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ABSTRACT

This paper is an exploratory study that deals with fractal dimensions in assessment and 
evaluation. Specifically, the study sought to determine how the tests characteristics: 
test difficulty and discrimination, may be quantified through knowledge of the fractal 
dimensions of the tests. As a by-product of the analysis, we may be able to identify 
which among the subjects in mathematics (from first year to fourth year) is found 
most difficult through analyzing and evaluating the ruggedness and irregularities of 
students’ performance. The researcher made use of fractal statistics and segmentation 
to determine the test difficulty and the mathematical capability of the students. 
Results reveal that test fractal dimensions can be used as surrogate measures of both 
test difficulty and test discrimination indices. Both traditional test characteristics 
monotonically increase and decrease with increasing or decreasing fractal dimensions. 
High fractal dimensions indicate huge variances in student performance which are 
tell-tale symptoms of uneven understanding of mathematical concepts.
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I. INTRODUCTION
Assessment has become a central issue 

in mathematics education in the new K-12 
Curriculum. It has also becomes a significant field 
of study and learning for numerous authentic 
applications in real life experiences based on 
the outcomes-based education. Over the last 
decades, the importance of assessment education 
particularly in mathematics, had received much 
attention from the Department of Education, 
mathematics education researchers, mathematics 
teachers, and in many countries (Fan, 2006). The 
assessment standards for School Mathematics of 

the National Council of Teachers of Mathematics 
(NCTM) describes assessment as the process of 
gathering evidence about students’ knowledge, 
skills, disposition towards Mathematics and of 
making inferences from that evidence for variety 
of purposes. The main purpose of mathematical 
education is to enable individual to apply 
mathematics in real-world problems (nature, 
society, culture). This is to help students to become 
mathematically literate to prepare learners for 
their future and occupational life. In 2005, Gallup 
conducted a poll that asked students to name 
the school subject that they considered to be the 
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most difficult and not surprisingly, mathematics 
came out in the difficulty chart. Devlin (1994) 
states that mathematics is a science of patterns 
and a scientific discipline. In learning, learners 
must individually understand and appreciate 
mathematics as a science of numbers. This is an 
essential tool to thrive the day to day worldwide 
activities.

Research revealed that most students 
perceive mathematics as a difficult subject which 
has no meaning in their life (Countryman, 1999). 
This perception begins to develop at the primary 
years of schooling were students find the subject 
very abstract and heavily relying on concepts 
and methods but not able to deepen why those 
symbols exist. These are the realities that teachers 
fail to emphasize in the teaching and learning 
process and students fail to appreciate. This trend 
continues up to high school and even to college. 
By the time students reach to higher years, they 
have lost the interest in Mathematics. Worst of 
all, they cannot even explain some of the simple 
operations (Walle, 2001). The major purpose of 
mathematical assessment is to promote learning 
as a whole. The assessment is not the goal but 
the means to achieve those goals. The three (3) 
guiding principles which form the foundation of all 
assessment that supports effective mathematical 
education as cited by Desoete, et al (2004) are: 
(1) the content principle which means that 
assessment should reflect the mathematics that 
is most important for students to learn. (2) the 
learning principle which states that mathematics 
assessment should enhance mathematics learning 
and support good instructional practice. Learning 
mathematics must be embedded in worthwhile 
(engaging, educative, and authentic) problems 
that are part of the students’ real world (Black 
& William, 1998). Moreover, methodologies 
of teaching and its approaches must enable 
students to reveal what they know rather than 
what they do not know (Coeckroft, 1992). And 
lastly (3) the equity principle which means that 
mathematics assessment should support every 
student’s opportunity to learn the importance of 
mathematics. Lessons must be integrated to real 

experiences, explain real-life task and be practiced 
through authentic assessment. These principles 
are supported with the assessment standard in the 
NCTM for School Mathematics that emphasizes 
on the reflection of mathematical assessment to 
the needs of students on what to know and be 
able to do. Also, assessment should be learning 
opportunities for students to demonstrate what 
they know and can do mathematically. The study 
conducted by Steinberg, et al (2004) with research 
data from different levels of perspective, reveals 
that mathematics education, can- in general, be 
considered as being difficult for learner during 
the entire primary school career. Finally, from 
an educational practice point of view, the study 
conducted by Stock, et al (2006) points out that 
mathematics education is experienced as a 
difficult subject during a pupil’s entire primary 
school career. Moreover, the study reveals that 
particular mathematics topics seem to be more 
difficult than others, and that some curriculum 
topics are experienced to be difficult in all 
primary and secondary learners. Furthermore, 
the study indicated that the choice for a specific 
CALP (commercially available learning packages) 
could matter to attain specific learning goals 
(Dowker, 2005). Building on the overview of the 
different experiences in relation to mathematics 
curriculum topics and the specific materials 
and strategies of teaching, teachers can start to 
develop specific interventions to circumvent the 
occurrence of mathematics learning difficulties or 
to compensate for some weaknesses in learning 
the mathematical concepts and skills.

From the nature of the subject up to the 
level of its difficulty matters a lot in the learning 
process. Majority of the learners have negative 
connotation towards the subject and often as the 
most difficult subject due to low grade attainment 
per grading. Through this study, the researcher 
would like to unveil the ruggedness, self-
similarities, and scale in variance of test scores in 
mathematics to identify which among the subject 
in secondary level is the most difficult. This is to 
help learners uplift their inclination and profound 
interest in mathematics. This is also, for teachers 
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to be guided on how to modify teaching strategies 
and its integration to real life tasks for further 
appreciation and higher and logical thinking. 

II.  CONCEPTUAL FRAMEWORK
Classical assessment and evaluation 

theory define “item difficulty index” and “item 
discrimination index” as follows:  A test item 
difficulty index is the proportion of students 
obtaining the correct answer for that item to the 
total number of responses for that item:

1….P = R/T , where
R is the number of correct responses and T is 
the total number
of responses (i.e., correct + incorrect + blank
responses).

Hence, the higher this index value, the lower 
is the difficulty, and the greater the difficulty 
of an item, the lower is its index. This index is 
counter-intuitive since it actually measures the 
“item easiness” rather than its difficulty. For the 
purposes of this study, we propose to define “item 
difficulty” in the following manner:

2…. Qj  = 1 – Pj,         j = 1,2,…,T

where T is the number of items, is now a 
monotone function of the difficulty level. The 
test difficulty, as a whole, is defined as the 
average of the item difficulties:

3…. Test Q =            .

Item discrimination index, on the other 
hand, is the item’s ability to distinguish between 
those who know and those who do not know the 
answer. The traditional approach is as follows: 
Arrange the scores of the students in the test from 
highest to lowest. Obtain the upper 27% and the 
lowest 27% student scores. Denote  by PU the un-
modified difficulty index of the upper 27%  for the 
test item and by PL the corresponding difficulty 
index for the lowest 27%. The item discrimination 
index is then:

4.  Dj =  PUj - PLj  , j = 1,2,…T

The test discrimination ability is defined as 
the average of all the item discrimination indices:

5. Test Discrimination = 

The test characteristics (2) and (5) are 
proposed to be replaced by the concept of a fractal 
dimension of the test.

 
Fractals and Statistical Fractals. Fractals 

in its nature are mathematically inspired by 
Benoit Mandelbrot (1967; 1982), a well-known 
mathematician who introduced this body of 
knowledge to advanced mathematics. Fractals 
could explain myriad phenomenon and natural 
art around the world. It led people to understand 
that beyond chaos, there is order, beyond 
disorder, there is pattern and beyond minute 
thing, the whole thing could be represented. Thus, 
beyond irregularities of learning and human’s 
understanding, fractals can give expounded 
explanations and reliable basis of such claim.

Additionally, with the method of assessment 
among the diverse learners, the researcher found 
out that their mathematical performances are not 
normally distributed. To analyze thoroughly the 
performance of the respondents, test results from 
different discipline of mathematics were utilized. 
Specifically, the data were from Mathematics 1 
to Mathematics 4 of the school year 2012- 2013 
of University of San Jose Recoletos. Mathematics 
1 which embraced the K-12 (Spiral) Curriculum 
includes number concepts, number sense, 
measurement, algebra, and introduction to 
statistics. Mathematics 2 content focused on 
Intermediate Algebra. Mathematics 3 dealt with 
Geometry and lastly, Mathematics 4 was about 
Advanced College Algebra and Trigonometry. The 
test results of these subjects were constructed 
based on the specified competencies of the said 
curriculum and subject standards as mandated by 
the Department of Education.
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Subjects Number of 
Students

Number of 
Items

Highest 
Score Lowest Score

MATH 1 390 100 98           5
MATH 2 385 100 100         12
MATH 3 361 90 88         11
MATH 4 353 100 96         12

Table 1. Test	Scores	Data.

Table 2.  Traditional	Test	Characteristics.

Table 1 above depicts the data utilized in the study including the highest and lowest scores of 
each subject.  Table 2, on the other hand, gives the traditional test characteristics using the formulas 
indicated above:

III.  METHODOLOGY
The test scores of the students across the 

various year levels were analyzed to determine 
if these can be appropriately modeled by fractal 
distributions or by the usual normal distribution. 
To this end, the histograms for the scores at 
each year level were obtained and subsequently 
subjected to a Kolmogorov-Smirnov test for 
normality. 

For test scores that obey a non-normal 
distribution, a power law distribution or fractal 
distribution were fitted in accordance with 
the proposal of Padua et  al. (2012) as follows: 
Mathematically, a monofractal distribution is 
described by the power-law probability density:

(1) f(x;λ) = (λ-1)/Ө (x/Ө)-λ , λ > 1, x ≥ Ө

It is shown in Padua, et.al (2013) that the 
maximum likelihood estimators of λ and Ө are 
respectively.

(2)	  λ = 1+ n (                     ) )-1

(3) Ө = min { x1, x2,…, xn }. 

Subjects No. of Students No. of Items Test Difficulty Test Discrimination
Math 1 390 100 0.71 0.92
Math 2 385 100 0.65 0.87
Math 3 361 90 0.69 0.90
Math 4 353 100 0.62 0.85

A practical approach suggested in estimating 
λ is to plot log f(x) versus log(x/θ)  and to use the 
slope of the line as estimators of λ. This could be 
heuristically argued by taking the logarithm of 
both sides of (1):

(4) log f(x)  =  log  ( (λ-1)/Ө) – λ log (x/θ ).

Moreover, the indicators of monofractality 
as presented by Padua, et.al (2013) fit to a fractal 
distribution f(x) to the quantile of the distribution 
G(.). 

Let (x(a))be the αth  quantile of G(.):

(5)… G (x(a)) = α

At each of αth quantile of G(.), we fit a power 
law distribution F(.) such that:

(6)… G (x(a)) = F(x(a)) = α,

or equivalently, obtain:
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Figure 1. Histogram,	Math	1. Figure 2. Histogram,	Math	2.

(7)…λ (α) = 1- log〖(1-a)〗/(log ( x_α/Ө)), for 
all α ϵ (0,1).

Denote the empirical quantiles by X(αk)  
where αk = k/n , 1≤ k≤ n-1. An estimate of λ can 
be obtained from (7):

(8)… λ =                              .

The estimated fractal dimensions for the tests 

at various year levels were then correlated with 
the test difficulty the test discrimination indices 
by the usual regression analysis.

IV.  RESULTS AND DISCUSSION
Figures 1-4 illustrate the histograms of the 

test scores for mathematics in four year levels. 
The histograms appear to be non-normal. This 
observation is formalized through a Kolmogorov-
Smirnov test for normality.

Figure 3. Histogram,	Math	3. Figure 4. Histogram,	Math	4.

Figures 5-8 show the formal tests for normality conducted. Significant deviations from the 
45-degree lines are noted which signify deviations from normality.
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Figure 5. Normality	Test,	Math	1.

Figure 7.	Normality	Test,	Math	3.

Figure 9.	Histogram	of	the	Computed	Fractal	Dimensions

(a) (b)

Figure 6. Normality	Test,	Math	2.

Figure 8. Normality	Test,	Math	4.

Fractal Model and Analysis of Data
Fractal Dimensions. Figures 9 (a-d) show the 

histograms of the computed fractal dimensions 
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for the tests. All histograms display exponential 
patterns consistent with the theory on fractal 
dimensions by Padua et al. (2012).
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Table 3. Descriptive	Statistics	of	Fractal	Dimensions	(λ).

Figure 10. Graph	 of	 Test	 Difficulty	 versus	 Fractal	
Dimension.

Table 4. Relationship	between	Test	Difficulty	and	Fractal	
Dimension.

(c) (d)

Table 2 below shows the descriptive statistics pertinent to the fractal dimensions of the mathematics 
subjects being compared.

Table 2 shows that the subject with the highest 
average lambda is Math 1 while the subject with 
the lowest fractal dimension is Math 4.
Relating Test Characteristics and Fractal 
Dimensions

We proceeded to find appropriate 
relationships between the computed fractal 

              Variables             N              Mean           SE Mean           StDev       Minimum          Median

lambda 1            390          1.6492           0.0262            0.4958           1.0185              1.5525

lambda 2             385          1.5789           0.0235            0.4597           1.0546              1.4519

lambda 3             361          1.6063           0.0252            0.4729           1.0546              1.4889

lambda 4             353          1.3834           0.0171            0.3373           1.0034              1.2854

dimensions of the tests and the tests characteristics 
of “difficulty” and “discrimination”. The results 
are summarized in Figures 10 and 11 as well as 
in Tables 4 and 5.

The regression equation is
      Test Dif = 0.185 + 0.310 Lambda

Predictor        Coef     SE Coef          T        P
Constant       0.1849      0.1597       1.16    0.367
Lambda         0.3105      0.1025       3.03    0.094

S = 0.02089     R-Sq = 82.1%     R-Sq(adj) = 73.1%

E t u l l e ,  H .  N .  a n d  G a l i g a o ,  R .  P. 51



Figure 11. Graph	 of	 Test	 Discrimination	 versus	 Fractal	
Dimensions.

Table 5.	Relationship	between	Fractal	Dimension	and	Test	
Discrimination.

Table 6. Ranking	of	Fractal	Dimension	and	Difficulty	Index

The regression equation is
Test Disc. = 0.521 + 0.234 Lambda

Predictor        Coef           SE Coef          T           P
Constant       0.5213       0.1354         3.85    0.061
Lambda        0.23395     0.08692       2.69    0.115

s = 0.01771     r-sq = 78.4%     r-sq(adj) = 67.5%

The mathematics tests across the various 
year levels displayed high fractal dimensions. 
This means that students’ performance in all 
these tests is quite erratic. The highest fractal 
dimension was noted in Math 1 implying that it is 
at this year level that huge variances in students’ 
mathematics performance can be noted.

There appears to be a perfect matching 
between subjects found difficult (subjects with 
high difficulty indices) and subjects with high 
fractal dimensions. Thus, the table below shows 
this correspondence:

A significant linear relationship exists 
between fractal dimensions and difficulty indices. 
Empirical model obtained states: Test Dif = 0.185 
+ 0.310 Lambda with an R-squared value of 82%. 
The relationship indicates that higher fractal 
dimensions imply higher test difficulty.

A similar linear relationship exists between 
fractal dimensions and test discrimination. The 
empirical model states: Test Disc. = 0.521 + 
0.234 Lambda. The fractal dimension of the tests 
explains about 72% of the variances in the test 
discrimination.

These results have interesting implications 
in measurement and evaluation. First, high 
variances in test performance indicate that 
the test instruments used have high difficulty 
levels.  This need not necessarily imply that 
the subjects themselves are difficult. Second, 
high difficulty indices correspondingly induce 
high discrimination indices, both of which are 
summarized in terms of high fractal dimensions.

V.  CONCLUSION
Test fractal dimensions can be used as 

surrogate measures of both test difficulty and 
test discrimination indices. Both traditional 
test characteristics monotonically increase and 
decrease with increasing or decreasing fractal 
dimensions. High fractal dimensions indicate 
huge variances in student performance which are 
tell-tale symptoms of uneven understanding of 
mathematical concepts.

Subject Fractal 
Dimension Rank Difficulty 

Index Rank

Math 1 1.6492 1 0.71 1

Math 2 1.5789 3 0.65 3

Math 3 1.6063 2 0.69 2

Math 4 1.3834 4 0.62 4
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