
Explorer of Grid Load

August 2016

Author:
Mayank Sharma

Supervisor(s):
Joao Antunes Pequenao

CERN openlab Summer Student Report 2016

CERN openlab Summer Student Report 2016

Acknowledgements

Working on EGL as a CERN Openlab summer student has been one the best learning

experiences for me so far. A special thanks to my supervisor, Joao Pequenao for

pioneering the visualizations and guiding me through the overall project and also for

single handedly being the Best Supervisor Ever! I have learnt so much not only about

software development and design but also about other aspects of life for which I am

forever grateful.

I would also like to thank Mellisa Gaillard for always being supportive and resourceful

and for helping us connect with the right resources that really helped expedite a lot of

work at our end.

I am also grateful for the help provided by Edward Karawakis in getting us the access to

the data sources and helping us work through the Google Earth KML besides the useful

tips and feedback. I would like to thank Alberto Aimar and Julien Ludec for their inputs

towards EGL.

Lastly, I am really thankful to the CERN Openlab team for the opportunity of being a

part of their summer student program. I shall always cherish the entire experience!

CERN openlab Summer Student Report 2016

Table of Contents

Acknowledgements ... 2

1 Introduction .. 4

1.1 What is EGL? ... 4

1.2 Why EGL? .. 5

1.3 Advantages over Google Earth .. 5

1.4 Current status ... 6

1.5 Future Work/ Scope ... 7

2 EGL Tech Manual .. 8

2.1 Events .. 8

2.1.1 Publisher Subscriber Pattern ... 8

2.1.2 EGL API Event System .. 9

2.2 Sequence Pipeline ... 10

2.2.1 Data Fetch Stage ... 11

2.2.2 Pledge JSON Anomaly and Resolution ... 11

2.2.3 FetchedDataHolder vs WineCellar .. 12

2.3 Data Parse Stage ... 13

2.3.1 JSON Parsing with WebGL status ... 13

2.4 Data Processing Stage .. 14

2.4.1 Simple Learning Algorithm to detect Tier-3 sites. .. 14

2.4.2 Redundancy checks after merging Google Earth KML and Kathy Noble’s
KML 15

2.5 Services ... 16

2.5.1 EGLWebAndDataStatus .. 16

2.5.2 DaVinciPallette .. 17

2.5.3 EGLWebAndDataStructureService ... 18

CERN openlab Summer Student Report 2016

4 | P a g e

1 Introduction

Big data is a reality scientists face every day. Especially now that CERN projects and

collaborations have become Global. The Worldwide LHC Computing Grid processes

petabytes of data connecting over 200 active sites in more than 42 countries. It forms the

backbone for the data analytics and high processing computing possible through these sites.

Therefore, a reliable Grid means reliable operations at collaborating projects, partner

companies, institutes and universities. Therefore, it is necessary to have a reliable tool for

monitoring and visualizing various performance metrics and other relevant data about the

grid. That’s where EGL or Explorer of the Grid Load comes into the picture.

1.1 What is EGL?

EGL is a visualization tool specializing in plotting WLCG statistics. It is very flexible in

design and gives us a lot of control over the visualizations. It can be customized and

adapted for different scenarios. For example, it can be deployed at CERN visit points. As

it can also display intricate details about grid operations on a globe, it may be used for

monitoring purposes as well.

CERN openlab Summer Student Report 2016

5 | P a g e

1.2 Why EGL?

EGL makes life easier for a lot of people who have previously relied on the visualization

capabilities of Google Earth to try to achieve similar results. In fact, EGL goes way beyond

the scope and capabilities of Google Earth type visualizations and gives complete control

to the developers. It allows parsing, processing and validating the data fetched from

multiple sources through the API itself rather than relying on separate servers to do the

heavy lifting. It not only reduces load on servers by performing most calculations and data

manipulations by itself but also significantly cuts down on the size of files transferred by

the servers.

From a developer’s perspective, EGL API is based on the latest trends in software

development. It is highly modular and can be broken down into components with clearly

defined roles and responsibilities. It is therefore easy to diagnose bugs and patch them up

quickly. EGL API is Event Driven. This means that different API components can

subscribe to events and get notifications when they occur. Events are triggered whenever

anything happens in EGL API. For example, different events are announced when data

fetching is complete or parsing is complete or processing of data is done or when the

fetched data is ready to be plotted by the visualization engine. This is implemented through

the Publisher-Subscriber/ Observer pattern. To synchronize different events i.e. control

when they are triggered is vital for proper operation of the API. EGL implements a

Sequence Pipeline (Pipes and Filters/ Chain of Responsibility pattern) to control the order

in which the events occur. A pipeline typically can be broken into a number of stages such

as: Data Fetch, Data Parse, Data Processing, Data Validation. Each pipeline stage controls

certain events and a stage is only triggered when the relevant events from the previous

stage have been completed. To abstract the internal working of EGL API from the

visualization engine, it implements a Service Layer that provides convenience functions

to directly obtain the latest processed data at any point in time and also allows to enquire

about the state of EGL API in a request-response fashion. From the perspective of the

visualization engine, the service layer essentially reduces the entire EGL API into a single

class (DaVinciPallete.cs) which provides functions to fetch latest processed data.

EGL is Multi-Threaded. It implements Coroutines for fetching, parsing and processing

data to ensure there is no unnecessary load on the UI thread that may make the visualization

laggy. As a lot of operations are performed in parallel, the Event System and the Sequence

Pipeline provide a neat solution to control the asynchronous activities occurring in the core

API.

1.3 Advantages over Google Earth

EGL has the following advantages over the Google Earth tool that has been around:

1. We are not limited by the visualization and data handling capabilities of Google

Earth as EGL has been built with Unity, which is among the most powerful game

engines of today

2. EGL is Multi-Platform. It can be deployed for Android/ iOS/ WebGL/ Standalone

3. As we have more control over the data and visualizations, there is less load on

servers that generate huge xml files for Google Earth. A lot of the calculations

CERN openlab Summer Student Report 2016

6 | P a g e

performed by these servers for preparing animation data and for interpolating data

links is not required by EGL as it internally manages both of these.

4. EGL comes with a flexible core API which can be adapted visualizing any kind of

statistics on a Globe.

1.4 Current status

The big picture (simplified) for EGL API is as follows:

At present, we are between the alpha and beta release. The overall architecture for EGL

has been set up and the EGL API fluidly interacts with the Visualization Engine. So, the

main task remaining is to keep adding more data sources and visualization features as per

the requirements that may arise.

p.s. In the above diagram, WIFE i.e. Web Interface for EGL consists of

ReconChewbacca.cs and Han.cs. Here is a screenshot of the latest EGL implementation:

CERN openlab Summer Student Report 2016

7 | P a g e

To test drive EGL, you can use the following link:

http://ml-server01.cern.ch/files/EGL/

1.5 Future Work/ Scope

 Refine data sourced and incorporate changes in EGL API to make data fetching and

parsing more efficient especially for Google Earth KML and Kathy Noble’s KML

 Implement country/ region wise boundaries i.e the GIS information

 Adapt EGL for different visit points at CERN

 Explore the potential of EGL to become a generic standalone tool for visualizing

any type of statistics on the Globe.

CERN openlab Summer Student Report 2016

8 | P a g e

2 EGL Tech Manual

Now that we have a big picture for EGL. Let’s jump into some technical details of the

EGL API and understand how it works and why it works the way it works. This manual

is complementary to the detailed Doxygen API docs.

The EGL API consists of 3 major components

 Events: (contained in namespace EGL.Events)

 Sequence Pipeline: (Managed and implemented by Sequence.cs)

 Services: (contained in namespace EGL.Service)

2.1 Events

An Event represents that an action occurred in the EGL API ecosystem. For example,

NewDataAvailableOnlineEvent announces availability of new data from online sources

and SequenceCompletionEvent announces that the sequence of operations for parsing and

processing of the fetched data has been completed.

The Event System in EGL API is based on the Publisher Subscriber/ Observer Pattern.

2.1.1 Publisher Subscriber Pattern

Publisher Subscriber pattern allows to create a push-notification system. Services can

subscribe to different events and get notifications when they occur. This is different from

the conventional request-response/ polling approach where services would poll a central

hub to check if an event has occurred or to enquire about status of different components of

the API.

CERN openlab Summer Student Report 2016

9 | P a g e

There are 4 main components of a Publisher Subscriber pattern,

1. Event

2. Event Publisher/Announcer

3. Event Hub/ Event Bus

4. Event Subscribers/ Listeners

Event Subscribers subscribe to different events by registering callbacks with the EventHub.

Event Publisher announces that an event has occurred by notifying the EventHub about it.

The EventHub then invokes the callbacks for all the subscribers that were registered to

listen for that event.

Now that the higher level picture of the Event System is clear, let’s get into more details:

Event Publisher is represented by any class that implements IEGLEventAnnouncer.

IEGLEventAnnouncer describes one function with the signature: public void announce().

The responsibility of announce() is define how to announce the Event, let’s say Event XX.

Generally, this is done by invoking one of EventHub’s announceXXEvent(IEGLEvent

eglEvent) functions that corresponds to event XX.

Event Subscriber should implement IEGLEventListener interface and override the

notify(IEGLEvent event) function. The responsibility of notify(IEGLEvent eglEvent) is to

describe the code (callback) to be executed when a particular event occurs.

2.1.2 EGL API Event System

EventHub is the central hub that glues the entire system together. For each type of Event,

it contains 3 functions:

1. annouceXXEvent(IEGLEvent eglEvent) : invokes notify() for all registered

EventSubscribers

2. registerXXEventListerer(IEGLEventListener listener): allows Subscribers to

register and receive notifications when XX Event occurs.

3. unregisterXXEventListnerer(IEGLEventListener listener) : unregisters listener

from receiving notifications about occurrence of XX Event

In EGL API, any class that implements IEGLEvent interface is an event. It should have

separate function en EventHub to register listeners, unregister listeners and announce its

occurrence.

All classes that define and implement the Event System are located in the EGL.Events

namespace. Please refer to Doxygen documentation and source code for more detailed

explanation and usage examples.

CERN openlab Summer Student Report 2016

10 | P a g e

2.2 Sequence Pipeline

The Sequence pipeline takes care of the order in which different events occur i.e. it is

responsible for sequencing the Events. The pipeline can be broken down into the following

stages

1. Data Fetch

2. Data Parse

3. Data Processing

4. Data Test/ Validation

5. Sequence Completion

The order in which different stages occur is as follows

1. Offline Data Fetch (occurs only once; on application boot)

2. Offline Data Parse (occurs only once; on application boot)

3. Online Data Fetch

4. Online Data Parse

5. Data Processing

6. Data Test/ Validation

7. Sequence Completion

8. Repeat from 3

Each stage consists of Events that can be associated with it.

Order in

Sequence

Pipeline Stage Associated Events

1 Offline Data Parse OfflineParsingTier0SiteCompletionEvent,
OfflineParsingTier1SiteCompletionEvent,
OfflineParsingTier2SiteCompletionEvent,
OfflineParsingAllSitesCompletionEvent

2 Online Data Fetch NewDataAvailableOnlineEvent

3 Online Data Parse ParsingDataLinkCompletionEvent,
ParsingDataTransferCompletionEvent,
ParsingProductionJobCompletionEvent,
ParsingSiteCapacityCompletionEvent,
ParsingSiteCompletionEvent,
ParsingSitePledgeCompletionEvent,
ParsingSiteTopologyCompletionEvent

4 Data Processing ActiveSitesDataProcessingCompletionEvent,
REBUSDataProcessingCompletionEvent

5 Sequence Completion ActiveSitesDataProcessingCompletionEvent

CERN openlab Summer Student Report 2016

11 | P a g e

The sequence logic is implemented by Han.cs and Sequence.cs. Please read up Doxygen

docs and source code for these classes.

2.2.1 Data Fetch Stage

2.2.1.1 Data Sources

Data is fetched from the following sources:

Mode Name Maintainer Location

Offline Kathy

Noble’s

KML

Kathy

Noble

Offline Location :/Assets/Resources/offlineSites2016.xml

Online Location:
https://www.google.com/maps/d/viewer?mid=zjqJjT4W0LqY.kr0ms1czctbw

Online Google

Earth

KML

Edward http://dashb-earth.cern.ch/dashboard/dashb-earth-all.kml

Online REBUS

JSON:

Capacity

JSON

Edward https://wlcg-
rebus.cern.ch/apps/capacities/sites/ALL/2016/9/json

Online REBUS

JSON:

Pledge

JSON

Edward https://wlcg-
rebus.cern.ch/apps/pledges/resources/2016/all/json

Online REBUS

JSON:

Topology

JSON

Edward https://wlcg-rebus.cern.ch/apps/topology/all/json

2.2.2 Pledge JSON Anomaly and Resolution

Here is a snippet from Pledge JSON indicating the type of JSON objects contained in it

https://mmm.cern.ch/owa/redir.aspx?C=1b8S835jHAYOS3W03pvijOASNqlnI8jDzm3v9TN61rBVlKVHF-HTCA..&URL=https%3a%2f%2fwww.google.com%2fmaps%2fd%2fviewer%3fmid%3dzjqJjT4W0LqY.kr0ms1czctbw
http://dashb-earth.cern.ch/dashboard/dashb-earth-all.kml

CERN openlab Summer Student Report 2016

12 | P a g e

{

 "PledgeType": "CPU",

 "Federation": "CH-CERN",

 "Country": "Switzerland",

 "PledgeUnit": "HEP-SPEC06",

 "ALICE": 215000,

 "ATLAS": 257000,

 "LHCb": 51000,

 "Tier": "Tier 0",

 "CMS": 317000

}

It is important to note that Pledge JSON does not tell us with what WLCG Site the Pledge

object is associated with. We only get information about the Federation and Country for a

SitePledge. Currently, during the data processing stage, the REBUSDataProcessor finds

Site with matching country and federation values and associates SitePledges to it. In

simpler words, individual pledge data for every site is not available and we are reverse-

engineering this information from the country and federation values.

This means, if a WLCG Federation contains more than 1 Site then all of them get the

same values of SitePledge.

However, on manual scanning, I was not able to find any federation with more than 1 Site.

So we can assume the data is not repeated for any Site. Please confirm this with the IT

Department.

2.2.3 FetchedDataHolder vs WineCellar

WineCellar contains latest processed data while FetchedDataHolder contains unparsed

and unprocessed data after from all the online sources i.e. Google Earth KML and REBUS

JSON. So for visualization purposes, only WineCellar has significance. Wines taste better

with age, so, data in WineCellar appears late i.e after Data Processing Stage and contains

more structured form of the data contained in FetchedDataHolder (populated after Data

Fetch stage).

https://wlcg-rebus.cern.ch/apps/pledges/resources/2016/all/json

CERN openlab Summer Student Report 2016

13 | P a g e

2.3 Data Parse Stage

During this stage, data fetched from different sources is parsed into their respective Data

Structures.

Data Being Parsed Data Structure

Parsed into

Parser Data Source

All Tier-0, Tier-1,

Tier-2 Sites

List<Site> AllSitesKMLParser Kathy Noble’s

KML (available

offline, occurs only

once)

Active Sites (Tier-0

to Tier-3)

List<Site> SitesParser Google Earth KML

Site Capacities List<SiteCapacity> SiteCapacityParser REBUS JSON

Site Topology List<SiteTopology> SiteTopologyParser REBUS JSON

Site Pledge List<SitePledge> SitePledgeParser REBUS JSON

Data Links List<DataLink> DataLinksParser Google Earth KML

Data Transfers List<DataTransfer> DataTransfersParser Google Earth KML

Production Jobs List<ProductionJob> ProductionJobsParser Google Earth KML

Data Parsing is done in parallel via coroutines. The identically coloured cells in “Data

Being Parsed” column represent that these parsing operations are performed in parallel.

2.3.1 JSON Parsing with WebGL status

We are currently using the Unity ported version of Newtonsoft JSON.Net as the JSON

library to parse REBUS JSON. For Standalone builds, JSON.NET works perfectly.

However, on implementation, this library turned out to be incompatible with WebGL

builds and issued errors during the parsing stage. To ensure similar compatibility across all

platforms, the JSON features have been disabled (NOT removed) for now.

To enable JSON Parsing and processing, the following changes need to be made:

1. Uncomment the following lines in Sequence.cs:

https://github.com/SaladLab/Json.Net.Unity3D

CERN openlab Summer Student Report 2016

14 | P a g e

 public void ParseFetchedData(ref FetchedDataHolder holder)
 {
 state.Add(SequenceState.PARSING);
 ParseXML(holder.xmlDocument);
 //parserObject.AddComponent<SiteTopologyParser>().Parse(holder.topologyJSON);
 //parserObject.AddComponent<SitePledgeParser>().Parse(holder.pledgeJSON);
 //parserObject.AddComponent<SiteCapacityParser>().Parse(holder.capacityJSON);
 }

2. Implement the new JSON parsing library (WebGL compatible) in ParseLogic()

function of SiteTopologyParser.cs, SitePledgeParser.cs and SiteCapacityParser.cs

3. In SequenceCompletionEventAnnouncer.cs uncomment the conditions to include

JSON parsing as a parameter for determining completion of a sequence.
 private void checkForAnnouncement()
 {
 if (dataTransferComplete && dataLinkComplete && siteComplete &&
productionJobComplete && activeSiteDataProcessingComplete) //&& siteTopologyComplete &&
sitePledgeComplete && siteCapacityComplete && rebusDataProcessingComplete)
 announce();
 }

2.4 Data Processing Stage

Data Processing stage involves processing of parsed data and making it available to

different services so that it can be used by the visualization engine.

2.4.1 Simple Learning Algorithm to detect Tier-3 sites.

Information for Tier-3 sites is not available directly from any of the data sources.

Data Source Information Contained

Kathy Noble’s KML All Tier-0 Sites, All Tier-1 Sites, All Tier-

2 Sites

Google Earth KML Active Tier-0 Sites, Active Tier-1 Sites,

Active Tier 2 Sites, Active Tier-3 Sites

The only source of Tier-3 sites is Google Earth KML and it only gives information about

ACTIVE Tier-3 Sites. So, by default, there is no way to detect inactive Tier-3 sites.

EGL API overcomes this limitation as follows: When EGL starts, it first adds the Active

Tier-3 Sites to WineCellar.allTier3Sites from the current version of Google Earth KML.

Then after parsing the next version of Google Earth KML, EGL API adds the NEW Active

Tier-3 Sites to WineCellar.allTier3Sites and also keeps the Sites that became inactive in

CERN openlab Summer Student Report 2016

15 | P a g e

this version of Google Earth KML i.e. WineCellar.allTier3Sites List keeps Tier-3 Sites

even after they become inactive.

Therefore, once an Active Tier-3 Site is discovered by EGL, it will remain in the system

unlike other Tier-0, Tier-1, Tier-2 counterparts which are always present as they are already

provided by Kathy Noble’s KML.

This also means that, the longer EGL runs, the more Tier-3 sites it might display!

The source code implementing this logic has been documented in

ActiveSitesDataProcessor.initMergeSites();

2.4.2 Redundancy checks after merging Google Earth KML and Kathy Noble’s KML

We maintain a master list of Sites in WineCellar (static member variable names:

allTier0Sites, allTier1Sites, allTier2Sites and allTier3Sites). These Lists always contain the

latest parsed and processed information about the Sites from all the data sources. To

achieve this, every time a sequence is executed, data from multiple sources is merged with

the data contained in the lists. The Site Name is used as the primary key for detecting

what entities are to be merged. The format for Site Names is derived from the Site Names

used by Google Earth KML. Here are few examples: AGLT2, AM-04-YERPHI, CERN-

PROD etc

So, if the site names for the same site do not match in different data sources, there will be

two or more entries for the same site. Luckily, Google Earth KML and REBUS JSON’s

use the same format for Site Names as they are maintained by Edward. Kathy Noble’s

KML, however, uses a slightly different format. Here are few Site Names from Kathy

Noble’s KML: US | AGLT2, CH | CERN Data Centre, Tier-0 etc.

The AllSitesKMLParser.cs takes care of converting Kathy Noble’s Site Names to standard

Google Earth Site Names. Initially, we observed 2 site markers at CERN data center during

the visualizations. This was because even after converting Kathy Noble’s format to Google

Earth KML Site Name format, CH | CERN Data Centre, Tier-0 could not be matched to

CERN-PROD.

To resolve this, we have an exceptional case for Tier-0 CERN Site. In case there are more

exceptional cases, please make an addendum to the code in AllSitesKMLParser.cs to reflect

it.

To easily check for redundancies in Site Data, EGL.Tests.EGLWebAndDataStatusTest

contains a function List<Site> siteRedundancyTest(). This function checks for redundant

Site data and prints the redundant sites to the Unity Debug Console. To enable this test, set

Config.RUN_TESTS = true.

CERN openlab Summer Student Report 2016

16 | P a g e

/// <summary>
/// If true, <see cref="Service.EGLWebAndDataStructureService"/> will execute all tests
specified in the <see cref="Service.EGLWebAndDataStructureService.initTests()"/>
functions.
/// </summary>
public static bool RUN_TESTS = true;

2.5 Services

Services in EGL API abstract the Sequence Pipeline and Event System and provide a clean

interface to interact with the EGL API. It is the preferred way to communicate with EGL

API when you do now want to get involved in too much technical details about

implementation of Sequence Pipeline and Event System.

Please read up Doxygen documentation and the source code for more details on how you

can use individual services. They are contained in the EGL.Service namespace.

Some of the mail services are described in brief here:

2.5.1 EGLWebAndDataStatus

EGLWebAndDataStatus service provides an alternative to Event System to enquire about

the state of things in EGL. While EGL Event System’s design is based more on a push

notification mechanism i.e. subscribers automatically get notifications when an event

occurs, EGLWebAndDataStatus’s design is inspired from a request-response or polling

mechanism. EGLWebAndDataStatus can be pinged to check if an event has occurred yet

or not at any point of time during program’s execution.

EGLWebAndDataStatus contains static Boolean variables that correspond to each event

described by the Event System. If the value of any variable is true, it means that the

corresponding event has occurred. The usage and the different fields have been

documented in Doxygen.

This service also provides the parsing status for Google Earth KML and Kathy Noble’s

KML in terms of percentages. The parsing status is exposed through the following

functions:

CERN openlab Summer Student Report 2016

17 | P a g e

Retur
n
Type

Function Name Default Denominator Data
Source

Float getActiveSitesParsedPercentage() Config.
DEFAULT_ACTIVE_SITES_NUMBER

Google
Earth
KML

Float getDataTransfersParsedPercentage
()

Config.
DATA_TRANSFER_DEFAULT_NUMBER

Google
Earth
KML

Float getDataLinksParsedPercentage() Config.
DATA_LINK_DEFAULT_NUMBER

Google
Earth
KML

Float getProductionJobsParsedPercentag
e()

Config.
PRODUCTION_JOB_DEFAULT_NUMBER

Google
Earth
KML

Float getAllSitesParsedPercentage() Config.DEFAULT_TOTAL_SITES_NUM
BER

Kathy
Noble’
s KML

2.5.1.1 Estimation of Parsing Percentages

Parsing percentage from different sources is calculated as follows:

𝑃𝑎𝑟𝑠𝑖𝑛𝑔 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑐𝑜𝑟𝑑𝑠 𝑝𝑎𝑟𝑠𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑐𝑜𝑟𝑑𝑠
∗ 100

The denominator i.e. Total Number of Records cannot be determined before actually

parsing all the data. Therefore, the parsing percentage is approximated by using the Total

Number of Records from the previous parsing operation. This is done on the assumption

that Total Number of Records for any of the data sources will not vastly change in the 10-

minutes after which a new data source becomes available. When EGL first starts, the values

to be used in the denominators are set by static int variables defined in the Config class

(see Default Denominator column in the above table). In order to account for any

discrepancies that may occur, the percentages automatically become 100% at the end of

the parsing operation.

2.5.2 DaVinciPallette

DaVinciPalette provides convenience functions that are used by DaVinci to plot data. In

lay man terms, it is the glue linking EGL API to the visualization engine. The idea is that

DaVinciPallete should abstract the entire functionality of EGL API from the visualization

engine. It should just provide functions that return the data needed by DaVinci or the

visualization engine.

CERN openlab Summer Student Report 2016

18 | P a g e

In the current implementation, DaVinciPallete contains a field wineCellar. This

WineCellar object is auto populated with all the latest processed data. Therefore, if

you want to just use the processed data anywhere during visualizations, you can create a

new function in DaVinciPallete that returns the data from wineCellar (which is a private

member variable by default, so it can’t be directly accessed).

2.5.3 EGLWebAndDataStructureService

This service is the main initializer for EGL API. It sets everything up ranging from

configuring EGL API, starting Event System and Services etc. It is very important to

initialize EGL through this Service before using any other components of EGL API. More

details on this service and it’s usage are documented in the Doxygen docs.

