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of discontinuity. The function may have values differing by a finite
quantity on either side of such a curve; or its values at points along
the curve may be discontinuous, or both of these kinds of discontinuity
may be combined at the same curve. If L (<r), the total length of the
curves at which the discontinuities surpass <r, be finite, the function
can be integrated over the given space; since, if we draw curves
parallel to the curves of discontinuity and at a distance d from them on
either side, the area of the channel-like spaces thus obtained will be
2dL (<r), and will surpass the greatest sum of spaces, including the
curves in any division of norm d. But the function may be integrable
even if the total length of the curves of discontinuity is infinite; be-
cause an infinite number of contiguous curves may be enclosed in one
and the same channel. And, provided that the curves can all be in-
cluded in channels of which the length is L, and of which the breadth
d is comminuent with d, the condition that L X 8 should be comminuent
with d, will suffice to ensure the integrability of the function.*

On the Higher Singularities of Plane Ourves.

By H. J . STEPHEN SMITH, Savilian Professor of Geometry in the

University of Oxford.

[Communicated (in part) Feb. lZth, 1873; supplemented by a Note, April 9th, 1874;
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THE ordinary singularities of a plane curve are its double points and
double tangents, its stationary points and stationary tangents; or, as
they have been also called, its nodes and links, its cusps and inflexions.
The fundamental theorem, that any of the so-called higher singularities
of a plane curve may be regarded as equivalent to a certain number of
ordinary singularities of each of these four kinds, has been enunciated
by Professor Cayley, who has also given a method for determining in
every case the four indices S, r, «r, «, proper to any given singularity.

Several enquiries, which appear to possess some interest, are sug-
gested by this theorem. Among them we may mention the two fol-
lowing—

(1). It is important to prove that the indices of singularity, as de-
fined by Professor Cayley, satisfy the equations of Pliicker; and that
the "genus" or "deficiency" of the plane curve is correctly given by
these indices.

* This Paper, though it was not read, was offered to the Society and accepted in
the usual manner.



154 Prof. H. J. S. Smith, on

(2). It is also of interest to examine whether any given singularity
can be actually formed by the coalescence of the ordinary singularities
to which it is regarded as equivalent; in other words, whether a sin-
gularity of which the indices are £, r, K, t, and which is therefore to be
regarded as equivalent to 8 double points, r double tangents, K cusps,
and i inflexions, possesses a penultimate form, in which all these sin-
gularities exist, distinct from one another, but infinitely close together.

The present paper relates chiefly to the first of these enquiries; the
second is reserved for a future communication.

1. Consider a plane curve C of order m and class w, defined by an
equation F ( J J , q) = 0 between the parameters of two pencils, of which
the corresponding rays intersect ou C, and. which are represented by
equations of the form p (QP) + (QR) = 0, q (PQ) + (PR) = 0; P,Q, R
denoting the three vertices of a triangle, (PQ) = 0, (QR) = 0, (PR) = 0
the equations of its sides. It is convenient to suppose that Q and P,
the centres of the two pencils, have no speciality of position with
regard to C; or, more precisely, that neither Q nor P lies on the curve,
nor on any singular line appertaining to the curve. Undor the general
name of singular lines we include (1) lines joining two singular points,
(2) singular tangents, (3) tangents at singular points, (4) tangents
passing through a singular point; we shall also suppose that PQ is
not a tangent to C, and does not pass through any singular point.
Thus to every finite value of p there will correspond m finite values
of q, and vice versa; and, in particular, to any singular point on the
curve there will correspond a finite pair of values of p and q. To an
infinite value of q there will correspond m infinite values of p, and
vice versa; these answer to the m intersections of PQ with the curve,
no two of which, by hypothesis, are coincident. We may, if we please,
project the line PQ to an infinite distance, and regard p and q as Car-
tesian coordinates; we prefer, however, for our present purposo, to
consider them as parametric ratios ; i. e., as purely numerical quantities
(real or complex).

2. Let f(q) be the discriminant of F (p, q) = 0, considered as an
equation of the order m in p ; we may suppose the coefficient of pm,
which is certainly different from zero, to be unity. The first polar of

P with regard to C is -=- = 0, and/(3) is the resultant of the elimina-
dp

tion of p from F and — f so that the roots of / (g) = 0 are the para-
meters of the lines drawn from P to the points of intersection of C
with the first polar of P. Attending to the suppositions which have
been made as to the situation of P and Q relatively to the curve C,
we infer (a) that / (q) has no infinite roots, and is therefore of the
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full order m (m—1) in q\ (/3) that / (g) has n, and only n, non-
multiple roots q; (y) that for each of these n roots q the equation
F (p, q') = 0 acquires two equal roots p', its remaining roots being all
different from p', and from one another; (S) that q is not a multiple
root of the equation F (p', q) = 0. The n sets (p', g') give the n points
of contact of tangents from P ; the remaining factor o f / (g ) , viz.,
/ , (q) = / ( g ) •— II (g—g')> consists exclusively of multiple factors, and
appertains to the singular points of the curve. The index of its order,
t. e., m (m—1)—n, we may terra the total discriminantal index of the sin-
gular points of the curve. Let g0 be a root of/i (q) = 0 of multiplicity
v; the equation F (p, ga) = 0 has but one multiple root; let this be
pQ, and let its multiplicity be ft; then (p0, q0) is a singular point O on
the curve, of which the order (i. e., the least number of points in which
it is cut by any straight line passing through it) is ft, and of which v
may be termed the discriminantal index. It is evident that the number
of singular points is equal to the number of unequal roots of fx (q) = 0,
and that the total discriminantal index is equal to the sum of the
discriminantal indices of the separate singular points. We shall pre-
sently (Art. 8) see that the discriminantal index of a singular point can
in general be further subdivided into parts, appertaining respectively
to the different branches of the curve which pass through the point,
taken singly, and in pairs.

3. I t is a well-known theorem of Gauchy, that so long as the ana-
lytical modulus of q—q0 is less than the least of the modules of any of
the quantities gi—go, where ji is any root of/(g) = 0 other than g0, the
m roots of the equation F (p, q) = 0 are developable in convergent
series of the form

(A) p - p o = A+Ao(g-g0)+A, ( g - j o ) " + A a (g-g o ) -+ ,
the exponents olf o2, being rational and positive numbers, which
satisfy the inequalities 1 < aj < aa < Of the equations (A);
m—fx give the values of p corresponding to the m—/x points not in the
vicinity of 0, in which 0 is cut by the line (g). The series in the right
hand members of these m—ft equations we shall designate by Ah A2,...
Am_,,: we observe that in them the quantities A are all different from
one another and from zero; because (g0), not being a singular line, in-
tersects C in m—ft points, which are different from one another and
from 0 ; also, in these equations, the exponents nb a2, a3, are
integral. In the remaining ft equations, which give the developments
appertaining to the branches of C that pass through 0, tho quantities
A are all equal to zero : these equations divide themselves into groups
of conjugate equations, the equations of any one group being of the

type |>-po=Bo(<7-go) + B1w''(g-go)* +
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where the numerators ft are positive, integral, and increasing; A is less
than (3U and is the least common denominator of the fractional expo-
nents; o) is any root of w4 = 1 : so that, if we use one and the same
valne of the radical in all the A equations of the group, they will differ
from one another only by containing different values of w; each of the
/i equations defines a branch of the curve passing through 0. If A = 1,
the branch is linear or of order 1; if A > 1, the A conjugate equations
are regarded by Professor Cayley as denning A partial branches form-
ing a single euperlinear branch of order A; in every case the sum of the
orders of the branches is equal to the order of the point, i.e., ISA = ft.

The coefficients Bo are all different from zero, and the indices — are all
A

greater than unity, because neither (p0) nor (q0) is one of the tangents
at 0 ; but these coefficients and indices are not necessarily different in
two developments belonging to two different linear or snperlinear
branches—indeed any two such developments may coincide for any
finite number of terms; and to ascertain the true nature of any singu-
lar point it is indispensable to continue the developments until they all
become different from one another. The series in the right-hand mem-
bers of the fi equations we denote by Blf Ba, B, B^

4. The series A and B of the preceding article are absolutely con-
vergent within the assigned limits; i.e., any one of these series would
continue to be convergent within these limits if its terms were replaced
by their analytical modules. For the multiplication of two absolutely
convergent series we have the theorem :—

" If the product of two given absolutely convergent series, proceeding
by ascending powers of a variable, be arranged in a series proceeding
in the same manner, this series is absolutely convergent for all values
of the variable for which the given Beries are absolutely convergent,
and its sum is equal to the product of the sums of the given series."
(Caachy, " Analyse Alge"brique," cap. vi.)

Multiplying together the m series p—po—A, andjp—po—3, we obtain,
by virtue of this theorem, the equation

F (p, q) = H (p-po-&) x II (p -p o - -B) .

This equation is an identity; i.e., if the multiplication be actually
effected on the right-hand side, all powers of g—q0 above the wth

will disappear, and the terms that remain will be precisely the terms of

p—Poi Jo+?—<Zo) or F (p, q). But an arithmetical equality be-
tween the two sides of the equation subsists only so long as the analy-
tical modulus of q—q0 does not surpass the limit assigned in Cauchy's
theorem (Art. 3). Subject to the same limitation, f(q) is equal to the
product of the squares of the differences of every two of the series A and B.



the Higher Singularities of Tlane Curves. 157

5. The number of the intersections at any point 0 of two branches of
the same curve, or of different curves, which pass through the point,
and which are there represented by equations of the form

is defined by Professor Cayley to be the number which expresses the.
order of evanescence of pm—pw, i.e.t the integral or fractional exponent

•)(»)_«(»)

X for which v —<r X has a finite limit, when q—g0 ia diminished
(2-3o)x

without limit. We may justify this definition by proving that, whenever
two curves C, and C2 have a multiple intersection at any point, its multi-
plicity is correctly obtained by adding together the numbers (as thus
defined) of the intersections of each branch of C, by each branch of C,.
If we suppose (as we may do) that the points P and Q have no speciality of
position with regard to the curves Cj and Ca considered as one curve, the
resultant * (q) of the equations C, (p, g) = 0 and C2(p,q) — 0 is of the
order Wi X ma; and if /*i branches of Ct and ji2 branches of C2 pass
through 0, we shall have, for Cb m,x—IAX equations A(l), and p\ equations
B(l); and similarly, for 02, vi2—n% equatious A(2>, and/ia equations B(2).
Denoting by Et. (B(1)—B(a)) the product of the /iiX^ta differences
obtained by subtracting them in succession, each series B(2) from each
series B ', and by X. the number of intersections, as above defined, of any
one branch of Ci by any one branch of G2, we see that the limit of
n (B(l)-B(2)) -f- (q-qo)*

X is finite. But * (q) = n (B( l ) -B«), the
sign of multiplication- now extending to all the nix X HI? differences
obtained by considering the m, series A ' and B > and the m2 series
A, and B2; and of these mi X m2 differences, none, except the nx X /ia

differences already considered, are evanescent with q — q0 (for the
hypothesis that P and Q have no speciality of position with regard
to the system of the two curves C( and C2 implies that none of the
constants A(I) can be equal to any of the constants A(2)). Hence 2A. is
the multiplicity of the factor q — q0 in * (g); i.e., since (pOt q0) is the
only intersection of Cx and Ca which lies on (jo)> S\ is the multiplicity
of that intersection.

If we regard the equation F (p, q) = 0 as determining a corres-
pondence of points on a line, the coincidences of corresponding points
(except indeed the coincidences p = q = oo) answer in number and
multiplicity to the intersections of C by the straight line p = q. We
are thus led to a theorem given by M. Zeuthen (Bulletin des Sciences
Math6matiques, Vol. V., p. 186).

6. As it is only the hypothesis that the points P and Q have no
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speciality of position with regard to C, which gives us a right to assert
that every one of the developments B contains a term linear in q—qOi

and no term in which the exponent of q—q0 is less than unity, it is
worth while to see how far the results of the preceding article can be
depended on when this hypothesis is dispensed with. It will be found
that if (po) is one of the tangents at 0, i.e., if one, or more, of the coeffi-
cients Bo is zero, the discriminantal index of the point is still equal to
the order of evanescence of II (B(—B,)J. But this conclusion would
no longer hold, if (q0) were one of the tangents at 0. In this case the
developments appertaining to the branches to which (q0) is a tangent
would contain powers of q—q0 inferior to unity; and the order of
evanescence of n (B<—B,)a would exceed the discriminautal index of 0
by r, if n—r is the number of tangents other than (g0) which can be
drawn to the curve from P. But the multiplicity of the intersection
of two different curves, at a point which is singular for one or both of
them is correctly obtained by the process of Art. 5, even when the
developments contain positive powers of (q— q0) inferior to unity.

j.

Thus, in the curvep—p? = (q—Jo)°) a being an integer, the order of
evanescence of n[B<—B,]a is a —1, whereas the point is not a singular
point at all, and has consequently a discriminantal index equal to zero:
its tangent (q0) however is a singular tangent, and counts as a—1 tan-
gents drawn from P. On the other hand, if we consider the two

curves (p — p0) = (<?—?<>)"> p—Po — (2~2o)*\ in which a and b are
both integers and b < a, the order of evanescence of II (B<—B,)J is b;
and this is the multiplicity of the intersection at ( p0, q0).

7. We can now prove that the discriminantal index of the singu-
lar point O is equal to twice the number of the intersections of G by
itself at that point; and, again, that this discriminantal index is equal
to the number of the intersections at the same point of C by its first
polar with regard to any point not having a special position. For (1),
considering the ft equations B, we see that twice the number of inter-
sections of 0 by itself at the point (p0, q0), is the order of evanescence
of II (Bj—-B;)J, the sign of multiplication extending to all the •§•/! (/*—1)
differences; or, observing that f(q) -f- H (B^—B,)1 is a product of
\m (TO—1) — %fx (fi—1) squared differences, none of which vanish with
q—qo, twice the number of intersections of C by itself at the point
(jPo> So) is equal to the order of evanescence of/ (q) with q— q0, i.e., to

the discriminantal index v. And (2), since the polar of Pis — = 0,

and since the resultant of F = 0 and — = 0 i s / (q), we infer.(Art, 5)
dp



the Higher Singularities of Plane Curves. 159

that v is the number of intersections at (p0, g0) of G by its polar with
regard to P.

8. Considering a snperlinear branch, of which the component
branches are defined by the A equations

(A) 1>-Po'= Bo(g-go)+Bic/ ' ( jr-0o)* + - ,
let A, be the greatest common divisor of A and fii; and if yi is the first
of the numbers ft which is not divisible by Au let A2 be the greatest
common divisor of At and yx; if, again, ya is the first of the numbers j3
which is not divisible by A2, let A3 be the greatest common divisor of
Aa and y2, and so on continually. Since the numbers /3 have no com-
mon divisor with A, we shall at last arrive in the series A,, A2, A3

at a term equal to unity, when the series will tei*minate : and twice the
number of the intersections of the super linear branch by itself will be
expressed by the formula

in which y is written for j3i. For if to denote any given root of the
equation w* = 1, of its remaining roots x there are A{ — 1 which verify
the equations a? = wv, aVl = w7>, a;*'"1 = w7'"1; because A< is the
greatest common divisor of A, y, yj . . . y^.,: similarly there are Aj+i—1
roots other that wi which verify the same equations, and in addi-
tion the equation as*' = wV\ Thus, of the A (A—1) differences obtained
by subtracting each of the series (A) in turn from every other, there are

A(A<-A<,1) which are of the order &; i.e., 2N = 2y, (A,—A,*,). The

value of N depends, therefore, not on every exponent in the series (A), but

only on certain critical exponents —, in the denominators of which,

when reduced to their lowest terms, a new factor appears for the first
time. The number 2N, which is the " discriminantal index" of the
Buperlinear branch is, not itself necessarily even, but the difference
2N—(A—1) is always even, since we have

2 N - ( A - 1 ) = ( y - l ) ( A - A 1 ) + (y 1 - l ) (A 1 -A 2 ) + ...,
and in this expression, if A is uneven, so also are A,, A2 ; if A
is even, let A{ be the first of the numbers A,, A2... which is uneven;
then y^! is uneven, and so are all the subsequent numbers Ai4i, A<f2,

In either case, therefore, every term in the expression of
2 N - ( A - l ) i s e v e n .

Again, if two superlinear branches of the orders A and A' have the
same tangent, let (g—qo)

h be the lowest power of q — q0 which has not
the same coefficient B in the two sets of series (A) and (A') : it may,
of course, in one of these sets have a zero coefficient. Then the terms
of lower exponent are common to the two sets; and if the exponents be
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reduced to their least common denominator, these initial terms will be
of the form

where d is a common divisor of A and A', 0 is any root of Qd = 1, and

- - is the exponent next inferior to h. The number of intersections of
it
the two superlinear branches is then

the numbers <r, <rlt a3, dlt dit (of which in particular a = a,)

being determined from the series of exponents -r-, in the same way that

the numbers y, yi, Ab A2, were determined from the series

of exponents ~ . For, if 6 represent a given root of the equation

0**= 1, the -. roots of the equation w* = 1, which satisfy the equation

wd = 0, will give the same initial terms; and we may thus divide

the equations (A) into — groups, each containing d equations; the

equations of the same group differing from one another by containing
different values of 0, but the different groups not differing from
one another, so far as the initial terms are concerned. Similarly we

may divide the equations (A') into — groups. Considering only one

group of each set, we find (by the same reasoning as before) for
the order of the product of the d X d differences obtained from them,
the expression

the additional term hd appearing because we have now to take into
account the d differences in which all the initial terms vanish: the

result, multiplied by — X —-, gives the value of N'.
(i CL

Lastly, when two superlinear branches have not the same tangent,
tho number of their intersections is evidently N"=AA\ By means
of these formulas the discriminantal indices of the branches at any
singular point, taken by themselves or in pairs, may always be obtained
as soon an the developments appertaining to the branches have been
found. The sum of these separate discriminantal indices is of course
the discriminantal index of the point, or v = 22N-r-2SN'+2SN".

9. Every singular point of a plane curve is regarded by Professor
Gayley as being equivalent in a certain manner to h common nodes and
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r common cusps; and, cor relatively, every singular tangent as equivalent
to r double tangents and t inflexional tangents. For any superlinear
branch of order A passing through a singular point, the cuspidal index K
is by definition A—1; thus, for a linear branch K = 0. The cuspidal
index of a singular point is the sum of the cuspidal indices of the
several superlinear branohes passing through it; so that, for any singular
point, K = 2 (A—1) = f* — X, if /n is the order (Art. 2) of the point, and
X the number of distinct linear, or superlinear, branches passing through
it. The nodal index 8 for a singular point, and for its branches,
taken singly or in pairs, is defined, not directly, but by equating 28 + 3«c
to the discriminantal index; thus, for any superlinear branch of order
A, we have

which is always even (Art. 8), and positive, except when y = 3, A = 2,
in which case 3 = 0, and the superlinear branch is a common cusp.

For r and < we have correlative definitions.

10. Adopting these definitions, we have now to prove that the
numbers 23, 2K, 2r, Si (the summations extending to all the singu-
larities of the curve) satisfy the equations of Piiicker, and further that
the deficiency of the curve is correctly given by the formula

H = ± (m-l)(wi--2)-23-2ic.

It is sufficient to establish the four equations,

(I) n =?n(iji-l)-223-32*,

(ii.) m = «(«-l)-22r-32i,

(iii.) H = | ( m - l ) ( m - 2 ) - 2 5 - 2 * r ,

(iv.) H = ! ( t t - l ) ( n - 2 ) - 2 r - 2 « ,
because the three equations (i.), (ii.), and (iii.) = (iv.) are equivalent to
the six equations of Piiicker. But the equation (i.) has been already
proved; for we have found (Art. 2) that n = m (m—1) — 2c; and by
definition 2v = 2 (23 +Be). The equation (ii.) is the correlativo of (i.)
and needs no separate proof. In the equations (iii.) and (iv.) it is
important to take a definition of H which does not involve any
special supposition as to tho nature of the singularities appertaining to
the curve. The simplest, though not the most direct, course is to adopt
the method of Riemann, and to define 211+ 1 as thu index of multiplicity
of connexion of the m-leaved spirally connected surface [Q], which is
such that if the complex values of q be represented upon it in the usual
manner, p may be regarded as a one-valued function of q. In any such
surface the index of multiplicity of connexion 2 H + 1 , tlia number of
leaves w, and the number of spires (spiral poiuts, tuindiuujs-punkte) N,
are connected by the equation N = 2H + 2»i — 2. This equation Riemauu

VOL. VI.—NO. 86. M
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himself demonstrates by comparing the values of certain contour-inte-
grals (Theorie der Abelschen Functionen, Art. 7). But he observes that
it is entirely independent of considerations of magnitude, and that
it belongs properly to the geometry of situation. The demonstration
of it from this point of view, which has been given by M. Neumann
(Vorlesunyen p. 309, § 99), is also independent of any supposition as
to the special nature of the singularities of the curve C; and is there-
fore available for our present purpose. But we may observe that the
algebraical demonstration of the same equation, which is given by MM.
Clebsch aud Gordau (in their Theorie der Abelscken Functionen, p. 54,
§ 1G), would here be inadmissible, because in that demonstration it is
expressly supposed that the singular points of C are only common
nodes and cusps. (See the note at p. 11, lor,, sit.)

It is not difficult to find the number of spires N on the surface [Q].
There is a one-fold spire for every tangent from P to C; for, if (p0, Jo)
be the point of contact of any such tangent, we have for values of q in
the vicinity of q0 two conjugate developments of the type

in which B, is different from zero; all the other developments (Art. 3)
being of the type (A), because the point P has no speciality of position.
Again, there is a (A—l)-fold spire for any singular branch which is
superlinear and of order A; this is apparent from the form of the A
developments appertaining to the branch (see Riemann, loc. cit., Art. 6;
M. Puis-eux, Lioavllle, 1st series, Vol. XV. pp. 384-404).

We have therefore N = n + S (A—1) = «-f 2K, and Biemann's equa-
tion becomes n + 2«r = 2H + 2 (in — 1) ;
or, since n + 2«c = m (mi—1) — 223 - 22»r,

H = | (m-1 ) (»»—2)-2d—:8r,
which is the equation (iii.) Again, it is an immediate consequence of
Biemann's definition of the number H (see his Abelsche Functionen,
Art. 11) that this number remains unchanged by any unicux'sal trans-
formation of tho equation F (p, q) = 0. But (as has been already
observed by MM. Clebsch and Gordan) any tangential equation of the
curve C may be regained as an unicursal transformation of tho equation
F (p, q) = 0, because the points and tangents of a curve correspond to
one another one to one. The equation (iii.), therefore, involves the
equation (iv.); a result which, as we have seen, implies that the six
equations of Plucker are satisfied by the numbers 2£, 2«r, 2r, St.

11. The indices r and i appertaining to any superlinear branch at a
singular point, and the number of tangents common to two osculating
superlinear branches, may be ascertained directly from the point-
equations B, without actually forming the corresponding liue-equations.
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To prove this, we shall establish a relation which subsists between cer-
tain terms in the two sets of equations.

If Q and R are given constants, p = Q^+R is the equation of a
straight line in the system of parametric point-coordinates which we
have been employing. In passing to line-coordinates, we may take Q
and R as the coordinates of this straight line; and we may regard Q
and R as the parameters of two ranges of points, lying on the lines
PQ, PR, respectively, and represented by equations of the form

Q(P) + ( Q ) = 0 , R(P) + (R) = 0;

the line p = Qoj+Ro or (Qo> Ro) being the line joining the points de-
termined in the two ranges by the values Qo, Ro of the parameters. If
to the hypotheses of Art. 1 we add the supposition that PR is not a
tangent to C, and docs not pass through any singular point of C, the
line-equation of C, which we may represent by $ (Q, R) = 0, will havo
the same sort of freedom from speciality which has been ah'eady attri-
buted to the point-equation P (p, q) = 0. The parameters of the tan-
gent to 0 at the point (p, q) are

Let (p, q) be a point lying on the branch B, of which the point-

equation is p—p0 = Bo (q—q0)+B, w'1 (</—#>) * + ;

arid suppose (p, q) different from (p0, qQ), but sufficiently near to it
(Art. 3) to ensure the convergence of the in series A and B. Writing

where M is a product of factoi-s, nono of which can vanish at the point
(p, q)t because no singular point other than (pQ> q0) exists within the
range of values attributed to q, we find

Q =

Putting Bo = Qo, 2>0—QoBo = Ro»

so that (Qo, Ro) is the tangent at (p0, q0) to B, wo obtain tho equations

-Ro = -2o(Q-Qo) + ( l ~
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which determine the parameters Q, B of the tangent at any point of B.
If we further write

these equations become

«fc-* + *e*-* + ] (a),

where we have written <r< for §'-5», and pt for (1 — -—) B*- ** ^ ^
p, Hi \ A /

observed that « has disappeared from these equations, which therefore
appertain equally to all the A branches composing the superlinear
branch B. To obtain the tangential equation of that branch, i.e., the ex-
pansion of R—B* in a series proceeding by powers of Q - Qo, we have
three operations to perform. First, we have to raise each side of the
equation (o) to the power = ; we thus obtain an expansion of the

Pi—A
form 0Y = *a+A?+B£i+.. .) (Y),
8 denoting any root of the equation 6"1'* = 1. Secondly, we have to
revert the series (Y), so as to obtain the series

Lastly, we have to substitute, iu the equation (p), for £ its value given
by the series (£) ; the final result being of the form

(Z);

Q - Q u ) ^ + (H).

12. Certain of the terms of H, and indeed precisely those critical
terms upon which the determination of r and i depends, can be assigned
a priori by the help of the following considerations.

(i.) If a, 6, c, ... I, ... are positive and integral numbers, arranged in
order of magnitude, of which I is such that it cannot be formed by ad-
dition of any multiples of the numbers which precede it, the coefficient
of as' in the expansion of [\/< (as)]', where a is any real exponent, and

is ah; and, in particular, if all the numbers preceding I are multiples
of any number a, of which I is not itself a multiple, a supposition which
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implies that I cannot be formed by addition of multiples of a, 6, e,...,.
I is the least exponent in the development of [</> (*)]*» which is not
divisible by a.

(ii.) If the series y = x\p (x) be reverted so as to obtain the equation

the exponents au bu cit ... are all formed by addition of multiples of
a, h, c, .... For, if this is not so, let \ be the least exponent in ^ (y),
which cannot be formed by adding multiples of a, 6, e, ... ; on substi-
tuting z\p (x) for y in y\f/i (y), a substitution which ought to have x for
its result, we find that the coefficient of a>*l+1 is H t ; t. e., Hi = 0, or the
exponent hi does not occur in 4>i (y). Again, if the exponent I in «/> (a?)
cannot be formed by adding multiples of the exponents which precede
it, the coefficient Li of yl in i/>i (y) is —L; for, on making the same
substitution as before, the coefficient of x1*1 is fouud to be Li + L; i.e.,
L| = —L. And, in particular, if I is the lowest exponent in i/*(aj)
which is not divisible by a, I is also the lowest exponent in ^i(y)
which is not divisible by a.

Let p*< = y, be one of the critical exponents y, yi, ... considered in
Art. 8 ; then all the differences /3j-/3,, fii—fiu ... tip to fti.i—fti, are di-
visible by A,.!; but /t34—/3i is not divisible by A,_i. Therefore, by (i.),

the coefficient of V ' in the development of -r- is ,ff< ; by (ii.) the
6 Pi—A

coefficient of (0Y) ' ' in the expansion of t, 4- (8T) is — -g < , and

/3<—/3, is the least exponent in that expansion which is not divisible by
A<_!; finally, on substituting in the equation (/3), we see that the term

H (0Y)P< in the development of Z can arise only from the terms pt If*

and pi V in (j3) ; its coefficient H is therefore — pi ^ "' +pi = B<; and
Pi—A

J l A
the coefficient of 6 (Q-Qo)'1"4, or fl7'(Q—Qo)T"A> in the expansion of

R—Bo is f» 'B4. Nor can any exponent preceding —^— have a nume-

rator which is not divisible by A,_i.
Observing that the greatest common divisor of (ii—A, and (lu is the

same as that of A and /3lf we infer from this result that the numbers
Alt A3, A3, ...; y, yu yif.... are the same for the series H as for the
series B ; and since the numbers y, yu y2, ... have no common divisor
with A, neither have they with p\—A = y—A ; i. e., y — A is the least
common denominator of the exponents of H. Hence wo have, writing

= y ( ^ -



166 Prof. H. J . S. Smith on

or, subtracting the discriminantal index 25+3«c,

an equation which establishes a relation between the four indices of the
euperlinear branch.

13. If we consider any term whatever in the series B, for example

the term (i) = ftiU>Pi(q—g0)*, we shall in general find a corresponding

term (I) in the series H, containing Q—Qo raised to the power -. - :
Pi—A

(I) may be considered as the sum of two parts, Ii and I2, of which the
first, Iu arises from the term (?) itself, the other, I2, from the terms
preceding (?) ; (I) being in no way affected by the terms following (i).
If & is one of the critical exponents, we have just seen that Ia = 0,

P.-
Ii = ft. B< (Q-Qo)"1"4. If ftt is not one of the critical exponents, tho
first of these equations ceases to subsist, but tho second remains true,
and its proof requires only a slight modification of the reasoning in
Art. 12. NOAV let two series B, appertaining to two different super-
linear branches, which have a common tangent, coincide as far as the
term (t), but exclusively of it; the two corresponding series H will coin-
cide as far as the term (I), but exclusively of it; we suppose i > 0. That
all terms preceding (I) will coincide in tho two developments H is
evident, for these terms arise solely from the terms preceding (i),
which are identical in the two developments B. And the terms (I)
themselves are different: for the difference of the two terms (t) is

(B<—BJ) ii»Pi (q —q0) •» , where one of tho two Bit Bj may be zero, but

the difference B<—Bi is by hypothesis not zero; and the difference of
?L

the two terms (I) is /u* (Bv-B0 8* X (Q-QO)^4 = Ii-I'i, for these
two terms have the same part I2.

Let D be the number of points, T tho number of tangents common
to the two branches B at the point (pOi q0); T is given by the formula

which is derived from the expression for N' in Art. 8, by writing y—A

for A, y ' -A ' for A', and a-d for d. Observing that ^ = ^ = - | ,
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we find T - D = ~ ' <r (<r-2d)
(if

= A,A,'-AA'.

Wo have supposed iu the demonstration that i > 1, or that the two
developments ofp— p0—^o(,Q~?o) coincide for at least one term. But,
for the validity of the formulre, it is only necessary that the first ex-
ponent should be the same in the two developments,; and indeed the
last two expi'essions for T — D hold universally for any two superlinear
branches ha ving a common tangent.

14. The species of a superlinear singularity may be regarded as
defined by the series of numbers A and A,; A,, A2, ,y)( y2, , so
that two euperlinear singularities, for which these indices have the
same values, may be considered as belonging to the same species. A
rougher classification, however, which is sometimes useful, may be
obtained in the following way. Leaving out of sight the case in which
two superlinear singularities present themselves as conjugate imagi-
narics, and attending only to the case of a real supcrliuearity, we may
distinguish four varieties differing from one another in the appearauce
whioh they present to the eye. (See a Memoir by M. Stolz, Malhe-
ntatische Annalen, Vol. VIII., p. 440.)

(i.) A uneven, A, uneven; no apparent cusp or inflexion,
(ii.) A even, A, uneven; an apparent cusp, no apparent inflexion,
(iii.) A uneven, A, even; an apparent inflexion, no apparent cusp,
(iv.) A even, A, even; an apparent cusp, and an apparent inflexion.

The form of (ii.) is that of the common or keratoid cusp; (iv.) has
the form of the cusp of the second species, or rhamphoid cusp. There
is an apparent inflexion at tho rhamphoid cusp, because, if a person
describing tho curve continuously passes through the cusp, the con-
cavity of the curve is to his right after ho has passed through the
cusp, if it was to his left hand before, and vice versa. We may further
observe that, in case (iv.), A and A,, being both even, have a common
measure; thus A2 > 1, and the superlinearity is composite. Tho cases
(ii.) and (iii.) are correlative; tho cases (i.) and (iv.) are their own
corrolativcs.

15. Tho cui'vaturc of a curve at two points infinitely near to a given
superlinear point, and at equal distances from it on either side, is
always tho same ; and is infinite, finite, or zero, according as A > A,,
A = A,, or A < A,. Thus, in each of the oases (i.) and (iv.), thero aro



168 Prof. H. J. S. Smith on

three sub-varieties of form; and two in each of the cases (iii.) and
(ii.). The following are the simplest examples of each of these sub*
varieties: for the sake of completeness, the cases in which either of
the two numbers A or A, is unity, are included,

(i.) A and A, uneven.

("0

(iii.)

(iv.)

A

A

A

A
A
A

>

=
<

A,
A,

A,

even, A, uneven

A
A

uneven, A
A
A

>

<
A,
A,

even
>
<

and A, even.
A
A
A

>

=
<

A,:
A,:

A,:
A,:
A,:

: y
: y
• y

y
y

V
y

y
y
y

= 9j» ; y = J&T.

ZZH fly J QJ S Z Q5 "*

= a*; y = xK

= a?; y = x\
= «*.

= Q J * .

= » 8 ; y = a!*.

= 3!*+as1.

= ass+ccs.
= x* + xK

It should be noticed that in the equation y — x*+x*, the only inde-
pendent radical is a?*, and that a* is to bo interpreted as (a:*)'. Thus,
supposing » positive, and understanding by ^a? and i/x1 the real and
positive values of the radicals, we have for the four partial branches
the equations

y = Jx*+ </x\ y = v**8- V*\
y = - Jz'-i X/x\ y = - vV + i V®7,

of which the first two appertain to a real I'hamphoid cusp. If we were
to change the sign of */z3, we should pass from the equation

to the equation

which is the rationalized equivalent of y =— z* +»*• It is, of course,
quite possible that two developments, such as y = ±a:*+as*+..., may
both belong to the same curve (as indeed they do both belong to the
curve W+x"<p(xf y) — 0), but such a curvo would have two distinct
euperlinear branches touching one auother at tho point x=0, y=0.

16. Let 0 be any point whatever on a curve lino ; let the arc OP=«r,
P being a point on the curve infinitely near to O ; let M be the ortho-
gonal projection of P on the tangent at 0 ; and let the tangents at O

which is the rationalized equivalent of y =
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and P intersect at T, making the infinitesimal angle «•». Then it will be

found that *J = J33£ = °1 = £TPO lo£MP_1 #
A log* TP ZTOP logOM

The fraction — which admits of these various geomotrical interpreta-
A

tions may perhaps be called the logarithmic curvature of the curve at
the point 0. At any ordinary point it is unity ; and in a geometrical
curve it is always rational, bat in a transcendental curve it may have
any value rational or irrational.

Since A or K + 1 is the number of points in which the superlinear
branch is cut by any line, passing through 0, other than its tangent at
the point 0, we infer that, correlatively, i + l o r A , is the number of
tangents drawn to the superlinear branch from any point on the tan-
gent at 0, other than O itself. Thus, if d be the discriminantal index
of 0, or the number of points in which the curve is cut at 0 by the
polar of any arbitrary point, d + A, is the number of points in which
the curve is cut at 0 by the polar of any point on the tangent at 0,
other than 0 itself; there is, of course, a correlative definition of
d+A. Lastly, since A + A, is the number of points common at 0 to
the tangent and the curve, it is also, correlatively, the number of tan-
gents drawn from O to touch the curve at that point. Thus the polar
of the point 0 intersects the curve at O in d+A + A, points, and the
tangent at 0 counts as d+ A + A, tangents common to the curve, and
to the tangential polar of OT with regard to the curve. For the num-
bers A], A3, ... y,, yit ... no simple geometrical definition has as yet
presented itself.

. 17. The proof of Plucker's formulae, which is indicated in Art. 10,
may appear very indirect. Some further observations on these formulae,
and on the various modes of demonstrating them, may not be out of
place.

(1.) If we write D = 2(23+3.c), T = 2(2r+3i), I = S«, K = 2*,
\ (I - K) = Q, Plucker's formulas become

n = m(tn—1)—D,
» n = n ( n - l ) - T ;
« = m ( m - 2 ) - D ,

- O = n(n—2)—T;
giving T—D = n*—m\ O = 3 (n—w),

O4-2£l1(T+D)-4n ( T - D ) + (T-D) a = 0.

It is thus apparent that Plucker's equations do not contain either K or
I separately, but only the difference I—K.

(2.) The discriminantal index d=2S+3< of any given point is
defined geometrically as the number of intersections of the polar of an
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arbitrary point with the curve at the given point. But the definition
which we have given in Art. 9 of the cuspidal index ic is an analytical
one, and does not readily admit of interpretation in coordinate geometry.
The Hessian does not serve to define either i or K, for in all the cases that
have as yet been rigorously investigated, it has been found that the num-
ber of intersections of the Hessian with the curve at a point of discri-
minantal index d is 3d-\-t — K, so that, even if the number of these in-
tersections at any singular point should be determined by a general
method, we should only obtain a definition of the difference I — K.
Again, if several superlinear branches have a common tangent OT at
the point 0, it will be seen that the geometrical definitions of Art. 1G
only give the numbers 2(t-f-l) and 2(K + 1 ) ; viz., if d is the total
discriminantal index of all the branches intersecting at 0, the first
polar of any point on OT (other than 0) intersects the curve at 0 in
d + 2 ( t - f l ) points; the polar of 0 intersects the curve at 0 in
d + 25(I+K+2) points; and there are correlative definitions of the
numbers c?-f-2(«r + l ) , and d-f-2(t-f-ic-f-2). By combining theRe de-
finitions, we obtain a geometrical definition of the difference 2(t—K),
the summation extending to all the branches which tonch one
another at 0. But here it is to be observed (1) that to dednce the
values of 2« and 2K from those of 2(t-fl) and 2(«: + l) , we should
require to determine the number A of distinct superlinear branches
which touch OT at 0 ; and (2) that, even if 2t and 2k- were known, it
would still remain to determine the decomposition of theso sums, and
to assign the partial indices appertaining to each of the \ branches;
whereas no determination of the number A, or of tho indices t and K of
each separate superlinear branch, has as yet been obtained, by con-
sidering the intersections of the given .curve with any concomitant or
system of concomitants.

(3.) The difficulty, which thus presents itself in obtaining a definition
of the indices < and *, ceases to exist when we leave the domain of
coordinate geometry, and consider either the analytical expansions, or
the geometrical representations (depending on principles foreign to
coordinate geometry) which correspond to those expansions. If
several superlinear branches touch one another at a given point, (he
analytical expansions separate them, and assign the cuspidal and
inflexional indices proper to each of them. If we apply to the equa-
tion F (j), q) = 0 the geometrical methods of double algebra, the cus-
pidal indices appear in the cycles of values of jp, which present them-
selves at the points answering to the discriminantal values of q.
(See the memoir of M. Puiseux, Liouville, Vol. XV., p. 384.) If,
instead of the simple plane of double algebra, we use the multiple
plane of Riemann, the cuspidal indices are represented by the 6pires
which connect the leaves of the multiple plane. But it is important
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to remember that, in employing the methods of double algebra, and a
fortiori in employing the surfaces of Riemann, we are entirely abandoning
the methods of coordinate and projecfcive geometry. The present
question is perhaps not directly affected by the fundamental distinction
between the " infinite" of double algebra, which is a point, and the
infinite of protective geometry, which is a straight line. But the
duality, characteristic of prqjective geometry, is lost in double algebra;
BO that, when the complex values of p and q which satisfy the equation
^(JP» 2) = 0 a r e regarded as developed on a plane, or on one of
Eiemann's surfaces, we do indeed obtain a direct representation of the
cuspidal index K, but no corresponding representation (unless we first
transform the equation into its reciprocal) of the correlative index t.
Indeed, it may be asserted that, whereas the character of any given
superlinearity mainly depends on a series of indices A = K + 1 , A,=t + 1,
Ai> A2, ..., yu y2, .. , the modes of geometrical representation, to which
we are here referring, offer a sensible image of the first of these indices
only. If we employ a simple plane, any one of the A values of p, which
come to coincide with one another at the discriminantal point, must
describe A elementary contours around that point before it acquires
again its original value. If for simplicity we suppose that A2=l, the
A values ofp, which form the cycle, will divide themselves into A! sub-
cycles, each containing — values; and any value, belonging to one of
these sub-cycles, will acquire approximately its original value, after
describing — elementary contours around the discriminantal point, the

order of the error being ^ if the order of the infinitesimal radius be
A

taken as unity. And upon this approximate return to the original
value depends the only indication which the method affords of the ex-
istence of sub-cycles, and of the values of the numbers A, and y^ If we
employ the multiple plane of Riemann, we may perhaps represent the
relations of the A expansions to one another by taking a Arleaved

plane, repeated — times, and having a spire of order A—1, so arranged

that after — revolutions we return to the same Arleaved plane upon

which we were when we set out, but not to the same leaf of that plane.
And we can give to this image a certain amount of clearness by
supposing that the Ai leaves of any Arleaved plane are infinitely nearer

to one another than are any two of the -r- repetitions of the Arleaved

plane.
(4.) The demonstrations of Pliicker's formal©, which are usually
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given, apply only to the case in which the singularities are simple;
the cases of multiple points, or multiple tangents, or of branches
having contact with one another of any order, being made to depend,
by the method of limits, on the simple cases of double points, or
double tangents (see Dr. Salmon's Higher Plane Curves, p. 53). But
these demonstrations do not admit of immediate extension to the
case of the higher singularities properly so called, because it has not
as yet been established, in any general manner, that a higher
singularity may be regarded as the limit of an equivalent number of
lower singularities situated infinitely near to one another. It would
seem that PHicker himself was well aware of the incompleteness (in
this respect) of the demonstration of his equations; for he supplements
that demonstration by separately considering the case of a common
ousp of the second species. Assuming the equation n — m (m— I)—D,
and its reciprocal, (about the rigorous proof of which there is no
doubt,) we have only to establish one other eqnation of the system.
Two different methods are given by Pliicker (Theorie der AlrjebraUchen
Curven, Partii., Arts. 77—81) : (i.) He establishes directly the theorem
that, at a cusp of the second species, the curve

cPF (dF\* o <PF dFrfF , (PF/cgF\>__0

dp1 \dq) ^ dpdq dp dq dq* \dpl

(which may be used for our present purpose instead of the Hessian)
intersects the given curve in 3d+t—K = 15 points. We have already
stated that, in all the cases which have been examined hitherto, the
number of intersections of the Hessian with the curve at any point
has been found to be 3d + t — *; but no general demonstration of this
theorem has as yet been given. The only method at present known
for determining the number of intersections of two curves at a point
which is singular on each of them, consists in obtaining the developments
of the various branches of the two curves at the point, and in com-
paring these developments with one another. The discussion in Art.
18 of the development of the polar curve in the vicinity of a superlinear
branch, may serve to show that the corresponding enquiry in the case
of the Hessian is one of considerable intricacy, (ii.) The other method
employed by Plucker depends on a determination of the number of
double tangents lost by a curve of the fourth order in consequence of
the presence of a cusp of the second species. In the absence of any de-
monstration that a higher singularity can be regarded as the limit of
simple singularities existing infinitely near to one another, it is difficult
to see how this mode of proof can be 'rendered universally applicable.

(5.) We have seen (Art. 10) that the theorem of the in variance of
the number ^ (m—1) (m—2)—25 — 2* in any unicursal transformation of
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the curve suffices to establish the equation
(A) * (m- l ) (m-2) -a -K = ! ( n - l ) ( « - 2 ) - r - t ,

and thus to complete the proof of the formulae of Plucker. Among the
demonstrations of this theorem which have been given in recent times
that of MM. Bertini and Zeuthen (Qiornale di Mathematical Vol. VII.,
p. 105; Mathematische Annalen, Vol. III., p. 150; Dr. Salmon's Higher
Plane Curves, p. 814) is remarkable for its simplicity; and appears, as
we shall now attempt to show, to admit of extension to the case in which
the curves have any singularities whatever. We begin by assuming
that when a curve is subjected to an unicursal, or one-to-one transforma-
tion, the continuity of its branches is invariably preserved, even when
the position of these branches with regard to one another has under-
gone great distortion. For example, if a curve have two branches
intersecting at the point 0, these two branches will certainly be repre-
sented by two corresponding branches in the transformed curve ; but
these two branches may have no point of intersection, and the point 0
may be represented by two different points one on each of the two
branches. Again, two branches which osculate one another with any
degree of approximation may be transformed into branches having no
contact and no point in common. But a superlinear branch behaves
as one branch, and always is transformed into one branch and one
only. Consider, for example, a real branch which is superlinear at 0 ,
and suppose for simplicity that no otlier branch passes through 0 ;
whatever be the nature of the snperlinearity, we have one continuous
branch passing through O, and if a point describe this branch, the
track of the image-point in the transformed figure cannot be anything
but one continuous branch.

Let Gi, C2 be two curves of the orders mu mit and of the classes nu n,,
lying in the same plane and corresponding to one another unicursally;
and let Plt Pa be points upon them corresponding unicursally. Taking
two arbitrary points Slf S2, wo consider, with M. Zeuthen, the locus F of
the intersection of the rays SiPt, S2Pa; and we propose to determine the
number of tangents that can be drawn to F from each of the two points
Si and S3. We may suppose that SiSa cats each of the two curves in
points which do not have singular points of the other curve for their
corresponding points; then it is evident that F will have m2 ordi-
nary branches passing through Si, and Wi ordinary branches pas-
sing through Sj. We may further suppose that the «i tangents
drawn from Si to Ct are none of them singular tangents, and that to
the points of contact of these «i tangents there answer on Ca

points having no singularity: each, of these tangents will then be a
tangent of F, but not a singular tangent of that curve. Beside the
2ma+«i tangents, which we have now drawn from Si to F, there may
be others, coinciding in direction with the rays running from Sx to the
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singular points of Ci. Let Xi be a superlinear point on Cb having the
cuspidal index KX ; and to X, let X, answer on Ca> the cuspidal index of
X3 being ie2t where ica > 0. We may suppose at first that only one
branch passes through Xt and only one through Xa. The ray S1X1

meets Ci at Xi in precisely Ki + 1 coincident points, because S,Xi is not
a tangent at Xt; similarly S2Xa is not a tangent at Xj, but meets C2 in
precisely <r3+l points at Xa, since we may attribute to Sa the requisite
generality of position with regard to Cs. Thus, if Q is the intersection
of SiX], S2X2, the locus F is intersected at Q *i •+• 1 times by S,Xi, and
ifj + 1 times by S2X2. The points of the curve T answer, one to one, to
the points of Ci or C,; thus at Q there is but one branch answering to
the one branch at Xb or to the one branch at Xa. If <i = «r2, the cus-
pidal index of this branch is ^ = r2, while its inflexional index remains
unknown. If 1̂  > *2, its cuspidal index is *2, its inflexinual index is
«:,—c,—1 ; similarly, ifx2><eb these indices are KX and«r2—*,—1; i.e., in
the first case, SjX, counts *.'i—«ca times as a tangent to F at Q, and SoX,
is not a tangent at all; in the second case, S2Xa counts «a—*i times as a
tangent, and StXi is not a tangent at all. When *i = «ra, neither S1X1

nor S,X2 are tangents. The preceding reasoning will not be affected,
if we now introduce the supposition that several linear or superlinear
branches intersect or osculate at Xj, and that branches corresponding to
some or all of them pass through X2. Several branches will now pass
through Q, but each of them may be considered separately, and the
number of times that it is touched by S,Q or S2Q may be ascertained
as above. Equating the results appertaining to the points Sj and S3,
we now obtain

2wa+nl + 2' (if,—K2) = 2m,+n,+2' (K2—*,) ;
where 2' extends only to those differences which are positive. Written
in the form n, + Sic, — 2mi = «2 + 2*a— 2^,
this equation coincides with the formula

\ (ru,-1) ( W l _ 2 ) - 2 (5 ,+K, ) = | Om-1) (»na-2)-25 (Sa+*a),
which it was required to prove.

The assumption, which we have explicitly made, that a linear or
superlinear branch is always transformed by a one-to-one transforma-
tion into one branch, and one only, is indispensable in the preceding
proof; as upon it depends the determination of the number of times
that F is touched by SiX, or S2Xj. In the case of a real branch
transformed by a real transformation, the assumption may be regarded
as evident; in the general case, we should have to consider, instead of
two plane curves, the two corresponding surfaces of Biemann. For our
immediate purpose, however, we do not need to establish the assump-
tion as universally true in all cases; because the only one-to-one trans-
formation (beside that of Cx or G2 into P) which is here employed
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is the transformation by polar reciprocation; and the investigation of
Art. 11 affords a direct proof that in this transformation any one
linear or superlinear branch is always transformed into oue branch
(linear or superlinear).

(6.) Abandoning for a time the hypotheses of Art. 1, let us suppose
that P is a singular point on the curve C, Q retaining its generality of
position. And first let P be a point through which only one superlinear
branch passes, having the indices ic= A —1, e = A,—1; let us also
suppose that no singular tangent of G (other than the tangent at P)
passes through P. The order of p in the equation F (p, q) = 0 is
now m—A, instead of m; and the number of tangents that can be
drawn from P to the curve 0 (other than the coincident tangents at
P itself) is w—A—A, (see Art. 16), instead of n. To all the singular
points of C, other than P, there will appertain developments of pre-
cisely the same form as in the case in which P has no speciality of
position. Let q0 be the value of q corresponding to the tangent at P ;
the parameters of the point P are p = oo, q = q0. We cannot, there-
fore, in examining the superlinear branch at P, develope p in a series

proceeding by powers of q—q0; but we may so develope —, or any

linear function of p, such as ±2L, which assumes a finite value
d a+bp

p0 — —, when p = oo. The exponents in any such development will
have A, instead of A, for their least common denominator, because the
tangent to C at P meets the curve (Art. 16) in A + A, points, so that, if

q = 20, A, of the m—A values of ^- become equal to p0. Setting

out from the given equation F (p, q) = 0, let us form the develop-
ments appertaining to all the singular discriminantal values of q; and
in each group of conjugate developments let us consider the greatest
common divisor 0 of its exponents. The sum 2(0—1) will be equal
to 2*: + A, — A,, instead of 2K; and the three numbers, by which we
have now replaced m, n, and 2<r, will satisfy the equation

(w-A-A,) + (Z»c + A,-A) — 2(m—A) = «+2ie—2ro.

The cases in which (a) more than one branch passes through P, (/3)
one or more singular tangents pass through P, (y) Q as well as P has
some speciality of position with regard to C, may all be treated by the
same method. In any of these cases, let E (p) be the highest exponent
of|> in the equation F (p, q) = 0; and let u> ( p) = 2 (0—1), the sign
of summation now extending to all the discriminantal values of q, so
that 2 (0—1) contains an unit for every ordinary tangent that can be
drawn from P to touch the curve elsewhere. If any of the discriminantal
values of q, or any of the corresponding equal values of p, are infinite,
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we are to employ linear functions of p and q, instead of p and q them-
selves, in forming the developments from which we are to infer the
numbers d. We shall thus obtain the equation

(B) o>(p)-2E(p) = <o(q)-ZE(q) =M+2K-2W,
from which, as Glebsch has shown, the general theorem of the invari-
ance of the deficiency may be immediately deduced. (See a Memoir
by M. Nother, Malhematisohe Annalen, Vol. VIII., p. 497.)

In the memoir to which we have just referred, M. Nother offers a
demonstration of the equation (B). But this demonstration is per-
haps not wholly free from obscurity. (See the words, p. 499, he. cit,
" Dieses findet. . . ergiebt," with the accompanying reference to the
Gottiugen Nachrichten.) A similar remark applies to a second demon-
stration, in the same memoir, of the invariance of the deficiency. [See
p. 501, " Man hat aber dann . . . das Glied Sij (^—1)."]

M. Nother has returned to the same subject, in a recent memoir of
great interest (Mafhematische Annalen, Vol. IX., p. 166), in which he
considers the resolution of a higher singularity by successive applica-
tions of a simple quadratic transformation, and infers* (though by a
method which can hardly be accepted as rigorous) that any higher
singularity may be regarded as the limit of a certain number of lower
singularities situated infinitely near to one another. We may observe
(o) that the use of a quadratic transformation for the resolution of com-
plicated singularities is due to Cramer (Analyse des Lignes Oourbes) ;
(/3) that to establish the complete system of the formulae of Plucker,
M. Nother selects the same three equations, which we have been led
to employ in the present paper [viz., the equations (i.), (ii.), and
(iii.) = (iv.), of Art. 10].

18. The expansions of Arts. 3 and 4 enable us to examine the relation
of a curve at a singular point to its polar curves. Putting for brevity
p~Po = n, q—qo = & F (p, q) •= Fx (»j, £), we have F, (IJ, {) = II (17-A)

J LI J Tjl

X H ( I J - B), — = - ~ . From the expression of Fi (17, £) as a product

of m factor-series, we infer that if, on writing K£ for JJ in F, (17, £), we
obtain a result of which the order of evanescence with £ is higher
than fi, q = Kt£+ is the beginning of one at least of the expan-
sions B. Again, let us substitute for rj in F] (»», £) an expression of the
form K = Kl|+Ki^+K3^+ +K,r,
in which 1 < aa < a3 < a,. If the order of evanescence of
F! (K, £) with ^ experiences an abrupt diminution when either a, or K,
(the exponent and coefficient of the last term of K) is affected by any
small variation, the terms K are the initial terms of one at least of the
expansions B. This observation (which admits of some useful appli-
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cations) enables us to deduce the developments appertaining to the

polar curve —, in the vicinity of the point (pOi q0), from the develop-
CUT)

ments appertaining to C.
Let h of the developments B coincide with one another and with K,

as far as the term K, £,a" inclusively, so that for any one of these h deve-
lopments we have

B, = K + Ljft li>a (K),

the terms Xt £' not being all identical.

Put V = r,-K, U (V-hrf') = $ (V) ;
i

then I \ ( , , , 9= :Mx?(V) , and ^ = ^f (V) + M^ (V),
ar\ at)

M being a product of m~-h factors, viz., of the m — fi factors JJ— A, and
of those fx—Tc factors ??—B which do not coincide with 17—K as far as
the term Kr4

a' inclusively. Suppose, at first, that Z1? Zj, I* are all
unequal, aud arranged in order of magnitude ; it is easily ascertained
that the first terms in the expansions of the roots of <j> (V) = 0 areV = M S Y ! E ! M ' a V ! i M ' '

(ZF
Substitute for JJ in -— an expression of the form ij = K + H £*, where

dij

h > a¥, and H is independent of £. If H £A is not the same as any one

of the quantities V^ Vj,. . . V*_i, the order of evanescence of A (V) —
CLTJ

surpasses that of M <f (V); for the order of evanescence of M cannot
surpass that of -y- by a number greater than a,, whereas the order of

drj

f (V), on the supposition that none of the equations H t,h = V,- is satisfied,
surpasses the order of <f>' (V), at least by one of the numbers lu Z2, ... lk.
If we now suppose H and h to vary continuously, the order of evanes-
cence of f' (V) is abruptly increased when H £* comes to coincide with
any one of the roots Vo, Vx *Vt.i; and, since the order of evanes-

cence of M remains unchanged, that of — is also increased abruptly.

dW
Hence k—1 of the developments appertaining to —are of the type

VOL. vi.—xo. 87.
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Again, suppose that 8 of the indices Z are equal; let for example the
s lowest indices be equal; then s roots of the equation <pf ( V) = 0 are
of the form !!,•£'+..., where Z = Z1 = Za... = Z,; and if

*(6) = (0-X,) (0-X2) (0-X.),
the s coefficients H< are the roots of the equation

(&-«)iK0)+0f ('0= ° (fl)-
If the s equal indices l\...l, are followed by another set of a' indices
equal to one another and to V, I' being > Z, put

(0_X,+1) (0-X,f2) ( 0 - W = *,(») ;
then the equation ^'(V) = 0 has s' roots of the form H •£?'+..., the
coefficients H) being the roots of the equation

(*-«-o*i(0)+0#(e) = o on,
and so on continnally. Lastly, considering any group of equal indices
I, for example the group Z,tl, Z,l2 Z,+,», let cr of the corresponding
coefficients A be supposed equal (in which case <r of the developments K
coincide with one another for one term at least after K, $*') ; the corres-
ponding equation (6') will have a — 1 roots (and no more) eqnal to one
another and to the equal coefficients X; so that or—1 of the develop-
ments appertaining to the polar will coincide, as far as the term next
after K,T', with the a developments appertaining to C. To carry on these
a—1 developments until their complete separation from one another,
we must repeat the preceding process as often as may be necessary,
using in the first instance K+A£' instead of K, and confining our atten-
tion to the a developments, appertaining to C, in which K+X^J are the
initial terms.

As the roots of the equations \p (6) = 0, \px (0) = 0, ... are all different
from zero, so also are the roots of the equations (0), (0'), ..., except
when the highest index Z is one of a group of equal indices. In this case,
if i£ (0) = n (0—X), the sign of multiplication extending only to those
coefficients X< which occur in terms having the greatest exponent Z, the
last of the equations (0) is of the form \p' (0) = 0, and r of its roots may
be equal to zero. When this happens, in the r polar developments
corresponding to the zero roots, the terms K are not followed by a
term of the form H£', but by a term of higher exponent. To deter-
mine this term in each of the r developments, we must use, in forming
^ (0), not simply the quantities X,, but as many terms of the series

A,-+^i£'+... as may be necessary. The zero roots of i//'(0) = O are
then replaced by roots of the form Hi", a being positive, and the initial
terms of the r polar developments are given by the formula K + Hi;1*".

We shall employ the preceding method to examine the nature of the
polar branches in the vicinity of a superlinear branch. We suppose
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the superlinear branch to be of the type
[A, Ab A2, ... A,, A,+1 = 1; yu y2, ... y,] ;

and we consider only the case in which this superlinear branch (A) is
not touched by any other branch. The polar has A—1 branches (A')
touching the superlinear branch. Their developments coincide with

one another, and with those of (A), as far as the term [a;4] exclusively.

But at this term 1 of them cease to osculate any branch of. (A);
x

they do not contain the term [a;4], which is replaced in each of them
by a term of higher exponent, yet so that the aggregate of the

- — 1 exponents cannot exceed — — 1. The remaining — (Ai — 1)
Ai A, A /

branches divide themselves into — groups of A!~ 1 each. The At —1
A,

branches of each group are identical with one another, and with At of

tho branches (A), as far as the term [a;4] exclusively. At this term

- - — 1 branches out of each group cease to osculate any branch of (A),
Aand the remaining --(A2 — 1) divide themselves, in the same way as
A2

before, into —- groups of A2 —1 each; the branches of each group
A2

being identical with one another, and with A2 of the branches of (A),
as far as the term (x*) exclusively. In this way we obtain the follow-
ing theorem in which i is to have every value from 0 to s, both in-
clusively.

" The polar curve of an arbitrary point has branches which

form —! 1 superlinear branches of the type.
A<+i

[A'= * *; = £, *-. = %*, 4-1;
L A; A< Ai

These superlinear branches coincide with one another, and with the

branches of (A) as far as the term [«A] exclusively; instead of the

- A
term [as4] each of them contains a term of higher exponent; the —-—1
Buperlinear branches may, but do not necessarily, group themselves
into higher superlinear branches."

N 2
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19. The development appertaining to a superlinear branch can.
always be obtained from the equation of the curve by successive
applications of the "analytical triangle." The process has been described
by M. Puiseux in his important memoir " Recherches sur les fonctions
algebriques." (Liouville, Vol. XV., p. 384; see also a paper by M. de
la Gournerie, ibid., 2nd series, Vol. XIV., p. 425, Vol. XV., p. 1.)
We propose to conclude the present paper by showing how the
numbers y, y,, ... A, Alf ... present themselves in the course of the
operation. Putting, as in Art. ]8, 17 for p—p0, $ for q—q0, we first of
all write the equation Fx (17, £) = 0 in the form ult+u)l1l+..., where w,,
is a homogeneous function of $ and tj of the order ft, which is that of
the singular point. If (>/—BQ£)a is a multiple factor of u^ the line
f—Bo£ is touched by branches (linear or superlinear) of which the
aggregate order is a. Put JJ—BO£ = v ; the resulting equation between
v and $ will give precisely a values of v in which the order of v sur-
passes that of $. Form, by the analytical triangle, the equations (of
the aggregate order a in v) which give the initial terms of the expansions
of these a values. These equations are of the type

= 0,

where X and v are relatively prime, X > v, and 2 ^ v = a; they are
always obtained linearly, except when there are s of them in which
the numbers au X, v are all the same; in which case the analy-
tical triangle determines an equation, of order s, having constant
coefficients, of which the roots are the s quantities K. There are four
cases to be considered: (i.) 0^=1, v=l; (ii.) ^ = 1 , v > l ; (iii.) a i> l ,
v = l ; (iv.)aj>l, v > l . (i.) To the equation v — K?= 0, X>1, answers
a linear branch which, considered by itself, has no point-singularity
(if X is > 2, it is an inflexion), (ii.) To the equation v'—K£* = 0
answers a superlinear branch of which the character is defined by the
equations A=v, A1=l, y=X; its development proceeds by integral

powers of s*, and the successive terms are obtained linearly by the analy-
tical triangle, (iii.) To the equation (y—K^)"1 = 0 answer ĉ  branches,
which may be all linear, but which also may group themselves in
whole or in part into superlinear branches; if A, A', A" ... are the
orders of these separate linear or superlinear branches, we have 2A=ai.
(iv.) To the equation (u ' -K^) 0 1 = 0 answer axv branches, which may
belong to <ix distinct "superlinear branches of the type (A = v, At = 1,
y=X) ; these superlinear branches may however themselves be grouped,
wholly or in part, into branches of higher superlinearity ; if A, A', A" ..,
are the orders of the distinct superlinear branches, these numbers are

all divisible by v7 and 2 - = at; we have also for every one of them
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--- = v, —• = X, A! having to be determined subsequently for each
Ai Ai

of them separately. With the cases (i.) and (ii.) we have nothing
further to do; the case (iii.) may be regarded as included under (iv.) \
we therefore continue the process in this last case only. Put

I t I
v — K 'c ' = v b V representing any one determinate value of the radical;
and form by the analytical triangle equations of the type

of which the aggregate order in v1 is alt and which give the initial

terms of those ax values of vu of which the order surpasses that of £*; we

have of course —1->—, or — > \ ; Xj and vx are relatively prime, but
VVX V Vx

 J r

we observe that Xx is not necessarily prime to v. We consider the

same four cases as before, (i.) To the equation vx—K.x £' = 0, or more
properly to the v equations comprehended in it, answers a superlinear
branch of the type (A = v, Ax = 1, y = v). (ii.) To the v equations

h.
«?—J5.xk'=0 there also answers a single superlinear branch for
which A=i>i'1, A1 = v1, A 2 = l ; y=\vu y1=z\1- i.e., a superlinear branch

of the type (— = v, — = vlf A2 = 1; y = XA,, yx = \ A2). In this
V A} Aj /

case, as well as in (i.), the discussion of the superlinearity is complete.

(iii.) To the v equations fa—K-i V )°a = 0 there may answer a2 super-

linear branches of the type (— = v, &x = 1 ; y = X A!); or these may
\ Aj /

group themselves in any manner into higher superlinear branches
for each of which — = v, y = XA!; the numbers Ax (which have to

Ai
be determined for each branch separately), satisfying the condition

h.

2JA! = Oj. (iv.) To the equations (u[' — Kx t," )°* answer a certain num-

ber of superlinear branches, for each of which — = v, —' = vx; y = XAb

Ai Aa

y1=X1A2; while A2 and the subsequent numbers of the series have
still to be determined, and may be different for each of them; we have
however the equation SA2 = S —i = a^. The process, which we need
not follow further, may be considei'ed to terminate for any particular
development, when that development is separated from every other,
and can be continued linearly. This will happen when, in the series
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a di «2 •••» we arrive at a term equal to unity. And we shall eventually
arrive at such a term; for, though the second of two consecutive

indices a may be as great as the first (the equation ( D - K D * 1 may,
for example, at the next step in the process, lead to only one equation ;

and this may be of the type (v,—Kt V)"1 = 0, so that we should have
a2=a{)i yet it is impossible for two branches to osculate one another
indefinitely, because the discriminantal index is necessarily finite. If
a, be the first of the indices a which is equal to unity, we have

A A, A, A ,
A = V* A Vu '" A~~ = "" ' + l = 1 J

**1 <±1 * * » + l

and the development appertaining to the superlinear branch is of the
type

.vn A1== v ^ j . . . vn , A, = v,, A,+1 = l ,

y1 = X1A2, , y,_i = X,_! A,, y, = X . ) .

On Hamilton's Characteristic Function for a Narrow Beam of Light.

By J. CLEEK-MAXWELL, M.A., F.K.S.

[Read January 8th, 1874.]

Hamilton's characteristic function V is an expression for the time of
propagation, of light from the point whose coordinates are xlt yu zx to
the point whose coordinates are x2, y2, z2. It is a function of these six
coordinates of the two points. The axes to which the coordinates are
referred may be different for the two points.

In isotropic media the differential equation of V may be written

f)=" «•
where \i is the slowness of propagation at a point in the medium whose
coordinates are x, y, z, and is a function of these coordinates. If the
time of propagation through the unit of length in vacuum be taken as
the unit of time, then p. is the index of refraction of the medium.

The form of the equation in doubly refracting media, as given by
Hamilton, is not required for our present purpose.

Let OPQR be the path of a ray of
light. Let the part OP be in a ho- or v>, J I ^ ^ a'I P*. ?»'
mogeneous medium whose index of


