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IV. Notes on the Motion of Viscous Liquids in Channels. 
By  J. PI~OUDMAN •. 

1. -IN a recent communication to this Journal t Messrs. 
JL Deeley and Parr remark that the conditions of the 

steady flow of a viscous liquid in a parabolic channel, under 
a constant force parallel to the length of the channel, have 
not yet been ascertained. I t  is implied that the results 
might be of interest in connexion with the motion of 
glaciers. 

In the present communication the problem is solved for 
the special case in which the free surface of the liquid passes 
through the focus of the parabolic section, and also tbr a 
particular triangular section. Some remarks are also added 
in connexion with the mathematical expansions used. 

The general problem :~ for a channel of any section may 
be reduced to that of finding a function X which satisfies 

~ ~ = - 9  . . . . .  (1) ~x~ + ~j2 -, 

over the section, which vanishes over the sides of the section, 
and for which ~x /bn=O over the free surface. Here x, y 
are rectangular Cartesian coordinates in the plane of the 
section, and ~)[~)n denotes differentiation along the normal 
to the free surface. 

The velocity of the liquid, which is parallel to the length 
of the channel, is given by PX/'2~, where P is the pressure 
gradient along the channel, and ~ is the coefficient of 
viscosity. In applications, the function 

F =S~xdS, 

where the integral is taken over the area of the section, is 
required. 

Particular Parabolic Section. 

2. For convenience, take the length of the latus-rectum of 
the parabola to be 47r ~. Then if we take polar coordinates 
r, 0, having for pole the focus S, and for initial line the axis 

* Communicated by the Author. 
t "The Hintereis (~lacier," Phil. Mag. (6) xxvii, p. 153 0914). 
:~ See Lamb, Hydrodynamics, 3rd ed., p. 545. 
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SA, the equation of the parabola will be 

r "~ cos �89 = rr, 

and that of the latus-rectmn 8~=)47F. 

Fig. 1. 
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Fig. 2. 
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Let us take 
~ =  r~ cos ~tg, ~ = s~ sin �89 

so that we have a conformal transformation if ~:, , /be regarded 
as Cartesian coordinates in another plane, the parabola trans- 
forming into ~=r and the latus-rectum rote ~s=,7 s. The 
correspondence is shown in figs. i and 2, where corresponding 
points are similarly lettered. 

Since 
(,~, ~) _ 

5~,~)- ~(~'+ r ...... (~) 

the conditions to be satisfied by X become, with reference to 
fig. 2, 

~ x  ~ x  _ _ 8 ( ~  + r  (3) ~ + ~ . . . . .  

over the area L 'SL,  2 :=0  on ~=Tr, ~X/D~-=~}X/~7 on ~:=~, 
and ~X/~=--~X/~I  on ~ = - - ~ .  
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Instead of t rying to solve this problem d~rectly, let us 
determine a function which satisfies (3) over the area of the 
square bounded by ~---+~', 7----+_Tr, and which vanishes on 
the sides of this square. The determination of such a func- 
tion is known to be unique, and from considerations of 
symmetry we see that over the triangle L 'SL  it will be the 
function we require. 

Now 

4 (~  + ~ 9 t ~ - r  ~: A. cosh (~ + �89 cos (~ + �89 (4) 
~ : D  

where A~ is a constant, satisfies (3) and vanishes over 
~/---- + ~r. We shall see that we can choose the constants A,  
so that it wilt vanish on $-= + ~'. 

From Fourier's theorem, or otherwise, we have 

4 ~  (-1)~ , 
7r~-.2 = ; . ~ o ~ c o s  tn+~),, 

for --r162 <~ r ~< ~r, by which we see that if we take 

A~ eosh (n+~)~r=327r ( - 1 ) =  (~ + ~)~' 
(4~) will satisfy all the conditions for X" 

Thus, 

l)'~ cosh (.  + ' ~_)~ 
-32~.=0 ~ ((n+~) ~ ~osh (n+ ~ )eos  (=+ �89 (5) 

The value of % on SL, which gives the velocity on the free 
surface, is obtained by putting ,/---$ in (5). Doing this, we 
obtain 

4(~r4_~0_32~r~  ( - -1 )~  cosh(n+,~)~:co_rn , 
~=o(n+ ~) cosh (n-4-~)'rr 

in which $ is connected with the distance r from the focus, 

For the flux of liquid through the channel we require the 
function 

F = 4 ~j" x($ ~ + r  ~$ d,. 
taken over the area of the triangle L ' S L  (fig, 2), or, again 
from symmetry, taken over the area of the square SL. The 
integration is straightforward, the series for being uni- 
formly convergent over the area, and we obtail~ 

F ~r ~ ~ 1 ~ I 
12S~r~ -- 15 + 2~0 (~ +-~2~ 2 ~ o  (~ + �89 ~anh (n + ~)~. 
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or~ since 

~=o (,, + �89 = 15' 

F 7r ~ | 1 

12~7r~ = ~- --2~'~=o (n + �89 (n + ~)Tr. 

i f  now we take the latus-rectum to be 4a instead of 4~r ~, 
F will be multiplied by (a/1r2) 4, so that 

a ~ -- 5 ~.5 o ( ~) 

Particular Triangular Section. 
3. The section is that in which one side of the channel is 

vertical and the other inclined at an angle ~ "  to it (fig. 3). 

Fig. 3. 
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The solution for this case can be derived from an expression 
previously given ~, but it is just as easy to verify directly 
that all the conditions of the problem are satisfied by 

2 ~  1 
x = (~ + y )  ( ~ - ~ ) -  - 2 7r,=o (n+�89 s sinh (2n+  1)~ 

x {sinh (n + ~)(2~r--x + y )  sin (n + �89 (x + y )  

- -  sinh (n + �89 (x + y) sin (n + �89 - .y)  }, (8) 

the axes being as shown in fig. 3. The boundary conditions 
are that X----0 on x=~r  and on x = - - y ,  and that ~XJ'dy-=0 
on y-u0 ; but instead of the latter we take X=-0 on x----y, 
again appealing to symmetry. We have taken 0A=-~" for 
convenience. 

* Lend. Math. Soc., Records for March 13th, 1913. 
Phil. Mag. S. 6. Vol. 28. No. 163. July] 1914. D 
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The value of % on OA, which gives the velocity at the 
free surface, is 

x(Tr--x)--  2 ~ sinh (n+�89 sin (n+  .~)x 
~,,=0 (n+  �89 sinh (n+�89 " , .  (9) 

and the function F, when OA is taken to be a instead oi" ~r, is 
given by 

F 1 1 ~ 1 
a ' -  12 .TrO-5,,=0Z (n-- - -c~ ~)a (n+ i )~r . .  (10) 

Remarks on the EaTansions. 

4. The normal derivatives of (5) and (8) must vanish over 
SL and OA respectively. For  (5) this gives us 

~:_ 2 ~ (--i)~ 1 
- ~ .=~(n+~)  cosh (n+�89 

x {eosh (n+ l )$ s in  (n + �89 siuh (n § �89 (n + i)$}, 

for --~'<~:<~r, while for (8) it gives us an expansion which 
is easily transformed into (11). 

Again, alternative forms can be obtained for (5) and (8), 
and on equating them respectively to the above forms, 
identities are obtained. Identities of this nature were noticed 
by Sir G. Stokes *, and remarked upon by Thomson and 
Taft t .  Those mentioned by these authors were examined by 
F.  Purser $, who pointed out their connexion with Elliptic 
Functions. 

Two additional remarks, however, seem worth making. 
The first is that the identities call be easily obtained by 

taking a two-dimensional harmonic in algebraic Cartesian 
ibrm, and then finding a series of two-dimensional harmonics 
in normal Cartesian forms (i, e. in terms of trigonometric 
and hyperbolic functions), which satisfics the same conditions 
at a certain boundary. 

The second is flint when the expansions of conjugate 
functions are combined to form a series of functions of 
a complex variable, the resulting forms appear to be 
interesting. 

For example, we can thus obtain the following expansions, 
valid over a square whose corners are given by 

* Math. and Phys. Papers, vol. i. p. 190 (1846). 
Natural Philosophy~ part it. p. 249, 1883 ed. 

1: Messenger of Math. wl. xi. (1882). 

(li) 
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- - l + i ,  - 1 - 1 ,  1 - i :  

(-0 ~ 
(n+�89 (n.l_�89 { sinh (n+�89  sin (n+�89 }, (i~) 

~= ( - 1 ) -  { cosh (~ + } ) z - c o s  (~ + �89 (13) z~= ~r =0 [,~ + ~)a cosh (n + ~)~ 

( ' ~ + ~ ) 4 c ~  v ( - l ) ' *  {sinh(n+�89 },  (l!t) 

-~-,,=o{n+�89 (n+~)~r cosh (n+~)z+ cos (n+�89 z , 

and so on. (15) 
I f  in (12) we write z=$+i$ and then take the real part, 
being real, we reproduce the expansion (11). 

~5"umerical Kalues. 
5. The series (6), (7), and (9) have been examined 

numerically by Mr. J .  K. Maddrell, of Liverpool Universits,  
who has very kindly supplied the following results : - -  

82 8 
~ r .  Xt .  

0 . . . . . .  17"41374 
1 . . . . . .  17"40685 
4 . . . . . .  17"30824 
9 . . . . . .  16'89301 

16 .. . . . .  15"78149 
25 . . . . . .  13'52752 
36 . . . . . .  9"73117 
49 .. . . . .  4"86775 
64 .. . . . .  0"00000 

- x .  X2" 

0 ..... 0"000000 
1 .... 0"208361 
2 .... 0"546561 
3 .... 0"870728 

.... 1-096033 
5 .... 1-163877 
6 .... 1"028783 
7 . . . . .  0"650613 
8 .... 0"000000 

Hers  r and X1 refer to (6), while ,~ and X2 refer to (9). The 
results are shown graphically in figs. 4 aml 5. 

The maximum value of ~ is found to be about 1"1656, its 
position being given by ~/~r='60819. This maximmn has 
an interest in connexion with several other physical problems 
which are mentioned in the note referred to in w 3. 

The series for F/a 4 in (7) and (10) have the respective 
values "9293, "02610. 

In  connexion with a mathematically related problem Saint- 
Venant * pointed out that if  we write 

2F = ~A4/I, 

where A is the sectional area of the pipe formed by the sides 

�9 Comptes _Rendus, t. lxxxviii, pp. 142-147 (1879). 
D 2  
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Surface-velocity curve for Parabolic Section. 

Fig. 5. 
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Surface-veloclty curve for Triangular Section. 
of the channel and their reflexion in the free surface, and 
I is the moment of inertia about its centroid of this section, 
then for the majori ty of simple cases ~ has a value which lies 
between "0228 and "0260. In  the two present instances we 
have respectively 

= '0252 ,  g = ' 0 2 3 2 .  


