0.2% of the total
system time. This sligh value has been caused by a low number of existing
modes, obtained due to the clustering, and thus relatively rare switches. In
hard real-time systems such decrease of modes by clustering is even more
crucial and thus it is incorporated in the proposed design flow. In [137], the
authors suggest to map as many tasks as possible to the same core in various
modes to avoid the data or code items to be moved between different resources
when switching between modes. In the proposed approach, we use a genetic
algorithm to minimize the amount of data to be migrated.

To perform a schedulability analysis during mode changes, the data
migration work is performed during time slots allocated to a periodic server.
There exist different kinds of such servers, including polling servers, sporadic
servers and deferrable servers, with different replenish policies of server
execution time [40]. Despite these differences, their period and maximum
execution time during one period are selected in a way that the chosen end-
to-end scheduling test proves that no deadline is violated. To decrease the
timing of best-effort (i.e., migration) task execution, the best-effort bandwidth
server includes a slack reclaiming procedure and an algorithm for determining
appropriate server parameters [11]. An example of a direct application of
synchronized deferrable servers for multi-core systems has been demonstrated
in [159], but its authors assumed the migration cost to be either negligible,
or added to the worst-case execution time of each task, which is difficult to
be applied in systems with network architecture prone to contentions. In the
proposed approach, more realistic migration time is evaluated, taking into
account network parameters and interference from other flows.

In [20], it was experimentally shown that even a total freezing task
migration strategy, i.e., where the migrated task is stalled while all its code and
data are transferred through links to the target core, can be used in a NoC-based
environment and still improve the fulfilment of task deadlines in soft real-time
systems. To guarantee hard timing constraints, freeze time should be bounded
and possibly short. One of the possible techniques is a precopy strategy, where
code and data of some tasks are copied before the actual switching. However,
this technique is more complicated than total freezing and has higher migration
time, as some data portions may be required to be copied more than once due
to their modifications [93]. Storing task code in a few cores and transferring
only the necessary data is another possibility. However, in doing so, the storage
overhead at each core can increase by a large amount.

5.4 Summary 93

A method to guarantee hard real-time for task migration is proposed in
[98]. However, a costly schedulability analysis is performed during runtime.
No experiments supporting their proposed approach is provided, but one may
predict that the overload of that dynamics could be considerable.

The research described in [104] is the closest to the approach proposed
in this chapter. Its authors have identified mode transition points in an engine
management system, and shown that a load distribution by mode-dependent
task allocation is better balanced in comparison with a static task allocation.
The performance has been evaluated by simulation, but, contrary to our
approach, the task migration costs have not been considered.

From the literature survey it follows that designing real-time systems
with distinguishable operating modes has been mainly limited to soft timing
constraints. According to the authors’ knowledge, there is no proposal of any
method guaranteing no hard deadline violation during task migrations. In
particular, schedulability analysis has not been applied to check the feasibility
of task migration process or to determine the worst case switching time
between two operating modes except of the positional paper [98].

5.4 Summary

An approach of task migration in a multi-core network-based embedded
system has been proposed as a way to decrease the number of cores needed
for guaranteing safe execution of a hard real-time software. The steps to be
performed statically have been described in details using illustrative examples
based on a lightweight engine control unit. A Finite State Machine describing
mode changes has been extracted from the software code and transaction
probabilities have been identified during simulation. The closely related modes
have been merged into clusters. The most frequent transactions have been
identified with the classic Prim’s algorithm, and a genetic algorithm has been
used to determine the runnable-to-core mapping for the initial mode. Similarly,
a genetic algorithm minimizing the number of migrated data has been used for
selecting the runnables to be migrated when a change of the current mode is
requested. The migration time has been evaluated using schedulability analysis
depending on the network bandwidth.

The proposed approach requires development of an agent realising the
migration process. Since its architecture details depend on the underly-
ing operating system, its implementation and evaluation in real embedded
environments are planned as a future work.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

