
2
Load and Resource Models

The efficient allocation of computational resources requires some under-
standing of the resources themselves and their availability, as well as the
load that must be allocated to them. Possibly under different names, the
concept of resource and load modelling is commonly used in embedded,
high-performance and cloud computing. For example, workflow models in
HPC and task graphs in embedded computing are common ways to represent
application load, while platform and resource models are used to represent the
processing, networking and storage capabilities of the computer systems that
run those applications.

With the help of meaningful resource and load models, it is possible
to evaluate the impact of different resource allocation techniques on the
efficiency of resource usage and on application performance requirements.
The more accurate the models, the better they can predict the performance
of a computer system under a given load. On the other hand, dynamic and
complex systems are harder to model accurately, so there is clearly a trade-off
here.

In real-time embedded computing, for example, it is common practice to
constrain the execution of software to sporadic and bounded time intervals,
and to disable advanced features of microprocessors such as out-of-order
execution and caching, aiming to simplify the system’s behaviour and enable
the creation of accurate load and resource models. At that level of accuracy,
system designers can use such models to evaluate different resource allocation
alternatives and identify the ones under which the system will never violate
any of its performance guarantees, not even in a worst-case scenario.

Such practice, however, requires a complete knowledge of the system
resources as well as the load to be allocated to them. In many embedded
systems, and in the large majority of high-performance and cloud computing
systems, that is not the case. Therefore, recent modeling approaches have
ways to represent load and resources under different levels of uncertainty.
Stochastic models of the arrival and execution times of application-specific
load or of the availability of computational resources, for example, are now
commonly used to characterise average-case system performance.

11

12 Load and Resource Models

2.1 Related Work

In real-time systems, load models are often variations of the sporadic task
model [42] or the time-triggered model [71], focusing explicitly on timing and
on the repetitive nature of tasks (e.g., data from a sensor must be processed
every 2 ms; a new gene sequencing job will be launched at least every
millisecond) rather than the functional dependencies between them.

Dataflow application models are usually untimed, and different tasks are
synchronised by the data flowing through the system. Dataflows are usually
modelled through graphs that represent the functional dependencies between
tasks and some information about the nature of the data transfer. Many
different dataflow models exist [134], with different types of constraints on
the execution of tasks and communication aiming to allow different types
of analysis (e.g., statically schedulable, time predictable, bounded commu-
nication buffering). Many HPC workflows are also modelled as dependency
graphs, often as directed acyclic graphs (DAGs) [144]. Such graphs can be
annotated with estimations of execution time and communication volumes,
which can be used to optimise resource allocation or implement resource
reservation mechanisms [90]. Similarly, estimations of inter-arrival times,
execution times and communication volumes can be modelled stochastically,
allowing for a more general understanding of the characteristics of a given
workload [51]. That approach can also be used to support the generation
of synthetic application models that follow the specific characteristics of a
realistic scenario.

Advanced workflow management systems augment HPC and scientific
computing workflow models with execution semantics [86], allowing such
workflows to be analysed in similar ways as in time-triggered and dataflow
models mentioned above. Finer granularity models are also used in HPC
[10, 111], where application load is represented as a series of computation
and communication bursts (often obtained from execution traces), but such
models are too complex to be analysed and therefore are used only to drive
abstract simulation.

A number of application modelling approaches try to capture character-
istics that are critical to specific domains. Within the automotive domain,
a component-based software specification standard is established, called
AUTOSAR (more in www.autosar.org). Within this standard, software com-
ponents covering runnable entities can be defined by specifying interfaces,
execution rates and timing constraints. However, AUTOSAR takes a conser-
vative stand and does not allow the dynamic allocation of runnable entities to
different computational units.

Advanced approaches in application modelling supports the creation
of hybrid models, i.e., models created using different underlying rules.

2.2 Requirements 13

Ptolemy [47] is a modelling and simulation framework supporting hybrid
application modelling for embedded systems using actor-orientation (a flexible
model for representing concurrent behaviour). It supports different types
of time-triggered and dataflow modelling approaches, among others, and is
amenable to extensions to specific domains.

2.2 Requirements

Within the scope of this book, we use a model of load and resources that can
cater to both worst-case and average-case system performance. It supports
complete and accurate description of a system’s load and resources, but is
also able to accommodate different levels of uncertainty by allowing stochastic
descriptions of load.

We therefore define a load model using the notion of jobs, which should
represent the different parts of an application and, more specifically, the load
each of those parts imposes on platform resources. This is a general-purpose
model, aiming to have constructs that are flexible enough to represent multiple
types of application components. For example, a job could represent the
execution of a software task over a CPU, the transmission of a stream of
data over a network, or the dynamic reconfiguration of an FPGA device.

In order to model different types of applications, from embedded to HPC
systems, such load models must be powerful enough to cover characteristics,
e.g., functional properties, that are commonly found in such systems, as well
as non-functional properties that can be used to evaluate the impact of different
allocation mechanisms. In the subsections below, we present the requirements
for such load modelling approach along four distinct categories: structure,
temporal behaviour, resource constraints and load characterisation.

2.2.1 Requirements on Modelling Load Structure

Load models should be able to support multiple levels of abstraction, exposing
more or less details of the application architecture according to the level
of accuracy that is needed when evaluating the impact of a particular
resource allocation mechanism. For instance, it may be useful to assume
that all application jobs are completely independent, abstracting away their
inter-communication, if the overheads due to data exchange are negligible.
Therefore, the application structure denotes how an application can be broken
in multiple jobs and how these jobs relate to each other.

Regarding the application structure, we list requirements for a load
modelling approach, so that the model is powerful enough to represent the
most common types of applications.

14 Load and Resource Models

2.2.1.1 Singleton
Ability to model applications that are composed of a single job.

2.2.1.2 Independent jobs
Ability to model applications that are composed of an arbitrary number of jobs
that do not depend on or communicate with other jobs. It is assumed that jobs
constantly have access to all information they need.

2.2.1.3 Single-dependency jobs
Ability to model applications that are composed of an arbitrary number of
jobs that can depend on one and only one other job. Therefore, the application
model must explicitly have the notion of dependencies between jobs.

2.2.1.4 Communicating jobs
Ability to model applications that are composed of an arbitrary number of job
pairs. Intuitively, each pair includes a computing job and a communication job,
but the strict definition of a communicating job should be a pair of dependent
jobs that cannot be allocated to the same resource type (see requirements
on resourcing in Subsection 3.3). This enforces the notion that, in this kind
of application, communication can only be performed once the respective
computation has completed.

2.2.1.5 Multi-dependency jobs
Ability to model applications that are composed of an arbitrary number
of computation jobs, each of them depending on an arbitrary number of
communication jobs, and also initiating an arbitrary number of communication
jobs. The structure of this type of model constrains the application in such a
way that the communication jobs initiated by a given computation job must
not depend on computation jobs that depend directly or indirectly on their
initiator (no cyclic dependencies).

2.2.2 Requirements on Modelling Load Temporal Behaviour

The temporal behaviour of the load defines the release of application jobs,
i.e., when a job can actually be executed over a resource. Behaviours can be
generally classified in time-driven (requirements 2.2.2.1, 2.2.2.2 and 2.2.2.3
below) or event-driven (remaining requirements).

Regarding application temporal behaviour, we list the following require-
ments for a load modelling approach, so that it is powerful enough to represent
the following types of application jobs.

2.2 Requirements 15

2.2.2.1 Single appearance
Ability to model an application job that is not part of a series, and is released
at a specific point in time.

2.2.2.2 Strictly periodic
Ability to model an application job that is part of a series of jobs with release
times separated by a constant time interval. If the release time of a job and
its order within the series is known, the release time of all other jobs can be
derived from it.

2.2.2.3 Sporadic
An application job that is part of a series of jobs with release times separated
by a time interval that has a known lower bound. For every release of a job, it
is therefore known that the release of the subsequent job of the series will not
happen before that lower bound.

2.2.2.4 Aperiodic
An application job that can be released at any arbitrary time. It can be used
to model event-driven systems where no assumptions can be made about the
event sources. If an assumption can be made about the minimum time interval
between successive events, such job series can be conservatively (but perhaps
not accurately) modelled as sporadic jobs.

2.2.2.5 Fully dependent
An application job that is released immediately after the completion of all jobs
that it depends on.

2.2.2.6 N out of M dependent
An application job that is released immediately after the completion of any N
jobs out of all M jobs that it depends on, (M > N).

2.2.3 Requirements on Modelling Load Resourcing Constraints

The resourcing of applications defines which kind of resources a given job
requires for its execution. This requires a taxonomy of resources over different
types. The load model addressed here makes no assumption about such taxon-
omy, and it may work under different typing systems (e.g., flat type hierarchy,
single-parent type hierarchy, multiple-inheritance type systems), as different
resource allocation mechanisms might benefit from them. Regarding this clas-
sification, we list the following requirements for a load modelling approach,

16 Load and Resource Models

so that it is powerful enough to represent the following types of application
jobs.

2.2.3.1 Untyped job
Ability to model an application job that can be executed on any type of
resource.

2.2.3.2 Single-typed job
An application job that must be executed over a specific type of resource.

2.2.3.3 Multi-typed job
An application job that can be executed over multiple types of resource.

2.2.4 Requirements on Modelling Load Characterisation

The characterisation of the application load defines how long each of its jobs
uses the resources they were allocated. Regarding this classification, we list the
following requirements for a load modelling approach, so that it is powerful
enough to represent the following types of application jobs.

2.2.4.1 Fixed load
An application job that always occupies a resource for a constant amount of
time, regardless of the resource. The load of such a job can be characterised
by a scalar.

2.2.4.2 Probabilistic load
An application job that occupies a resource for a probabilistic amount of time,
regardless of the resource. The load of such a job is a random variable, and
can be characterised by a histogram or a probability density function.

2.2.4.3 Typed fixed load
A multi-typed application job that occupies resources of different types by a
potentially different, yet constant amount of time. The load of such a job can
be characterised by a vector of scalars, and the length of the vector is equal to
the number of types of resources that the job can occupy.

2.2.4.4 Typed probabilistic load
A multi-typed application job that occupies resources of different types with
a potentially distinct stochastic behaviour on each of them. The load of such
a job can be characterised by a vector of probability density functions or
histograms, and the length of the vector is equal to the number of types of
resources that the job can occupy.

2.3 An Interval Algebra for Load and Resource Modelling 17

2.3 An Interval Algebra for Load and Resource Modelling

Within this book, we will rely on a novel approach to load and resource
modelling based on an interval algebra (IA). It will be used throughout the
book to ease our understanding of the impact of different resource allocation
mechanisms. But more importantly, it can be used by the resource allocation
mechanisms themselves as an internal representation of the resources and the
load that they are supposed to manage.

Our IA represents non-functional characteristics of application load using
the mathematical concept of intervals. It can be used to analytically derive
the impact of using different resource allocation policies on the original
application characteristics. The main concerns of this book are performance
and time predictability, so most of our examples focus on the representation
of time intervals, but the interval algebra can naturally be extended to support
other non-functional properties such as energy dissipation.

In a simplistic example, we can consider an application with three jobs
A, B and C, and a homogeneous platform composed of two processors with
first-come-first-serve scheduling. Each of the jobs can be represented by an
interval that denotes the time they need to run: A = [0, 30[, B = [0, 45[,
C = [0, 20[(assuming in this example that they are all independent and ready
to run at time = 0). By using simple interval algebra operations, a resource
allocation heuristic can estimate the response time R of the three tasks under
different allocation schemes (e.g., RA = 30, RB = 45 and RC = 50 if A and
C are allocated, in that order, to one of the processors and B is allocated to
the other), and thus can dynamically decide whether it is likely to meet the
applications constraints when using a given allocation.

While trivial, such example can be made arbitrarily complex by allowing
different resource scheduling disciplines, a larger number of tasks and pro-
cessors. For the interval algebra, however, the analysis of the response times
under a specific allocation would still involve the application of the same
interval manipulation rules.

The advantages of such an approach are numerous, including the
following.

• It enables dynamic allocation mechanisms to have an appropriate level
of confidence on whether the chosen allocation meets the applications’
timing constraints.

• The approach can be used as a fitness function of search-based allocation
heuristics, if the algebraic operations are sufficiently lightweight as they
have to be applied over a potentially large search space (some examples
of integrating IA to genetic algorithms are provided in Chapter 5).

• The solution of algebraic operations can be found in multiple ways, with
different levels of performance. Therefore, resource allocation heuristics

18 Load and Resource Models

can be improved simply by optimising the solution of the employed
algebraic operations.

• If absolute predictability is not required (i.e., in soft real-time and best-
effort applications), algebraic operations can be solved faster by applying
approximations that sacrifice the accuracy of the final result. This enables
allocation mechanisms that can be applied to systems with different levels
of strictness of their timing requirements.

Let us now introduce the main principles behind this interval algebra. Our
goal in this book is not to be overly formal, so we will favour intuitive
descriptions over mathematical formalism whenever possible (i.e., without
sacrificing precision). In general terms, an algebra is a definition of symbols
and the rules for manipulating those symbols. Our interval algebra, therefore,
establishes rules for the manipulation of intervals. It defines different types of
intervals, which represent the amount of time a particular piece of application
load requires from a notional resource. For example, a single job can be
represented by a time interval using the notation below:

#A#0#40 (2.1)

where the first element of the tuple is a unique job identifier, the second is a
non-negative real number representing the release time of the job and the third
is a positive real number representing the job’s load, i.e., the actual length of
the time interval. In the example above, job A is released at time 0 and requires
40 time units of a resource. The same concept can also be represented using the
mathematical notation for a left-closed right-open bounded interval [0, 40[.

Following the definition above, our IAmust also define rules for manipula-
tions of such intervals: what happens when an interval is allocated to a specific
type of resource, what if two intervals are allocated to the same resource, etc.
Widely used algebras define a small number of basic operations (e.g., addition,
multiplication) and then define more complex operations as composites of
those basic operations (e.g., matrix multiplication). Our IA defines two basic
algebraic operations: time displacement and partition. Time displacement
changes the endpoints of an interval by an arbitrary value t, and denotes that
the job has to wait for its allocated resource (i.e., its starting and ending times
were moved t time units to the future). Partition simply breaks one interval in
two, and denotes that a job was preempted from a resource (and the second
interval produced by the partition is likely to be time-displaced). All other
interval-algebraic operations of IA, which can represent an arbitrarily large set
of allocation and scheduling mechanisms, can be expressed as compositions
of these two. By applying these operations, it is possible to investigate the
impact of different resource allocation and scheduling mechanisms on the
endpoints of the intervals, which in turn denote the completion times of each
application component.

2.3 An Interval Algebra for Load and Resource Modelling 19

In the following subsections, we show how our IA addresses the
requirements described in Section 2.2.

2.3.1 Modelling Load Structure

The interval-based representation of a job presented above is sufficient to
express a singleton. By using a set of such intervals, independent jobs can be
also represented. To denote a dependency between two tasks A and B, the
notation can be extended to include a job identifier instead of the release time
of a job:

#B#A#50 (2.2)

This notation is capable of denoting single dependency jobs, and conveys
that interval B’s start-point depends on interval A. Multiple dependencies can
also be specified as a dependency set, and thus multi-dependency jobs can be
covered:

#C#{A, B}#260 (2.3)

This notation assumes that whenever an interval has dependencies, its start-
point lies exactly at the highest endpoint among all the intervals it depends
on. In this example, assuming that jobs A and B are defined as in examples
(2.1) and (2.2), this leads to: A = [0, 40), B = [40, 90), C = [90, 350).

2.3.2 Modelling Load Temporal Behaviour

The intervals described in the previous subsection are single-appearance and
have a fixed release time, therefore express singleton jobs. A strictly periodic
series of jobs can be characterised by its release time, the period after which
a new job is released, and the time interval each job requires from a notional
resource. We denote such job series with the notation exemplified below, which
is exactly the same as the notation of a singleton task followed by the period:

#D#0#40#100 (2.4)

Mathematically, it represents an infinite series of intervals, such as: D =
[0, 40), [100, 140), [200, 240), This extension is expressive enough to
represent strictly periodic tasks.

The release time of sporadic tasks is not deterministic but has well defined
bounds. In case of aperiodic tasks, those bounds do not exist. To model those
cases, IA represents release times with aleatory variables. Those variables are
associated with probability distributions that can constrain assumed values.
We will cover that approach in Section 2.3.5 when we discuss intervals with
stochastic representations of time.

20 Load and Resource Models

2.3.3 Modelling Load Resourcing Constraints

IA represents a resource as the dimension over which jobs are operated upon.
Jobs, each represented by its respective interval, are allocated onto a resource;
algebraic operations determine how the resource is shared between all of them,
and how the resource sharing affects their timings. We denote a resource with
the notation exemplified below:

+Z1(#A#0#40) (2.5)

where the algebraic operation +Z1 is applied to the set of intervals surrounded
by brackets (only A in the example above). The example below shows the same
resource, but this time with two distinct jobs mapped to it:

+ Z1(#A#0#40, #B#0#50) =
+ Z1(#A&40, #B&90) =
+ Z1([0, 90))

(2.6)

In this example, we introduce two different ways to evaluate the operator +Z1
(which we can intuitively understand as a resource serving jobs under a FIFO
schedule). The first evaluation of the operator preserves the identities of the
mapped jobs, and it indicates the completion times of each one of them after the
symbol “&”. We will refer to this type of evaluation as information-preserving
(or simply preserving). The second way to evaluate the operator is equivalent
to the first, but it does not preserve any information about the individual
operands. It simply determines the busy period(s) of the resource with one or
more intervals. We refer to this type of evaluation as information-collapsing
(or simply collapsing).

Comparing with elementary algebra, the two evaluations of the operator
are akin to solving an expression like (3 + 5) + (1 + 2) using an intermediate
step 8 + 3 before arriving to the final result 11. In both algebras, there is an
infinite set of possible operands that could lead to a particular result, and there
is no information in the final result that could allow the backtracking of the
initial operands.

A slightly different example is shown below, using the same jobs but this
time mapped onto resource +Z2 that uses a time-division multiplexing (TDM)
scheduler with a quantum of 8 time units:

+ Z2(#A#0#40, #B#0#50) =
+ Z2(#A&72, #B&90) =
+ Z2([0, 90))

(2.7)

It is worth noticing that only the intermediate expression (i.e., after the pre-
serving evaluation) differs, and the final result after the collapsing evaluation

2.3 An Interval Algebra for Load and Resource Modelling 21

is the same. This is always the case if the operand denotes a work-preserving
scheduler (i.e., a resource is never idle if there are jobs ready to be served).

The two following examples show jobs allocated to a resource that is
shared under a priority-preemptive scheduler, assigning priorities in the same
order the jobs are passed to the operator (higher to lower):

+ Z3(#C#15#40, #D#10#50, #E#0#50) =
+ Z3(#C&55, #D&100, #E&140) =
+ Z3([0, 140))

(2.8)

+ Z4(#F#10#4, #G#0#18, #H#26#5, #I#24#8) =
+ Z4(#F&14, #G&22, #H&31, #I&37) =
+ Z4([0, 22), [24, 37))

(2.9)

In both cases, the algebraic operations abstracts away the specific interleaving
patterns of the execution of every job. Each of the evaluation types focusses
solely on, respectively, the finish times of each job or the idleness of the
resource. For example, formula (2.9) represents the following: job G starts
to be executed at time zero, but after 10 time units it is preempted by job F
which runs to completion for 10 time units; then G resumes and runs for its
remaining execution time until time equals 22 units; resource Z4 becomes idle
until job I is released at 24 time units, which in turn suffers a preemption from
H between times 26 and 31 units and then executes until time equals 37 units
.

Just like single appearance jobs, periodic jobs can be allocated to resources:

+ Z1(#A#0#40#100, #B#0#50) =
+ Z1(#A&40, #B&90, #A#100#40#100) =
+ Z1([0, 90), #A#100#40#100)

(2.10)

It is important to notice that a periodic job series always remains as a distinct
interval in the result of both preserving and collapsing evaluations of an
operator. This reflects the infinite nature of the series.

One of the crucial properties of a job is its affinity, which means that it can
be served only by the designated resources. The job that can be executed on
any resource available in a system is referred to as untyped job. If a job can be
executed on a single type of resources only, it is a single-typed job. A multi-
typed job can be executed on a few (enumerated) resource types, possibly
with different execution times on each of them. In all examples so far, only
untyped jobs have been used. To describe a single-typed or multi-typed job,
the notation should support the definition of different types of resources and

22 Load and Resource Models

different types of resource affinity. This can be expressed as follows, where
each scalar in pointy brackets denotes a different type and the absence of type
constraints implies untyped jobs or resources (as in examples above):

+ Z5〈2〉(#J〈2〉#0#15, #K〈2, 3, 8〉#0#20, #L#0#14) (2.11)

By allowing the definition of resources types and resource requirements, it is
also possible to present communicating jobs by modelling the job as two fully
dependent intervals with distinct resource requirements, one for computation
and one for communication (i.e., the job can only communicate over resource 2
once it has finished being computed over resource 1):

#L〈1〉#0#14
#M〈2〉#L#340

(2.12)

2.3.4 Modelling Load Characterisation

The representation of load as the interval length, denoted by a positive real
number (as defined in Subsection 2.3.1), is already capable of representing a
fixed load.

To represent a typed fixed load, we allow the specification of different
interval lengths for different resource types using a similar notation as the one
introduced at the end of Subsection 2.3.3:

#N〈2, 4, 6〉#0#〈10, 20, 20〉 (2.13)

To represent a probabilistic load or typed probabilistic load, we have to rely
on aleatory variables to represent the load. This can be done for both typed
and untyped jobs.

2.3.5 Stochastic Time

In many cases, it may be desirable to represent intervals with non-deterministic
temporal behaviour or load characterisation. In these cases, IAallows the use of
aleatory variables, which follow a probability distribution, instead of scalars.
It does not impose any limitation on the choice of probability distributions,
and their parameters should be provided following a well established notation.
For example, a normal distribution N (μ, σ2) with parameters mean μ = 2
and variance σ2 = 1, N (2, 1) can be used to denote the release time of job
P , and similarly N (40, 1) can denote its execution time:

#P#normal(2, 1)#normal(40, 1) (2.14)

The time when job P finishes its execution is described by the convolution of
two Gaussians: N (2, 1) ∗ N (40, 1).

2.4 Summary 23

Figure 2.1 Example of a probability mass function of a discrete random variable describing
a job’s execution time.

It is particularly convenient to represent time as a discrete random variable
described by a probability mass function (PMF), i.e., a function giving the
probability that a discrete random variable is equal to a provided value.
All values of a PMF should be non-negative and sum up to 1. Using this
function for describing a job’s execution time, the best-case execution time
(BCET) and the worst-case execution time (WCET) correspond to the first
and the last probability value of the distribution, respectively. Between these
two extremes, the probabilities of the remaining possible execution times are
described. For example, the PMF of a job execution time whose BCET and
WCET equals to 10 ms and 13 ms is shown in Figure 2.1. This job can be
described using IA as:

#Q#0#pmf(10, 0.4), (11, 0.2), (12, 0.3), (13, 0.1) (2.15)

To show how tasks with stochastic timing can be mapped to a resource, we
use job T whose release time is described by discrete uniform distribution
U{0, 1} and is executed in 40 time units, and job U depending on T executed
in U{1, 4} time units by a notional resource +Z1 with FIFO scheduling. Then:

+ Z1(#T#pmf(0, 0.5), (1, 0.5)#40,

#U#T#pmf(1, 0.25), (2, 0.25), (3, 0.25), (4, 0.25)) =
+ Z1([pmf(0, 0.5), (1, 0.5), pmf(41, 0.125), (42, 0.25),
(43, 0.25), (44, 0.25), (45, 0.125)))

(2.16)

2.4 Summary

This chapter presented the requirements for workload and platform models
that are suitable to support resource allocation mechanisms in embedded,
high-performance and cloud computing. Such models can be used as internal
representations, allowing resource allocation mechanisms to evaluate different

24 Load and Resource Models

allocation alternatives. A specific modelling approach has been introduced,
based on an interval algebra, which fulfils the listed requirements and is
amenable to compact and efficient implementations. A reference implemen-
tation of the presented algebra is available from the DreamCloud project
website1.

1http://www.dreamcloud-project.org

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

