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ABSTRACT
In this work we propose a method that integrates multi-task
learning (MTL) and deep learning. Our method appends a
MTL-like loss to a deep convolutional neural network, in or-
der to learn the relations between tasks together at the same
time, and also incorporates the label correlations between
pairs of tasks. We apply the proposed method on a transfer
learning scenario, where our objective is to fine-tune the pa-
rameters of a network that has been originally trained on a
large-scale image dataset for concept detection, so that it be
applied on a target video dataset and a corresponding new
set of target concepts. We evaluate the proposed method
for the video concept detection problem on the TRECVID
2013 Semantic Indexing dataset. Our results show that the
proposed algorithm leads to better concept-based video an-
notation than existing state-of-the-art methods.
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1. INTRODUCTION
Semantic concept detection in video refers to the task of

assigning one or more semantic concepts to video fragments
(e.g., video keyframes) based on a predefined concept list
(e.g., “car”, “running”) [24]. In a typical process, the video is
initially segmented into meaningful fragments, called shots;
each shot may be represented by one or more character-
istic keyframes; and, these keyframes are passed through a
pre-trained deep convolutional neural network (DCNN) that
performs the final class label prediction directly, using typi-
cally a softmax or a hinge loss layer [22, 10].
The small number of labeled training examples is a com-

mon problem in video datasets, making it difficult to train a
deep network from scratch without over-fitting its parame-
ters on the training set [23]. For this reason, it is common to
use transfer learning. I.e., to take a network that has been
trained on a large-scale source dataset (e.g., ImageNet [21])
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and fine-tune its parameters for the target dataset. Further-
more, the tasks in the target dataset may be related, and
so their relations can be exploited to further improve the
video concept detection accuracy. Concept correlations ob-
tained by the ground-truth annotation can provide a source
of information regarding the relations between tasks. Addi-
tionally, concepts, besides label relations, can be related in
terms of their feature representation or the task parameters,
i.e., the parameters of the binary classifier learned from the
training data. Multi-task learning (MTL) refers to those
methods that learn many tasks together at the same time.

In this work we append a MTL-like loss to a neural net-
work and we minimize the entire network end-to-end. In ad-
dition, we incorporate a label-based constraint related to the
concept correlations. We refer to the proposed method as
deep multi-task learning with label constraint (DMTL LC)
and we apply it on a transfer learning scenario. Specifically,
we extend the two-sided neural network, proposed in [27]
for MTL, in the following ways: i) We use the network
jointly with a pre-trained network in order to perform trans-
fer learning, instead of using it as a standalone network that
takes as input hand-crafted or DCNN-based features. ii) We
introduce a new label-based constraint that considers con-
cept correlations. We evaluate DMTL LC on the TRECVID
2013 semantic indexing (SIN) task’s dataset of 38 different
semantic concepts [20]. Our results show that the proposed
algorithm leads to better concept-based annotation than ex-
isting state-of-the-art methods.

2. RELATED WORK
MTL and transfer learning are two strategies to improve

learning by sharing knowledge across different but related
tasks or domains. Let us define two domains with their
learning tasks: the source domain Dso with a set of learning
tasks Tso (the set of concepts that need to be detected), and
the target domain Dta with a set of learning tasks Tta. On
the one hand, transfer learning aims to improve the learning
in Dta by using the knowledge in Dso, without considering
potential improvements to the tasks of Dso. The latter is
the focus of multi-domain learning (MDL). On the other
hand, MTL methods learn the relations across the learning
tasks Tso or Tta together at the same time. It should be
noted that the terms MTL and MDL are sometimes used
interchangeably. However, it is useful to distinguish them
clearly: MDL refers to shared knowledge about the same
tasks across different domains, while MTL refers to shared
knowledge about different tasks in the same domain. The



Figure 1: Transfer learning using the proposed
DMTL LC method.

latter is the focus of this work, so we do not further discuss
methods that focus on MDL, such as [12].
Noisy and incomplete annotations are common in video

datasets (e.g., TRECVID SIN [20]), which makes it diffi-
cult to train a deep neural network from scratch [23]. Many
works investigate which features within a pre-trained net-
work are sufficiently generic, and develop approaches that
effectively transfer this knowledge to new target datasets.
The typical approach for transfer learning is to start with a
DCNN trained in Dso, replace its classification layer with a
new Tta-dimensional classification layer and train it towards
the Dta domain [4, 29, 8]. The way that the parameters of
the source DCNN will be used has been examined in many
works. For example, in [18, 29], the first H layers of the pre-
trained DCNN are copied and remain frozen, and the rest
of the layers are randomly initialized. In addition, [29] fine-
tunes the H layers, instead of freezing them, which leads to
improved accuracy. Fine-tuning begins with the parameter
weights of the source-domain DCNN and modifies them in
order to adjust the network to the target domain. A dif-
ferent approach was proposed in [23, 15, 18] that extends
a pre-trained DCNN by one or more fully-connected layers
placed on the bottom of the classification layer.
MTL methods learn the relations across many tasks to-

gether at the same time. The main difference between MTL
methods is the way they define task relatedness. Some meth-
ods identify shared features between different task and use
regularization to model task relatedness [1, 17, 16]. Others
identify a shared subspace over the task parameters [6, 5,
2]. The methods above make the strong assumption that all
tasks are related; some newer methods consider the fact that
some tasks may be unrelated. For example, the clustered
MTL algorithm (CMTL) [31] uses a clustering approach to
assign to the same cluster parameters of tasks that lie nearby
in terms of their L2 distance. Adaptive MTL (AMTL) [25]
decomposes the task parameters into a low-rank structure
that captures task relations, and a group-sparse structure
that detects outlier tasks. The GO-MTL algorithm [11] (i.e,
for Grouping and Overlap in Multi-Task Learning) and the
online version of it [14] use a dictionary-based method that
allows two tasks from different groups to overlap by having
one or more basis in common.
Deep learning is well suited for MTL; in [27] a two-sided

neural network that addresses the MTL problem is pro-
posed. Specifically, this method unifies several MTL meth-
ods that use a predictor matrix factorization approach, e.g.,

w(t) = Ls(t)T [11], in order to learn their parameters using
a two-sided neural network. L correspond to the parameter
vectors of k latent tasks, while s(t) ∈ R1×k is a task-specific
weight vector that contains the coefficients of the linear com-
bination. MTL in deep learning architectures has also been
proposed for facial landmark detection [30] and human pose
estimation [19]. In [30] the task of facial landmark detection
is optimized with the assistance of an arbitrary number of
related/auxiliary tasks. This is a special case of the conven-
tional MTL that typically maximizes the performance of all
tasks. In this work the two sided neural-network proposed
by [27] is modified and extended, for devising a deep learn-
ing method suitable for transferring a network that has been
originally trained on a large-scale image dataset for concept
detection, to a target video dataset and a corresponding new
set of target concepts.

3. PROPOSED APPROACH

3.1 Problem Formulation
A video concept detection system needs to learn a number

of supervised learning tasks Tta, one for each target concept.
Each task t is associated with the training set available for

this concept X(t) = (x
(t)
i , y

(t)
i )Nt

i=1, where x
(t)
i ∈ Rd, y

(t)
i ∈

{±1}. When the training set is small, it is common to
take a DCNN that has been trained on a large-scale source
dataset for Tso tasks, and transfer its parameters on a target
DCNN to be trained on the target dataset X = {X(t)}Tta

t=1

for a different set of Tta tasks. With respect to the target
dataset, the task parameters of related tasks may share simi-
lar knowledge, but also concept correlations obtained by the
ground-truth annotation provide another source of informa-
tion regarding the relations between tasks. In this section,
considering all the above, we append a GO-MTL-like loss
to a neural network and we incorporate a label-based con-
straint that considers concept correlations. We minimize the
entire network end-to-end using stochastic gradient descent
(SGD). We refer to the proposed method as deep multi-task
learning with label constraint (DMTL LC) and we apply it
on a transfer learning scenario.

3.2 Deep Multi-task Learning with Label Con-
straint: DMTL_LC

Figure 1 presents the proposed approach for transferring
a pre-trained DCNN network that consists of Vso layers (up-
per part) on a target DCNN to be trained to a target dataset
(lower part). Starting with the DCNN trained on the source
domain, the first H layers are copied to the target DCNN
and fine-tuned on the target dataset. The remaining R lay-
ers are completely removed or randomly initialized; conse-
quently, H+R ≤ Vso. Subsequently, the target network can
be extended with E ≥ 0 fully-connected layers. Finally, the
target network is trained using the DMTL LC method.

The DMTL LC algorithm unifies the GO-MTL algorithm
[11] in the target DCNN by using and extending the two-
sided neural network proposed in [27] as follows: i) The
two-sided neural network is placed on the top of the Vta-
th fully-connected layer (where Vta = H + R + E is the
number of layers before the two-sided network), instead of
using it as a standalone network that takes as input hand-
crafted or DCNN-based features. ii) The two-sided network
is extended with a new label-based constraint in order to
incorporate statistical information of pairwise correlations



between concepts that we can acquire from the ground-truth
annotation.
Specifically, the upper side of the target DCNN in Fig. 1,

contains a fully-connected layer FCL that takes as input
the output of the Vta-th layer. FCL consists of k neurons,
each representing one latent task. The parameter matrix
L ∈ Rd×k of this layer constitutes a shared knowledge basis
for all task models Tta. The concept related to each task t
is represented by a semantic descriptor z(t) ∈ {0, 1}1×Tta ,
which is a binary vector of length Tta that has zeros in every
position except for position t. The lower side of the target
DCNN contains a fully-connected layer FCS that consists
of k neurons and takes as input the semantic descriptor z(t).
Each row of the parameter matrix S ∈ RTta×k of this layer
contains a task-specific weight vector of the coefficients of
the linear combination with the shared basis L. This linear
combination indicates for each concept which latent tasks
describe it. The label-based constraint is placed on the top
of the task-specific layer FCS . The network predicts a single
output, which is equal to ŷ(t) = (y(Vta)L)(z(t)S)T, where

y(Vta) is the output of the Vta layer. The higher the output,
the more likely that the concept learned w.r.t. task t is
depicted in the input keyframe.
The above problem can be formulated by two separate

objective functions:

min
(L,S,f∈F )

1
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where ŷ
(t)
i = (y

(v)
i L)(z(t)S)T is the prediction w.r.t task t,

and y
(v)
i = α(W (v)y

(v−1)
i + b(v)) is the output of the v-th

layer, with α referring to the layer’s activation functions.
E.g., α(x) = max(0, x) for the ReLU function.
In the above equation L refers to the loss function cal-

culated between the prediction ŷ
(t)
i and ground-truth anno-

tation y
(t)
i . f (v) = {W (v), b(v)} is the pair of the network

parameters for the v-th layer and F = {f (v)}Vta
v=1 is the set

of network parameters for the first Vta layers.
The second objective function that is placed on the top of

the task-specific layer FCS can be formulated as follows:

min
S

β

(
1

Tta
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The role of this objective function is to approximate the
correlation matrix Φ ∈ [−1, 1]Tta×Tta . Each position of this
matrix corresponds to the ϕ-correlation coefficient between
two concepts regarding two different tasks t and t′, calcu-
lated from the ground-truth annotation of the training set.
Consequently, ϕ(t) ∈ [−1, 1]1×Tta refers to the t’th row of
Φ that contains the correlations of task t with all the other
tasks. ϕ̂(t) ∈ R1×Tta , where ϕ̂(t) = (z(t)S)CT, is the net-
work’s prediction for this row. Finally, C ∈ RTta×k is the
weight matrix to train for approximating the correlation ma-
trix. To train C, back propagation can be performed by the
loss L between ϕ̂(t) and ϕ(t).
We use the sigmoid cross entropy loss given by the follow-

ing equation: L = ϕlog(σ(ϕ̂))+(1−ϕ)log(1−σ(ϕ̂)), where
σ(.) refers to the sigmoid function σ(x) = 1/(1 + exp(−x)).
We scale the target vector ϕ in [0,1] in order to deal with
the negative values.
This second objective function takes the form of a con-

straint over the task-specific parameters S of the network.

Specifically, the rows of the correlation matrix Φ of two cor-
related concepts will be similar and we want the correspond-
ing rows of S to be similar, too. During training, this second
loss (Eq. 2) gets added to the total loss of the network (Eq. 1)
with a discount weight β. At inference time, this auxiliary
constraint is discarded.

4. EXPERIMENTS

4.1 Dataset and Experimental Setup
Our experiments were performed on the TRECVID 2013

SIN dataset [20], which consists of approximately 800 and
200 hours of internet archive videos for training and testing,
respectively. The training set is partially annotated and
highly imbalanced; approximately 100K positive keyframes
are available for the 60 TRECVID SIN concepts, which is
insufficient for training a DCNN from scratch. In our exper-
iments, we used the 8-layer AlexNet [10] that was trained
on 1000 ImageNet categories [21] as the source DCNN, and
fine-tuned it on the 60 TRECVID SIN concepts. We evalu-
ated all the methods on the test set using the subset of 38
concepts that were also evaluated as part of the TRECVID
2013 SIN task [20]. The video indexing problem was ex-
amined; that is, given a concept, we measure how well the
top retrieved video shots for this concept truly relate to it.
We analyze our results in terms of mean extended inferred
average precision (MXinfAP) [28], which is an approxima-
tion of the mean average precision suitable for the partial
ground-truth that accompanies the TRECVID dataset [20].

A first set of experiments was ran, where we examined
different approaches of using the pre-trained AlexNet [10]
to fine-tune a target-DCNN towards the 60 TRECVID SIN
concepts [20]: i) The baseline approach (Fig. 1: H=7, R =
E=0), that copies the first 7 layers [4, 29, 8]. ii) The ex-
tension approach (Fig. 1: H=7, R=0, E=1), that copies the
first 7 layers and extends the network by one more layer [23,
15, 18]. iii) The re-initialization approach (Fig. 1: H=6,
R=1, E=0), that copies the first 6 layers and randomly ini-
tializes the 7th layer [29]. For each approach we evaluated
a) the typical transfer learning method (Default-TL) that
replaces the classification layer of AlexNet [10] with a new
60-dimensional layer; b) the proposed DMTL LC method
that uses a two-sided network and considers concept corre-
lations. The H layers, in all cases, were copied and fine-tuned
towards the target dataset. To train the proposed method,
for each concept, a training set was assembled that included
all positive annotated training examples for the given con-
cept, and negatives to a maximum of 15:1 ratio. For the
Default-TL method we used the positive examples for each
concept following an one-vs-all strategy. Subsequently, we
applied each of the fine-tuned networks on the TRECVID
keyframes and we evaluated the direct output of each net-
work that corresponds to the class label prediction for 60
categories (Table 1).

We also compared (Table 2) the proposed method with
the following ones: i) Single-task learning (STL) using a)
Logistic regression (LR), b) LSVM and c) kernel SVM with
radial kernel (KSVM). ii) MTL using: a) AMTL [25], b)
CMTL [31] and c) the two-sided neural network instanti-
ated with the GO-MTL algorithm [27]. We refer to the
latter method as 2S-NN. STL refers to the typical approach
of training one classifier e.g., SVMs, per concept, with fea-
tures extracted from one or more layers of DCNNs [13, 4],



Table 1: MXinfAP (%) for 38 concepts, for differ-
ent fine-tuning processes of the pre-trained 8-layer
AlexNet [10] towards the 60 TRECVID SIN con-
cepts [20]: i) The baseline [4, 29, 8]. ii) The ex-
tension [23, 15, 18]. iii) The re-initialization [29].
For each approach we evaluate a) the typical trans-
fer learning method (Default-TL) that replaces
the classification layer of AlexNet [10] with a
new 60-dimensional layer; b) the proposed DMTL,
DMTL LC methods that use a two-sided network.
The H AlexNet layers, in all cases, are copied and
fine-tuned towards the target dataset.
fine-tuning
process

(i) Baseline
[4, 29, 8]

(ii) Extension
[23, 15, 18]

(iii) Re-initia-
lization [29]

(a) (b) (c) (d) (e) (f)

fine-tuning
parameters

#Neurons for the
extension layer:

#Neurons for
the re-initia-
lization layer

1096 2048 4096 1096 2048
DefaultTL-
Softmax

16.76 16.22 15.53 14.79 16.24 16.68

DefaultTL-
Hinge

13.26 19.91 19.89 18.76 19.20 15.30

Proposed-
DMTL

12.71 15.82 14.89 19.93 18.39 19.47

Proposed-
DMTL LC

15.78 20.13 22.60 20.84 22.54 21.47

instead of performing the final class label prediction directly,
using a softmax/hinge loss layer [22, 10]. To train the com-
pared methods, we applied the pre-trained AlexNet on the
TRECVID keyframes and we used as a feature the network’s
last fully-connected layer (fc8). Subsequently, we used the
same training set of positive/negative examples as described
above.
Regarding the proposed method, the value of k was set

to 157 and the regularization parameter β in Eq. (2) was
set to 0.3. These parameters are expected to depend on
the dimensionality of the feature space and the number of
examples, and according to preliminary experiments seem
to work well for the employed dataset. The hinge loss was
used in Eq. (1) and a ReLU function was placed on the top of
S to encourage sparse models. We used stochastic gradient
descent (SGD) with 0.9 momentum and cross-validated the
learning rate between 10−5 and 10−2 by a multiplicative
step-size 100.5. The Caffe software [9] was used for training
the DCNN networks on a Tesla K40 GPU. The LibLINEAR
library [7] was used as the source of learning LSVM and
LR models and the LibSVM [3] for learning KSVMs. The
MALSAR library [32] was used for learning the CMTL [31]
and AMTL [25].

4.2 Experimental Results
Tables 1 and 2 present the results of our experiments

in terms of MXinfAP. DMTL is an intermediate version
of the proposed DMTL LC that solves the objective func-
tion of DMTL (eq. 1) without using the label constraint
of DMTL LC (eq. 2). In Table 1 we examine the best
way of using the layers of the pre-trained AlexNet by com-
paring three different fine-tuning processes. For complete-
ness, we also report how these processes affect the typi-
cal way of transferring learning that replaces the classifi-
cation layer of AlexNet with a new 60-dimensional classi-
fication layer (Default-TL). Based on these results, which

Table 2: MXinfAP (%) for 38 concepts for differ-
ent STL and MTL methods using two pre-trained
DCNNs.

Methods AlexNet

AlexNet
Default-TL
(best from
Table 1)

Direct output - 19.91

STL
e.g., [13, 4]

LR 18.57 22.34
LSVM 20.59 22.21
KSVM 18.81 21.79

MTL
AMTL [25] 20.44 22.21
CMTL [31] 18.18 22.38
2S-NN [27] 20.19 23.12
Proposed
DMTL LC

22.60 25.04

refer to the direct output of the fine-tuned networks, we can
see that the proposed DMTL LC performs better than the
Default-TL alternative independently of the utilized fine-
tuning process, with only one exception in the case of the
baseline fine-tuning. Furthermore, adding the label con-
straint (DMTL LC) further improves the DMTL method for
all of the fine-tuning processes. The proposed DMTL LC is
overall the best performing method, reaching a MXinfAP of
22.60% (Table 1: col(c)). This result is important, consid-
ering that the pre-trained AlexNet was used as the source
DCNN; by incorporating in our DMTL LC framework bet-
ter performing DCNN architectures such as GoogLeNet [26]
instead of AlexNet, further performance gains are expected.

In Table 2 we compare the proposed DMTL LC method
with different STL and MTL methods. The pre-trained
AlexNet and the best Default-TL fine-tuned network of Ta-
ble 1, i.e., Table 1: col. (b), are used as the source DC-
NNs. The proposed DMTL LC fine-tunes each of these net-
works towards the 60 TRECVID SIN concepts. To train the
other methods, the output of the last fully-connected layer
of each source DCNN was used as a feature. Regarding the
AlexNet source DCNN, the proposed DMTL LC is the best
performing method, reaching a MXinfAP of 22.60%. We
also observe that fine-tuning is a procedure that significantly
improves the precision of all the compared methods, by in-
creasing the MXinfAP, when the best Default-TL is used
as the source DCNN. As the Default-TL approach does not
consider the correlations of the concepts and the relations
across tasks, in contrast to the proposed DMTL LC, the
latter reaches the highest performance by fine-tuning once
again the former network (MXinfAP equal to 25.04%).

5. CONCLUSIONS
In this work we presented deep multi-task learning method

for video concept detection. Extensive experiments reveal
the usefulness of fine-tuning a deep network by directly learn-
ing the relations between many task models (one per con-
cept) in combination with the concept correlations that can
be captured from the ground-truth annotation.
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