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ABSTRACT

Nonlinear filtering is a major problem in statistical signal processing
applications and numerous techniques have been proposed in the lit-
erature. Since the seminal work that led to the Kalman filter to the
more advanced particle filters, the goal has been twofold: to design
algorithms that can provide accurate filtering solutions in general
systems and, importantly, to reduce their complexity. If Gaussianity
can be assumed, the family of sigma-point KFs is a powerful tool
that provide competitive results. It is known that the quadrature KF
provides the best performance among the family, although its com-
plexity grows exponentially on the state dimension. This article de-
tails the asymptotic complexity of the legacy method and discusses
strategies to alleviate this cost, thus making quadrature-based filter-
ing a real alternative in high-dimensional Gaussian problems.

Index Terms— Quadrature Kalman filters, sigma-point fil-
ters, complexity reduction, marginalization, sparse grids, high-
dimensional.

1. INTRODUCTION

The Bayesian filtering problem involves the recursive estimation of
time-varying unknown states of a system using the incoming flow of
information along some prior statistical knowledge about the varia-
tions of such states. A discrete state-space model is expressed as

xk = fk−1(xk−1) + vk ;yk = hk(xk) + nk , (1)

where xk ∈ Rnx is the hidden state of the system at time k, fk−1(·)
is a known, possibly nonlinear, function of the states; and vk is re-
ferred to as process noise; yk ∈ Rnz is the measurement at time
k, hk(·) is a known, possibly nonlinear, function, which relates
measurements with states; and nk is referred to as measurement
noise, independent of vk. The optimal Bayesian filtering solution
is given by the marginal distribution p(xk|y1:k), which gathers all
the information about the system contained in the available obser-
vations, with y1:k = {y1, . . . ,yk}. The Kalman filter (KF) pro-
vides the closed form solution to the optimal filtering problem in
linear/Gaussian systems, assumptions that not always hold, reason
why suboptimal techniques have to be used. A plethora of alterna-
tives have been proposed to solve the nonlinear estimation problem,
among them, the Extended KF (EKF) and the family of Sigma–Point
KFs (SPKF) [1] within the Gaussian framework, and the family of
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Sequential Monte Carlo (SMC) methods (a.k.a. Particle Filters (PF))
[2] for arbitrary noise distributions.

In the nonlinear Gaussian context, SPKF are usually preferred
over standard SMC methods because of its simplicity and good per-
formance. Considering similar computational complexity (i.e., num-
ber of sigma-points in the SPKF equal to the number of particles in
the PF), SPKF have been shown to provide better performances un-
der unimodal distributions [3, 4]. The main filters of the SPKF fam-
ily are: the Unscented KF (UKF), the Cubature KF (CKF) and the
Quadrature KF (QKF) [1]. Among them, the QKF is the one provid-
ing the best performances but the highest computational complexity.
Such complexity is directly related to the number of deterministic
sigma-points used in the filter. While the number of sigma-points
grows linearly with the dimension of the state for the UKF and CKF,
it grows exponentially for the QKF. This implies that the better per-
formance comes at expenses of an exponential computational com-
plexity increase. Therefore, one of the ultimate challenges within
the SPKF family of filters is the design of efficient, low-complexity,
QKF-based algorithms.

The main goal of the paper is first to analyze the computational
complexity of the square-root version of the QKF, and then to detail
three computational complexity reduction strategies for such filter.
Notice that all of them target the reduction of the number of sigma-
points without compromising the QKF performance. Namely, these
approaches are i) partitioning of the state-space, ii) marginalization
of linear substructures, and iii) generation of efficient quadrature
sigma-points (sparse grids).

2. THE SQUARE-ROOT QUADRATURE KALMAN FILTER

Gaussian filters are of special interest by their broad applicability and
their good balance between performance (i.e., estimation accuracy)
and the required computational load. The optimal Bayesian recur-
sive solution to the nonlinear filtering problem requires evaluating
integrals that do not have analytical solution in the general case. A
way to solve the problem is resorting to numerical methods.

Most numerical integration techniques consist of approximating
the integrand by a polynomial in a region and then integrating the
polynomial exactly. For instance, the Gauss-Hermite quadrature rule
{wj , xj}Lj=1 is a form of Gaussian quadrature for approximating the

value of integrals of type
∫ +∞
−∞ e−x
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f(x)dx, such that∫ +∞

−∞
e−x

2

f(x)dx ≈
L∑
i=1

wif(xi), (2)

where L is the number of sample points used. The xi are the roots
of the physicists’ version of the Hermite polynomial HL(x) (i =



Algorithm 1 Generation of Sigma–Points and weights for the mul-
tidimensional Gauss–Hermite quadrature rule (full grid).

1: Set the number of points per dimension α, and L = αdim(x).

2: Set Ji,i+1 =
√

i
2

, where i = 1, ..., (α− 1).
3: Compute λi, the eigenvalues of J.
4: Set ξi =

√
2λi.

5: Set ωi = (νi)
2
1, where (νi)1 is the first element of the i–th normalized

eigenvector of J.
6: if dim(x) > 1 then
7: Set S1,: = ξi and$1,: = ωi
8: for m = 2 to dim(x) do
9: Set P1:m−1,: = S ⊗ 11×α

10: Set Pm,: = 11×α ⊗ Sm−1,:

11: Set Ω1:m−1,: =$ ⊗ 11×α
12: Set Ωm,: = 11×α ⊗$m−1,:

13: Set S = P and$ = Ω
14: end for
15: ξi = P :,i, where i = 1, ..., L

16: ωi =
∏dim(x)
l=1 Ωl,i

17: end if

1, 2, ..., L), defined as HL(x) = (−1)Lex
2 dL

dxL
e−x

2

, and the asso-

ciated weights wi are given by wi = 2L−1L!
√
π

L2[HL−1(xi)]
2 .

An algorithm for generating the quadrature points and their cor-
responding weights for unidimensional problems was proposed in
[5], and Algorithm 1 extends it to the multidimensional case, where
⊗ denotes the tensor product. By construction, the number of sigma
points growth exponentially with the dimension of the state-space
xk. Assuming α points per dimension, the Gauss-Hermite quadra-
ture rule generates L = αnx sigma points. This numerical inte-
gration method, when used in the SPKF framework, results in the
quadrature Kalman filter (QKF) algorithm [6].

In the nonlinear filtering context, errors are likely to be intro-
duced in the system from various sources (round-off errors, errors of
nonlinear functional evaluations when they are computed in a system
with limited arithmetic precision, etc). Those errors tend to accumu-
late over time, causing the filter to diverge. In order to improve the
numerical accuracy and preservation of the covariance matrix sym-
metry (resulting in improved numerical stability), [7] proposed the
square–root version of the algorithm, where the covariance matrix
Σx is decomposed into Σx = SxSTx , and it is Sx what is passed to
the next time step. The resulting method, described in Algorithm 2,
is used along this paper as a baseline for the complexity analysis.

3. ON THE SR-QKF COMPUTATIONAL COMPLEXITY

Real–time applications use to run in embedded digital processors
with limited computational, storage and power consumption re-
sources. For that reason, it is important to analyze an algorithm to
determine the amount of resources (such as time and storage) nec-
essary to execute it. In this Section, we will be concerned only with
asymptotic time complexity, O(·). The meaning of this notation
is the following: a function p(z) is O(g(z)) if and only if there
exist a real, positive constant K and a positive integer z0 such that
p(z) ≤ Kg(z), ∀z ≥ z0. The time complexity of an algorithm can
be viewed as the number of basic operations it performs.

Table 1 analyzes the time complexity of a single iteration of
Algorithm 2. We assumed that the dimension of the state-space is
higher than the observation state (so nx > ny), and:

• noises covariances are constant and thus not updated, i.e.

Algorithm 2 Square–root sigma-point Kalman filter (SR-SPKF).

Require: y, x̂0, Σx,0 = Sx,0|0ST
x,0|0, Σv,k , Σn,k .

Initialization:
1: Define sigma–points and weights {ξi, ωi}i=1,...,L by using Algorithm

1, Algorithm 3 or any other rule.
2: Set W = diag(

√
ωi)

Tracking:
3: for k = 1 to∞ do

Time update:
4: Evaluate the sigma points:

xi,k−1|k−1 = Sx,k−1|k−1ξi + x̂k−1|k−1, i = 1, ..., L.
5: Evaluate the propagated sigma points:

x̃i,k|k−1 = fk(xi,k−1|k−1), i = 1, ..., L.
6: Estimate the predicted state:

x̂k|k−1 =

L∑
i=1

ωix̃i,k|k−1.

7: Estimate the square–root of the predicted error covariance:
Sx,k|k−1 = Tria

([
X̃k|k−1 SΣv,k

])
, where:

SΣv,k
is a square–root factor of Σv,k such that

Σv,k = SΣv,k
STΣv,k

, and

X̃k|k−1 =
[
x̃1,k|k−1 − x̂k|k−1 · · · x̃L,k|k−1 − x̂k|k−1

]
W.

Measurement update:
8: Evaluate the sigma points:

xi,k|k−1 = Sx,k|k−1ξi + x̂k|k−1, i = 1, ..., L.
9: Evaluate the propagated sigma points:

ỹi,k|k−1 = hk(xi,k|k−1), i = 1, ..., L.
10: Estimate the predicted measurement:

ŷk|k−1 =

L∑
i=1

ωiỹi,k|k−1.

11: Estimate the square–root factor of the innovation covariance matrix:
Sy,k|k−1 = Tria

([
Yk|k−1 SΣn,k

])
, where:

Yk|k−1 =
[
ỹ1,k|k−1 − ŷk|k−1 · · · ỹL,k|k−1 − ŷk|k−1

]
W.

12: Estimate the cross–covariance matrix
Σxy,k|k−1 = Xk|k−1YTk|k−1

, where:

Xk|k−1 =
[
x1,k|k−1 − x̂k|k−1 · · · xL,k|k−1 − x̂k|k−1

]
W.

13: Estimate the Kalman gain
K =

(
Σx,k|k−1/S

T
x,k|k−1

)
/Sx,k|k−1.

14: Estimate the updated state
x̂k|k = x̂k|k−1 + K

(
yk − ŷk|k−1

)
.

15: Estimate the square–root factor of the corresponding error covari-
ance:

Sx,k|k = Tria
([
Xk|k−1 −KYk|k−1 KSΣn,k

])
.

16: end for

Σv,k = Σv,0 and Σn,k = Σn,0,

• the multiplication of matrices of size n1 × n2 and n2 × n3

costs O(n1n2n3), and

• the triangularization operator Tria(A), where A ∈ Rn1×n2 ,
n1 < n2, is implemented with the thin QR decomposition [8,
§5.2], which complexity is O(n2n

2
1).

No assumptions were made regarding the evaluation cost for
functions f(·) and h(·), although it is well-known that nonlinear
functions tend to be computationally expensive, and often require
look–up tables. We left those costs generic, denoting them as Cf
and Ch respectively. Inspecting Table 1, it seems clear that param-
eter L = αnx dominates the SR-QKF complexity and therefore,
reducing the number of generated sigma-points has a direct impact
in reducing the computational complexity of the overall filter.



Computation Operation Size Cost
Sx,k−1|k−1ξi + x̂k−1|k−1 L matrix–vector products L× nx × nx O(Ln2

x)

f(xi,k−1|k−1) L evaluations of f(·) L O(LCf )∑L
i=1 ωix̃i,k|k−1 scalar–vector product and sum L× nx O(Lnx)

Tria
([
X̃k|k−1 SΣv,k

])
Thin QR nx × (L+ nx) O

(
(L+ nx)n2

x

)
Sx,k|k−1ξi + x̂k|k−1 L matrix–vector products L× nx × nx O(Ln2

x)

h(xi,k|k−1) L evaluations of h(·) L O(LCh)∑L
i=1 ωiỹi,k|k−1 scalar–vector product and sum L× ny O(Lny)

Tria
([
Yk|k−1 SΣn,k

])
Thin QR ny × (L+ ny) O

(
(L+ ny)n2

y

)
Xk|k−1YTk|k−1

matrix–matrix product nx × L× ny O(Lnxny)(
Σx,k|k−1/S

T
x,k|k−1

)
/Sx,k|k−1 2 backward substitutions nx × nx O(2n2

x)

x̂k|k−1 + K
(
yk − ŷk|k−1

)
matrix–vector product nx × ny O(nxny)

Tria
([
Xk|k−1 −KYk|k−1 KSΣn,k

])
Thin QR nx × (L+ nx) O

(
(L+ nx)n2

x

)
matrix–matrix product KYk|k−1 nx × ny × L O (Lnxny)

matrix–matrix product KSΣn,k
nx × ny × ny O

(
nxn2

y

)
Table 1: Asymptotic time complexity analysis of the main operations involved in the square–root sigma–point Kalman filter (Algorithm 2).

4. COMPLEXITY REDUCTION FOR
QUADRATURE-BASED FILTERING

This section presents state-of-the-art approaches for the reduction of
the inherent complexity in quadrature-based filters. The Multiple
QKF and the Marginalized QKF approaches reduce the dimension-
ality of the problem by exploiting possible substructures in the state-
space, while the sparse QKF reduces the total number of points of
the quadrature rule, L, while maintaining accuracy.

4.1. Multiple QKF

The Multiple QKF approach [9] exploits the problem substructures
(specifically, states with low or null cross-correlation) to reduce the
number of required sigma points. The state space is partitioned into
S subspaces, and the complexity reduction is based on grouping the
states which are highly correlated and splitting the uncorrelated ones
(or with low correlation) into different subspaces. In such a way, a
bank of QKFs is in charge of filtering the resulting, low-dimensional,
S subspaces thus reducing the number of sigma-points per filter.
The different filters are indeed interacting since, in general, mea-
surements are typically dependent on the entire state vector and thus
some sort of information exchanges has to take place.

Whereas the number of points used by a QKF is L = αnx , the
total number of points generated by the Multiple QKF is LM =∑S
s=1 α

n
(s)
x , with n(s)

x being the dimension of each subspace. It

was proved that LM is lower than L if α > S
1

S−1 for S ≥ 2 and
α > 2 [9]. These conditions are general accomplished since the
number of points per dimensionα is typically set to 3 or 5 in practice,
and at least two partitions are done in the Multiple QKF and thus
S ≥ 2. This result proves that the MQKF is always reducing the
number of generated quadrature points, and thus the computational
complexity of the overall filter. Accuracy degradation was shown to
be moderated in problems with low cross-correlation between states.

4.2. Marginalized QKF

Another way of alleviating the dimensionality problem and improv-
ing the overall filter performance is to marginalize linear states, that

is, linear substructures in the general nonlinear dynamic system.
The basic idea is that a Kalman filter (KF) can optimally deal with
these states, while reducing the dimension of the state-space that the
sigma–point Kalman filter (SPKF) has to explore. The procedure
was proposed in [10] in the context of particle filtering. The algo-
rithm was termed marginalized particle filter (MPF), although the
same concept is also referred to as Rao-Blackwellized PF (RBPF) in
other works [11, 2]. The latter nomenclature is because marginal-
ization resorts to a general result referred to as the Rao-Blackwell
theorem [12], which shows that the performance of an estimator can
be improved by using information about conditional probabilities.

The so-called Marginalized SPKF is able to reduce the compu-
tational complexity of legacy SPKF techniques by a factor that de-
pends on the dimension of the linear subspace. The Marginalized
SPKF has key differences to the MPF, mainly due to the way the
numerical integrals are approximated through deterministic and ran-
dom points, respectively.

In the MPF, the nonlinear subspace is estimated using a PF
where each particle has a dedicated KF to cope with the linear
states. Indeed, linear and nonlinear subspaces are conditionally
dependent and its interaction should be handled with special care.
The way the MPF propagates the nonlinear state estimates uncer-
tainty to the linear subspace is via the particle approximation, which
characterizes the posterior distribution. This can be done because
each particle follows a trajectory throughout the whole PF operation,
thus each KF operates in accordance with a given trajectory, that is,
always associated to the same particle. The resampling stage of the
PF does not cause any problem because the KFs are replicated or
deleted together with the corresponding particles.

In contrast, for the Marginalized SPKF, the key point is to notice
that the sigma-points are reset in each SPKF prediction and update
step, therefore the concept of trajectory of a given sigma-point does
not exist. In this context, considering a KF for each deterministic
sigma-point is not theoretically funded and has no practical mean-
ing. This fact directly leads to the general Marginalized SPKF archi-
tecture, where a single SPKF interacts with a single KF, as opposite
to the multiple KFs used in the MPF.



Algorithm 3 Generation of Sigma–Points and weights for a multi-
dimensional sparse quadrature rule (sparse grid).

1: Set nx = dim{x} and the accuracy level L.
2: for q = L − nx to L − 1 do
3: Determine Nnx

q as defined in (3).
4: for each element i in Nnx

q do
5: Compute ξi1 , ... , ξinx

and ωi1 , ... , ωinx
as in steps 2-5 of

Algorithm 1 with L = α = ij (or with any other
suitable quadrature rule, such as Kronrod–Patterson’s).

6: Compute ξi1 ⊗ ξi2 ⊗ ...⊗ ξinx

7: for each point in ξi1 ⊗ ξi2 ⊗ ...⊗ ξinx
do

8: if the point is new then
9: Add it to the list of sigma points.

10: Assign a new index s to the point.
11: Calculate its weight as:

ωs = (−1)L−1−qCL−1−q
nx−1

nx∏
k=1

ωik

12: else
13: Update the old weight by:

ωs = ωs + (−1)L−1−qCL−1−q
nx−1

nx∏
k=1

ωik

14: end if
15: end for
16: end for
17: end for

4.3. Sparse QKF

The sparse grid method is a general numerical discretization tech-
nique for multidimensional integrals. This approach constructs a
multidimensional quadrature rule by a special truncation (introduced
by Smolyak) of the tensor product expansion of a one-dimensional
quadrature rule, with a notable reduction in the total number of
points while maintaining accuracy. The Smolyak rule with accuracy
level L is the one that integrates complete polynomials of total order
2L − 1 exactly.

Defining CL−1−q
nx−1 =

(
nx − 1
L − 1− q

)
as the binomial coeffi-

cient, the set of accuracy level sequences Nnx
q as

Nnx
q =

{
Nnx
q =

{
i ∈ Nnx :

∑nx
d=1 id = nx + q

}
q ≥ 0

Nnx
q = {Ø} q < 0

for any integer q in the range L − nx ≤ q ≤ L − 1 (for example,
N2

2 = {[1, 3], [2, 2], [3, 1]}), the sparse quadrature rule [13] can be
generated as shown in Algorithm 3.

Other suitable quadrature rules than the Gauss-Hermite can be
used in step 5 of Algorithm 3. A sparse grid is constructed by sum-
ming a set of product rules. A feature of Gauss-Hermite rules is that
they are not nested (i.e., a few of the points will be repeated across
several sparse grids). The Kronrod-Patterson rule extends the uni-
dimensional quadrature point set ξ`−1 by adding a new set of sym-
metric points, thus achieving that the quadrature set of each accuracy
level is a subset of the set of its successors. This feature implies a
further reduction in the total number of points. The sparse Kronrod-
Patterson quadrature Kalman filter was proposed in [14], showing
slightly better accuracy than the sparse Gauss-Hermite Quadrature
rule for the same number of points. By using Algorithm 3 in step 1
of Algorithm 2, one obtains the square-root version, with improved
numerical stability.

The number of points in sparse rules are bounded to scale poly-
nomially with nx, as O(α(logα)nx−1). For instance, the Gauss-
Hermite rule for L = 3 uses L = 2n2

x + 6nx + 1 points (see [14])

and, according to Table 1, the complexity of the sparse SR-QKF is
O(n4

x). This is a substancial saving in complexity with respect to
the SR-QKF with α = 3, which is O(n2

x3
nx), with no penalty in

numerical accuracy.
5. CONCLUSIONS

The QKF is a powerful technique to deal with nonlinear/Gaussian fil-
tering problems with competitive results compared to PF solutions.
However, its complexity grows exponentially with the dimension of
the problem. This paper detailed the asymptotic complexity of the
method and discussed various techniques aimed at reducing the com-
plexity of the QKF. More precisely, techniques based on exploiting
particular substructures in the state-space model and sparse grid ver-
sions of the quadrature rules were mentioned. It is worth noting
that these approaches are complementary and one could conceive
algorithms incorporating those enhancements simultaneously, thus
enabling the use of QKF in large dimensional systems.
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quadrature Kalman filtering,” IEEE Trans. on Sig. Proc., vol.
60, no. 12, pp. 6125–6137, December 2012.

[10] T. Schon, F. Gustafsson, and P-J. Nordlund, “Marginalized
particle filters for mixed linear/nonlinear state–space models,”
IEEE Trans. on Sig. Proc., vol. 53, no. 7, pp. 2279–2289, 2005.

[11] R. Chen and J. S. Liu, “Mixture Kalman filters,” Journal of the
Royal Stat. Soc. B, vol. 62, pp. 493–508, 2000.

[12] G. Casella and R. Berger, Statistical Inference, Duxbury Re-
source Center, June 2001.

[13] B. Jia, M. Xin, and Y. Cheng, “Sparse Gauss-Hermite quadra-
ture filter with application to spacecraft attitude estimation,” J.
of Guid., Cont., and Dyn., vol. 34, no. 2, pp. 367–379, 2011.

[14] H. Chen, X. Cheng, C. Dai, and C. Ran, “Accuracy, efficiency
and stability analysis of sparse-grid quadrature Kalman filter
in near space hypersonic vehicles,” in Proc. of IEEE/ION Pos.,
Loc. and Nav. Symp., Monterey, CA, May 2014, pp. 27–36.


