Author Manuscript Faculty of Biology and Medicine Publication

This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination.

Published in final edited form as:

```
Title: Association of genetic risk scores with body mass index in Swiss
psychiatric cohorts.
Authors: Saigi-Morgui N, Vandenberghe F, Delacrétaz A, Quteineh L,
Gholamrezaee M, Aubry JM, von Gunten A, Kutalik Z, Conus P, Eap CB
Journal: Pharmacogenetics and genomics
Year: 2016 May
Volume: 26
Issue: 5
Pages: 208-17
DOI: 10.1097/FPC.00000000000210
```

In the absence of a copyright statement, users should assume that standard copyright protection applies, unless the article contains an explicit statement to the contrary. In case of doubt, contact the journal publisher to verify the copyright status of an article.

UNIL | Université de Lausanne Faculté de biologie et de médecine

Association of Genetic Risk Scores with Body Mass Index in

Swiss Psychiatric Cohorts

Núria Saigi-Morgui (1); Frederik Vandenberghe (1); Aurélie Delacrétaz (1); Lina Quteineh (1); Mehdi Gholamrezaee (2); Jean-Michel Aubry (3); Armin von Gunten (4); Zoltán Kutalik (5, 6); Philippe Conus (7); Chin B Eap (1,8)*

¹ Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Prilly, Switzerland.

² Centre of Psychiatric Epidemiology and Psychopathology, Department of Psychiatry, Lausanne University Hospital, Prilly, Switzerland.

³ Department of Mental Health and Psychiatry, University Hospital of Geneva, Geneva, Switzerland.

⁴ Service of Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly Switzerland.

⁵ Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital,

Lausanne, Switzerland.

⁶ Swiss Institute of Bioinformatics, Lausanne, Switzerland.

⁷ Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly Switzerland.

⁸ School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland.

*Corresponding author:

E-mail: Chin.Eap@chuv.ch (CBE)

Funding:

This work has been funded in part by the Swiss National Research Foundation (CBE and PC: 320030-120686 and 324730-144064). ZK received support from the Leenaards Foundation and the Swiss National Science Foundation (31003A-143914). The funding sources had no role in the writing of the manuscript or in the decision to submit it for publication.

Author disclosure information

CBE received research support from Takeda and from the Roche Organ Transplantation Research Foundation in the past 3 years. He received honoraria for conferences or teaching CME courses from Advisis, Astra Zeneca, Janssen-Cilag, Lundbeck, Merck Sharp & Dohme, Otsuka, Sandoz, Servier and Vifor-Pharma in the past 3 years. AvG received honoraria for a conference and a workshop participation unrelated to the topic of this study from Vifor and Bayer Sheringer in the past 3 years. All other authors declare no conflict of interest in relation to the content of the paper.

ABSTRACT

OBJECTIVE: Weight gain is associated with psychiatric disorders and/or with psychotropic drug treatments. We analyzed in three psychiatric cohorts under psychotropic treatment the association of weighted genetic risk scores (wGRS) with Body Mass Index (BMI) by integrating BMI-related polymorphisms from Candidate Gene approach and Genome Wide Association Studies (GWAS).

MATERIALS AND METHODS: wGRS of 32 polymorphisms previously associated with BMI in general population GWAS and 20 polymorphisms associated with antipsychotics induced weight gain were investigated in three independent psychiatric samples.

RESULTS: wGRS of 32 polymorphisms were significantly associated with BMI in the psychiatric sample 1 (n=425) and were replicated in another sample (n=177). Those at the percentile 95 (p95) of the score had 2.26 and 2.99 kg/m² higher predicted BMI compared to individuals at the percentile 5 (p5) in the Sample 1 and in the Sample 3 (p=0.009, p=0.04, respectively). When combining all samples together (n=750), a significant difference of 1.89 kg/m² predicted BMI was found between p95 and p5 individuals at 12 months of treatment. Stronger associations were found among men (difference: 2.91 kg/m² of predicted BMI between p95 and p5, p=0.0002) whereas no association was found among women. wGRS of 20 polymorphisms was not associated with BMI. The wGRS of 52 polymorphisms and the clinical variables (age, sex, treatment) explained 1.99% and 3.15%, respectively of BMI variability.

CONCLUSION: The present study replicated in psychiatric cohorts previously identified BMI risk variants obtained in GWAS analyses from population-based samples. Gender specific analysis should be considered in further analysis.

Key words: Psychotropic drugs, Genetic Risk Score, Psychiatry, Body Mass Index

1 INTRODUCTION

2 Obesity has become a major public health concern, its prevalence increasing dramatically over 3 the last decades. Obesity is a complex disease that results from imbalance of energy intake and 4 energy expenditure, being highly influenced by an individual's lifestyle or environment (i.e. diet, 5 physical activity) and also by genetic predisposition [1]. Twin and family studies reported 40%-6 80% of heritability in obesity [2, 3]. Several forms of monogenic obesity have been described, 7 especially those related to leptin-melanocortin pathways [4, 5]. The most prevalent form of 8 obesity, however, is the polygenic or common obesity, which results from the combined effect of 9 common genetic variants as well as additional rare variants, copy number variants, and 10 epigenetic changes [6]. Among psychiatric populations, the risk of developing obesity and related problems is increased compared to the general population [7]. Several factors have 11 been attributed to this increased obesity risk, such as the illness, the lifestyle and/or the 12 13 medication [8, 9].

14

Since their introduction onto the market, second generation antipsychotics (SGA) have been 15 widely used over first generation antipsychotics (FGA), as they clearly show an advantage in 16 17 terms of reduced risks of extrapyramidal side-effects, as well as some advantages for the 18 treatment of negative symptoms. However, most SGA can induce strong metabolic disturbances in particular as a consequence of the dual antagonism on serotonin and dopamine receptors 19 20 and its effect on food intake regulation [10]. Over the last decade, pharmacogenetics of psychotropic-induced weight gain has been widely studied through hypothesis-driven candidate 21 22 gene approaches. The most studied and best-replicated polymorphisms focused on dopamine 23 and serotonin receptors [11, 12]. Additionally, other genes implicated in leptin-melanocortin 24 pathways (e.g. LEP, LEPR, MC4R, NPY), endocannabinoids (CNR1) or genes involved in fatty 25 acids and cholesterol production (SCARB1, INSIG2) showed an association with weight gain among psychiatric cohorts treated with antipsychotics (see review [13]). Recently, research
conducted in our laboratory showed other candidate genes which could potentially induce
weight gain among psychiatric populations under psychotropic treatment. These genes code for
enzymes involved in metabolic pathways (PCK1, 11βHSD1) [14-16] for receptors (MCHR2,
IRS2 and PPARGC1A) and for transcriptional co-activators (CRTC1, CRTC2) involved in
energy balance, appetite regulation and glucose homeostasis [17-21].

32

With the emergence of genome wide association studies (GWAS), thousands of new 33 polymorphisms associated with obesity and metabolic phenotypes have been elucidated. In 34 particular, the associations with Body Mass Index (BMI) and/or obesity in the FTO [22-25], 35 MC4R [26-28], and TMEM18 [23, 24, 28, 29] genes have been widely replicated in general 36 37 populations. The largest BMI meta-analysis of GWAS conducted to date in general populations 38 reported 97 polymorphisms [30]. These variants also included 32 previously reported loci [31] that have been replicated in other cohorts and different ethnicities [32-34]. Individually, these 39 40 variants have shown little effect on the BMI [31]. As an alternative way of testing individual 41 Single Nucleotide Polymorphisms (SNP) effects, Genetic Risk Scores (GRS) summarize risk-42 associated variations across the genome by aggregating information from multiple-risk SNPs [35] with small effects increasing the consistency and power to determine genetic risk in 43 polygenic diseases (i.e. obesity) [36]. To date, GRS methods have been used in diabetes [37], 44 schizophrenia [38] and obesity [31] among other diseases. Studies on obesity have been 45 46 conducted in adults [36, 39] or children from the general population [40, 41] and recently two studies were conducted among depressed patients [42, 43]. The aim of the present study was 47 to determine if GRS built from previous BMI and/or weight gain related variants from GWAS and 48 49 candidate genes (CG) were associated with BMI in three independent psychiatric samples. 50 Additionally, we wanted to analyze if previous variants related to diabetes (21 SNPs) and

psychiatric disorders (9 SNPs) also showed an association with BMI, since these diseases
seem to share some genetic components with obesity [8, 44, 45].

53 MATERIALS and METHODS

54 Samples Description

55 Psychiatric samples

56 Sample 1 (n=425) consisted of an on-going follow up study which started in 2007 in the psychiatric ward from the Lausanne University Hospital already described elsewhere [46]. 57 Briefly, 425 Caucasian patients starting psychotropic treatment including atypical antipsychotics, 58 59 mood stabilizers and/or mirtazapine were recruited. Anthropometric parameters such as weight, 60 height and waist circumference were measured. Other demographic covariates (i.e. sex, age and ethnicity) as well as history of treatment (treatment duration, psychotropic treatment) were 61 obtained from medical files or during the interview. Medical questionnaires were filled in and 62 blood samples were collected at baseline and at 1, 2, 3, 6, 12 months after initiating 63 psychotropic treatment according to guidelines [47, 48]. Patients switching to one of the studied 64 treatments were also included. BMI (in kg/m²), the outcome in the present study, was used as a 65 continuous variable and whenever required, stratified in 3 categories as normal (BMI<25 kg/m²) 66 67 overweight (25 \geq BMI<30, kg/m²) and obese (BMI \geq 30 kg/m²). 21% of patients had the first psychotic episode and/or were diagnosed within the first year of study inclusion (first episode 68 69 and newly diagnosed (FEND) patients).

Two other psychiatric samples were used as replication. They consisted of two retrospective
 studies from outpatient settings in Geneva and in Lausanne (Sample 2=148, Sample 3=177,
 respectively). Both samples included patients receiving atypical antipsychotics and/or mood

73 stabilizers (i.e. aripiprazole, amisulpride, clozapine, olanzapine, quetiapine, risperidone, lithium 74 and/or valproate). The Geneva study started in 2007 in an outpatient Geneva setting and patients recruited had been under psychotropic treatment for at least 3 months. In the Lausanne 75 76 study (Sample 3 started in 2010, inclusions ongoing), most of the patients had been treated for 77 more than one year in a Lausanne outpatient setting. For both studies, blood samples were 78 collected and guestionnaires were filled out during one of the routine checkup. Weight, height, 79 waist circumference, serum lipids and/or glucose were measured and several clinical variables (e.g. treatment, treatment duration) were recorded. Baseline weight (before the current 80 psychotropic treatment) was extracted from medical files or self-reported. Further description of 81 these samples has been published elsewhere [46]. 82

Psychiatric diagnoses for the three samples were made according to ICD-10 classification criteria. The main diagnostic groups were [F20.0-F24.9] & [F28-F29]: psychotic disorders; [F25.0-F25.9]: schizoaffective disorders; [F30.0-F31.9]: bipolar disorders; [F32.00-F33.9]: depression. The latest introduced psychotropic medication was considered as the main psychotropic treatment. Written informed consent was provided by all individuals or by their legal representatives and the studies were approved by the ethics committee of the corresponding centers.

90 General population-based sample

The Genetic Investigation of Anthropometric Traits Consortium (GIANT) performed a metaanalysis of GWAS data with a discovery set of 123,865 individuals of European ancestry from 46 studies for height [49], BMI [31] and Waist to Hip Ratio (WHR) [50]. This general populationbased sample was used to obtain β -coefficients (allele effect) which assigned weights to each variant when building the genetic risk scores.

96 SNP selection, genotyping and construction of Genetic Risk Scores

97 The Initial 32 polymorphisms selected for the present study had been associated with BMI in a 98 GWAS meta-analysis conducted in an adult general population [31]. All selected variants reached GWAS significance (p<5x10⁻⁸) (S1 Table). Another 20 SNPs which had been 99 previously related to antipsychotic-induced weight gain through candidate gene approach were 100 also selected [13]. From the reviewed variants, only SNPs or proxies of SNPs genotyped in our 101 102 sample and in GIANT, and only those in the literature reaching significant results in both genders were retained for the analysis. A detailed description of the SNPs considered can be 103 104 found in S2 Table.

Finally, we considered two meta-analyses of GWAS based on 21 SNPs associated with type 2 105 106 diabetes (8,130 cases and 38,987 controls, S3 Table) and another one based on 9 SNPs 107 associated with 5 major psychiatric disorders (final dataset: 33,332 cases and 27,888 controls, 108 S4 Table) including schizophrenia, bipolar disorder, major depressive disorder, autism and 109 attention deficit-hyperactivity disorder [51, 52]. In order to avoid indirect correlation between 110 variants (i.e. in high Linkage Diseguilibrium (LD) correlation), which is one of the problems when 111 constructing GRS [53], and to avoid overrepresentation of a particular gene, only one SNP per gene was considered. Selection was made by selecting the SNP with the lowest P-value. We 112 verified that the resulting SNPs were not in LD. Note that this approach is analogous to an LD-113 based pruning, but we typically select less SNPs by ignoring secondary (independent) SNP 114 115 contributions from the same gene (allelic heterogeneity). The study protocol was approved by the ethics committees of the recruiting centers and all patients gave written informed consent for 116 117 the genetic analysis. DNA was extracted from blood samples as described by the manufacturer protocols using Flexigene DNA kit and QIAamp DNA Blood Mini QIAcube Kit (Qiagen AG, 118 119 Switzerland).

120 Genotyping of 895 Caucasian patients was performed using the Illumina 200K Cardiometabochip (Illumina, San Diego, CA). Briefly, the Cardiometabochip is a custom Illumina 121 iSelect genotyping array designed to test DNA variation of 200'000 SNPs from regions identified 122 123 by large scale meta-analyses of GWAS for metabolic and cardiovascular traits [54]. A Quality 124 Control was done for the genotyped SNPs. Polymorphisms or proxies were chosen based on genotype availability in the Cardiometabochip and GIANT cohort. In addition, samples were 125 126 excluded from the analysis if sex was inconsistent with genetic data from X-linked markers, and when genotype call rate was <0.96, gene call score <0.15 and minor allele frequency (MAF) 127 <0.05. GenomeStudio Data Analysis Software was used to export results generated by Illumina 128 129 CardiometaboChip. Additionally, the rs7799039 from the LEP gene largely associated with antipsychotic-induced weight gain [55] and which was not available in Cardiometabochip was 130 131 genotyped by KBioscience Institute in United Kingdom using the novel fluorescence-based competitive allele-specific PCR technology (KASP™). Details about this technology are 132 available at: http://www.lgcgenomics.com/genotyping/kasp-genotyping-chemistry/. Out of the 133 895 Caucasian genotyped individuals, 750 were finally analyzed (145 patients excluded due to 134 135 missing data).

136 Among the several existing methods to build a GRS, it has been shown in disease risk modeling 137 that weighted GRS methods are preferred to the simple count method when relative risks vary among SNPs [56]. SFig 1 represents the distribution of the weighted genetic score by the 138 139 number of risk alleles (unweighted score) calculated for each individual in the whole cohort 140 showing that weighted and unweighted scores are not perfectly correlated, thus highlighting the 141 importance of weighting each risk allele using weighted Genetic Risk Score (w-GRS) methods. 142 The w-GRS for selected SNPs was calculated as previously described [31]. In summary, 143 genotypes from each SNP were coded as 0, 1 or 2 according to the number of BMI risk alleles. Then, each polymorphism was weighted by its β-coefficient (allele effect) based on the 144

assumption that all SNP of interest have independent effects and contribute in an additive manner to BMI. Allele effect on BMI was obtained performing lookups from the summary statistics of an independent population sample (GIANT consortium, n=123,865), thus preserving homogeneity of β -coefficient calculations (S5 Table) for all SNPs included in the genetic score.

149 Statistics

150 Principal Components of Ancestry was used to assess ethnicity and only Caucasians were considered in the analysis. Hardy-Weinberg Equilibrium (HWE) was determined for each 151 152 polymorphism by a chi-square test. HWE and genotype frequencies are shown in 153 supplementary tables (S1 and S2 Tables). P-values equal or less than 0.05 were considered as statistically significant and Bonferroni correction for multiple tests was applied when necessary. 154 Initially, individual SNP effects on BMI were calculated for Sample 1. Genotypes were analyzed 155 156 in an additive model of inheritance except for one SNP (HSD11 β 1 rs3753519C>T) which had 157 too few homozygous for the variant allele (n=7) and a dominant model was used. Secondly, a 158 GRS was built and tested in Sample 1 and it was further tested for replication in 2 other psychiatric samples (samples 2 and 3). Finally, in order to determine the general effect of the 159 GRS on BMI, we combined all samples since they were similar overall in terms of individual's 160 161 origin (Lausanne and Geneva regions), type of treatment, age, and diagnostic. Due to interdependence between observations (i.e. BMI) made on the same individual over time, a 162 Generalized Linear Mixed Model (GLMM) was fitted using the MASS library of R language [57, 163 164 58] to assess influence of genetic parameters on BMI in a model adjusted by age, sex, main psychotropic treatment and treatment duration. The appropriate link function we chose for the 165 BMI variable is the inverse function which is the canonical link function for the Gamma family. 166 GLMMs combine both linear mixed models (which incorporate random effects) and generalized 167 168 linear models (which deal with non-normal data by using link functions and exponential family) 169 [59]. The glmmPQL function of the MASS library uses the Penalized Quasi-Likelihood in order 170 to estimate model parameters [60]. Finally, predicted BMI differences were calculated at 171 baseline, 12 and 24 months of treatment between the percentile 95 (the upper extreme of an 172 unfavorable genetic background) and percentile 5 (the lower extreme of an unfavorable genetic 173 background) of the GRS. In order to preserve homogeneity within samples and to deal with treatment durations when combining all samples together (i.e. shorter treatment duration up to 174 12 months in sample 1), predicted BMI was obtained at baseline and at 12 months of treatment. 175 The corresponding 95% confidence intervals (95%CI) were calculated. Some exploratory 176 analyses were also performed to obtain the explained variance of BMI by genetic and non 177 178 genetic covariates in the psychiatric Sample 1 for a subgroup of individuals aged between 18 and 65 years. A Generalized Additive Mixed Model (GAMM) was used to deal with complex and 179 180 non-linear BMI evolution in time and presence of multiple observations per individual introducing 181 interdependence among observations. A random effect at the subject level was also introduced to take the dependence structure of observed data into account. The GAMMs were fitted using 182 183 the mgcv package of R (settings were fixed at package defaults). To be more conservative the 184 uncertainty of estimated parameters was assessed by 10'000 bootstraps on individuals [57, 61, 185 62]. Individuals with missing data or genotypes were excluded from the analysis (see 186 supplementary methods for further details).

187 **RESULTS**

188 **Population description**

Table 1 presents the characteristics of Sample 1 (n=425) and replication Samples 2 and 3 (n₁= 189 190 148, n_2 = 177). All samples together consisted of 750 Caucasian individuals with 50% of men and a median age of 45 years (range: 13 - 97 years). Sample 2 had the highest obesity (BMI≥ 191 30 kg/m²) prevalence (35% compared to 18% in Samples 1 and 3, p=0.006). Sample 1 had the 192 lowest olanzapine and clozapine prescription (11% and 8%, respectively compared to 16% and 193 194 14% in Sample 2, respectively, and 12% and 9% in Sample 3, respectively, p=0.001) as well as 195 the shortest treatment duration (6 months) when compared to samples 2 and 3 (27 and 36 196 months, respectively). S6 and S7 Tables show the characteristics of the combined cohort stratified by gender and by FEND patients, respectively. Men were younger than women 197 198 (median 40 years versus 49 years, respectively, p=0.0001) and had higher BMI at baseline (24.6 kg/m² versus 24.1 kg/m² in men and women, respectively, p=0.004). Besides, treatment 199 200 duration was longer for men than women (9 months compared to 6 months, respectively, 201 p=0.05) (S6 Table).

202 Genetic analysis

203 Genotype analysis

S1 and S2 Tables list the 32 and 20 SNPs from GWAS and CG studies, respectively, analyzed in the psychiatric samples. All of them were in Hardy-Weinberg equilibrium after multiple test correction (p-corrected<0.001). Thirty-two previously reported SNPs associated with BMI in the general population [31] were analyzed in Sample 1. One SNP located in *CADM2* gene showed a nominal association with BMI over time (p-value=0.01) (Table 2). At 12 months of treatment, *rs13078807* polymorphism showed a 1.04 BMI units increase per additional risk allele. Twenty other SNPs were selected from CG studies associated with psychotropic induced-weight gain and two of them (i.e. $HSD11\beta1$ -rs3753519, CRTC2-rs8450) showed an association with BMI (difference of predicted BMI of -2.35 units for rs3753519 at 12 months of treatment between patients homozygous for the variant allele and wild types and 0.69 units of BMI increase per additional risk allele for rs8450, p-values: 0.00001, 0.04, respectively) (Table 2).

215 Genetic Risk Score analysis

216 When combining all 32 GWAS SNPs in a weighted GRS (w-GRS 32), the score was significantly associated with BMI in Sample 1 (p=0.009), in Sample 3 (p=0.04) and also in the 217 three combined samples (p=0.002, see Table 3). In Sample 1, those at the percentile 95 (p95) 218 219 of the GRS (i.e. a high genetic risk score) had 2.26 units more of predicted BMI when compared 220 to those individuals at the percentile 5 (p5) of the GRS (low genetic risk score) at 12 months of 221 treatment. Results were similar in Sample 3 and when all samples were combined together at 222 24 and 12 months of treatment (difference of predicted BMI between p95 and p5 of the GRS: 223 2.99 and 1.89 units, respectively). A higher effect on BMI was found among men when analyses were stratified by sex in the combined sample (interaction sex*GRS p<0.10): individuals at the 224 p95 score had 2.91 units more of predicted BMI when compared to individuals at the p5 score at 225 226 24 months of treatment (p-value: 0.0002). For the subgroup of FEND patients a difference of 227 predicted BMI of 3.79 units was observed between individuals at the p95 and p5 of the GRS (p=0.008) (Table 3). Fig 1 shows the evolution of BMI (non adjusted) over time between 228 229 extreme percentiles (low genetic risk; p5 versus high genetic risk; p95). Additionally, predicted BMI differences between p10 and p90 extremes are presented in S8 Table and S2 Figure. 230

When pooling all samples together, one unit increase of the risk allele at 24 months of treatment in the GRS was associated with an increase of BMI of 0.19 units (p=0.011). Among men, this increase in BMI was of 0.30 units (p=0.0001) whereas in women it was of 0.08 (p=0.38).

Unlike to what we found with GWAS SNPs, when the 20 CG SNPs were combined in a weighted GRS (w-GRS 20), no association with BMI was observed in the whole sample (p=0.46) (S9 Table).

Finally, the 20 CG SNPs were combined with the 32 GWAS SNPs in another w-GRS (w-GRS 237 238 52) (S10 Table), w-GRS 52 was significantly associated with BMI in Sample 1 (p=0.01), Sample 239 3 (p=0.04) and when combining all samples (p=0.001). Only a trend was observed in Samples 2 and 3 when pooled together (p=0.06). Thus, an individual in the p95 score had 2.08, 2.79 and 240 1.94 more predicted units of BMI in Sample 1 (12 months of treatment), in Sample 3 (24 months 241 242 of treatment) and in all samples combined together (12 months of treatment) when compared to individuals at the p5 of the score, respectively. When analyses were stratified by gender, a 243 244 significant effect was found among men at the p95 of the score who showed 3.09 more units of predicted BMI when compared to men at the p5 (p=0.0001). FEND patients who were at the top 245 percentile (p95) had also 3.66 more units of predicted BMI when compared to patients at the p5 246 of the GRS (p=0.01). 247

GLMM according to different quartiles showed significant differences between individuals within the 3rd and 4th quartile of the GRS as compared to the 1st quartile. At 24 months of treatment, those at the 3rd and 4th quartiles had 1.84 [0.40-3.29] and 1.91 [0.51-3.32] more units of predicted BMI when compared to the 1st quartile, respectively (results not shown). Table 4 shows the characteristics for the four groups stratified by GRS quartiles. Those at the 4th quartile had higher BMI before starting and during the current psychotropic treatment (baseline and current median BMI: 25.1 and 25.9 kg/m², respectively) when compared to the 1st quartile (baseline and current median BMI: 23.2 and 24.3 kg/m², respectively), which could be possibly explained by the interaction between genetics, previous psychiatric episodes and/or psychotropic treatments. The prevalence of baseline overweight and obesity increased in higher quartiles (i.e. 48% in 4th quartile versus 30% in 1st quartile, p=0.007). No differences of age, treatment, treatment duration, high waist circumference prevalence, diagnostic and FEND individuals distribution were observed between the different quartile groups (Table 4).

261 Finally, when comparing the distribution of genetic scores without adjusting by other covariates,

262 no differences were found between men and women (S6 Table) or FEND patients (S7 Table).

263 Genetic Risk Scores and GWAS genes for psychiatric diseases and diabetes

The SNPs selected from GWAS associated with psychiatric diseases (i.e. schizophrenia, bipolar disorder, major depressive disorder, autism and hyper attention deficit) and diabetes were combined in two different w-GRS and tested for association with BMI. No significant results were found (results not shown).

268 Explained variability

We calculated the BMI variability explained by the clinical and genetic covariates in the Sample 1, for individuals from 18 to 65 years old (n=263). Thus, in our model, the genetic component considering the w-GRS 32 explained 1.97% of BMI variability whereas non genetic components such as age, sex and treatment explained 2.23%, 0.42% and 0.6%, respectively, out of the total 7.01% BMI variability explained by the model. Finally, the BMI explained variance of the 52 SNPs (32 SNPs added to the 20 SNPs) was of 1.99% whereas the important clinical variables known to influence weight (age, sex, treatment) represented altogether 3.15% of the BMIvariability.

277 **DISCUSSION**

278 In the present study, we found that w-GRS built from 32 polymorphisms previously associated 279 with BMI in the general population GWAS were also significantly associated with BMI in our Sample 1, being replicated in another sample. The stronger effects were found among men and 280 FEND patients. Some studies have replicated the association of the 32 SNPs GRS with BMI 281 282 and obesity-related genotypes in different cohorts and ethnicities [32-34]. Two cross-sectional 283 studies using a Mendelian randomization approach [42] and a case-control design [43] replicated the association of w-GRS in depressed patients. However, type of treatment, 284 treatment duration or BMI variation over time were not taken into account, while BMI at baseline 285 286 and treatment duration are known moderators of weight gain in populations under psychotropic 287 treatment [9]. Moreover, the number of patients treated was not described in the previous 288 studies. The present study, in contrast, includes longitudinal data considering long treatment duration (i.e. analysis has been conducted up to 24 months), type of treatment and other 289 diagnostics in addition to depression. Explained BMI variability by GRS when including 32-SNPs 290 GWAS GRS in our model, was slightly higher than the one reported initially in general 291 population cohorts in the literature (1.45%) [31] or than the one found in French and Chinese 292 general populations (1%, 0.90%, respectively). Of note, adding the 20 CG in the model did not 293 294 improve the explained BMI variability (1.97% versus 1.99%). The effect on BMI per risk allele increase of the 32-SNPs GWAS GRS was similar to those reported previously (0.11 [32], 0.13 295 296 [34]) when considering both genders together. However, higher BMI increase per risk allele was found among men. 297

298 Individual SNP analyses showed few significant effects in Sample 1. Only one GWAS SNP 299 (rs13078807) located in CADM2 gene region was nominally associated with BMI. CADM2 has 300 been previously associated with obesity in Caucasians and other ethnicities [31, 63, 64]. Among 301 the CG polymorphisms, 2 SNPs (HSD11ß1 rs3753519 and CRTC2 rs8450) were associated 302 with BMI in Sample 1; however rs8450 did not survive Bonferroni correction. In addition to weight gain association in psychiatric samples [16], $HSD11\beta1$ has been associated with 303 304 metabolic syndrome in a general population [14] and CRTC2 has been associated with type 2 diabetes in Asian populations [65]. CRTC2 is a coactivator which binds to CREB and stimulates 305 306 the expression of PEPCK and G6Pase and this increases hepatic gluconeogenesis through 307 dephosphorylation [66, 67]. In addition, a deletion of CRTC2 impairs the expression of the gluconeogenic genes and the ability of glucagon to stimulate glucose production in hepatocytes 308 [68]. On the other hand, $HSD11\beta1$ gene codes for a microsomal enzyme catalyzing tissue 309 310 regeneration of active cortisol from the inactive form cortisone [69]. It is highly expressed in 311 metabolic tissues such as liver and adipose tissue. Increased plasma cortisol levels have been 312 associated with visceral obesity and metabolic syndrome. An overexpression of this gene has been associated with hyperphagia and obesity in mice [70, 71]. 313

The fact of finding stronger effects when combining all SNPs in a w-GRS could be explained by 314 315 the fact that common variants have individually little effect on BMI and very large sample sizes are needed in order to detect small effects. Thus, when integrating many small variant effects in 316 317 a w-GRS, the consistency and the power to detect these effects increase, even in smaller sample sizes [35]. In addition, the BMI explained variability in the whole model was 7.01%, with 318 319 1.97% of it corresponding to the w-GRS. Of note, although this is not a high percentage, it represents a 28% of the total BMI variability explained by the model. The present study is in the 320 same line as a very recently published study concerning GWAS meta-analysis of large 321

population data-sets (>300 000 individuals) where the genetic component (i.e. w-GRS)
 explained up to 2.7% of BMI variability [30].

324 The w-GRS 32 SNPs could not be replicated in Sample 2. This might be tentatively explained 325 by the fact that BMI and overweight prevalence at baseline were the highest among the 3 326 samples. Low BMI at baseline has been described as a risk factor for gaining weight [72]. In the same line, when analyzing the 20 CG variants previously associated with antipsychotic-induced 327 weight gain in a w-GRS, no significant association was observed between the w-GRS and BMI. 328 SNPs from CG studies that were selected included very heterogeneous studies, with small 329 330 sample sizes and with different ethnicities, treatment and treatment durations (see S2 Table), 331 which could explain the non significant results in our psychiatric samples. In addition, some very 332 promising variants (i.e. 5HT_{2C} receptor) could not be included in our weighted GRS model since 333 the allele effect (β-coefficient) calculation was not available, but when calculating unweighted 334 GRS (in which this variant was included) results did not change significantly (p=0.22). Finally, an a priori use of an additive model for the effect of all variants could contribute to the negative 335 findings. 336

We also found significant effects for the w-GRS 32 among FEND patients who had lower BMI 337 and obesity prevalence at baseline and shorter treatment duration when compared to others. 338 This is in agreement with previous studies showing that low baseline BMI and first-episode 339 340 patients are known risk factors for important weight gain during psychotropic drug treatment [9]. 341 To our knowledge, this is the first study reporting stronger effect in men when analyzing the 342 influence of genetic scores on BMI despite the fact that gender differences regarding fat storage 343 and metabolism have already been described [73]. This emphasizes the need to consider gender when studying obesity-related phenotypes such as BMI. In the present study, men were, 344 345 on average, younger and had longer treatment duration when compared to women, which could contribute to the observed gender effect as both young age and treatment duration are known risk factors for important weight gain [9]. Of note, when calculating genetic risk score and gender interaction, a trend was observed when all three samples where combined (p=0.09, n=750). Due to the exploratory nature of these findings, further analysis including gender stratification should be conducted in larger psychiatric cohorts.

Finally, no association was found with BMI of GRS built from SNPs obtained from psychiatric disorders and diabetes GWAS. Although obesity, type 2 diabetes and psychiatric disorders are known to share common etiological pathways [8], these results could be considered as negative controls, since we only obtained significant BMI-GRS association results when we combined previously BMI-related SNPs.

356

357 This study has some limitations which should be mentioned: weighted scores were calculated 358 from β -coefficients obtained from general population samples and the relative influence of these 359 genes might differ in psychiatric patients. Other factors influencing weight gain, such as previous treatment history, were not reported. This study has been conducted in Caucasians; 360 therefore these results cannot be extrapolated to other ethnicities. Variants included in the 361 362 genetic score model should be consistent with their effects (i.e. tested in large sample sizes and 363 replicated effects). Finally, the 95%CI suggest that genetic effect is variable within the groups and sample size should increase in order to narrow CI and improve outcome precision. 364

365

In conclusion, the present study replicated in psychiatric cohorts previously identified BMI risk variants obtained in GWAS analyses from population-based samples. GRS can be a useful tool to integrate multiple variants with low impact which, when tested individually, do not show any significant effect. This approach can contribute to a better understanding of the genetic variability of polygenic obesity in psychiatric patients and our results suggest that particular care should be taken to sex-specific analyses when working with GRS. Thus, the clinical utility of the
w-GRS in obesity-related traits needs to be further explored in prospective studies, especially
among populations at high risk of developing metabolic disorders.

374 ACKNOWLEDGEMENTS

The authors thank Dr. S. Crettol, C. Brogli, V. Hodel (logistical assistance), E. Retamales (bibliographical help), A. C. Aubert, M. Brocard, N. Cochard, M. Delessert, A. Kottelat, M. Brawand, K. Powell Golay, S. Jaquet (sample analysis). We thank the GIANT consortium for access to their BMI association result in 123'807 individuals and Global Lipids Genetics Consortium. We would like to thank the iGE3 genomics platform of the University of Geneva (http://www.ige3.unige.ch/genomics-platform.php) for the Cardiometabochip genotyping analysis.

REFERENCES

1. Yang W, Kelly T, He J. Genetic epidemiology of obesity. *Epidemiol Rev.* 2007;29:49-61.

2. Stunkard AJ, Sorensen TI, Hanis C, Teasdale TW, Chakraborty R, Schull WJ, et al. An adoption study of human obesity. *The New England journal of medicine*. 1986;314(4):193-8.

3. Katzmarzyk PT, Malina RM, Perusse L, Rice T, Province MA, Rao DC, et al. Familial resemblance in fatness and fat distribution. *American journal of human biology : the official journal of the Human Biology Council.* 2000;12(3):395-404.

4. Farooqi IS, O'Rahilly S. Monogenic obesity in humans. *Annual review of medicine*. 2005;56:443-58.

5. Strobel A, Issad T, Camoin L, Ozata M, Strosberg AD. A leptin missense mutation associated with hypogonadism and morbid obesity. *Nature genetics*. 1998;18(3):213-5.

6. Waalen J. The genetics of human obesity. *Translational research : the journal of laboratory and clinical medicine*. 2014;164(4):293-301.

7. De Hert M, Dekker JM, Wood D, Kahl KG, Holt RI, Moller HJ. Cardiovascular disease and diabetes in people with severe mental illness position statement from the European Psychiatric Association (EPA), supported by the European Association for the Study of Diabetes (EASD) and the European Society of Cardiology (ESC). *European psychiatry : the journal of the Association of European Psychiatrists*. 2009;24(6):412-24.

8. Lopresti AL, Drummond PD. Obesity and psychiatric disorders: commonalities in dysregulated biological pathways and their implications for treatment. *Progress in neuro-psychopharmacology & biological psychiatry*. 2013;45:92-9.

9. De Hert M, Detraux J, van Winkel R, Yu W, Correll CU. Metabolic and cardiovascular adverse effects associated with antipsychotic drugs. *Nat Rev Endocrinol*. 2012;8(2):114-26.

10. Stahl S. *Stahl's Essential Psychopharmacology Neuroscientific Basis and Practical Applications*. Third ed: Cambridge University Press;2008.

11. Ryu S, Cho EY, Park T, Oh S, Jang WS, Kim SK, et al. -759 C/T polymorphism of 5-HT2C receptor gene and early phase weight gain associated with antipsychotic drug treatment. *Progress in neuro-psychopharmacology & biological psychiatry*. 2007;31(3):673-7.

12. Balt SL, Galloway GP, Baggott MJ, Schwartz Z, Mendelson J. Mechanisms and genetics of antipsychotic-associated weight gain. *Clinical pharmacology and therapeutics*. 2011;90(1):179-83.

13. Lett TA, Wallace TJ, Chowdhury NI, Tiwari AK, Kennedy JL, Muller DJ. Pharmacogenetics of antipsychotic-induced weight gain: review and clinical implications. *Molecular psychiatry*. 2012;17(3):242-66.

14. Wamil M, Seckl JR. Inhibition of 11beta-hydroxysteroid dehydrogenase type 1 as a promising therapeutic target. *Drug discovery today*. 2007;12(13-14):504-20.

15. Beale EG, Harvey BJ, Forest C. PCK1 and PCK2 as candidate diabetes and obesity genes. *Cell Biochem Biophys.* 2007;48(2-3):89-95.

16. Quteineh L, Vandenberghe F, Saigi Morgui N, Delacretaz A, Choong E, Gholam-Rezaee M, et al. Impact of HSD11B1 polymorphisms on BMI and components of the metabolic syndrome in patients receiving psychotropic treatments. *Pharmacogenet Genomics*. 2015;25(5):246-58.

17. Koo SH, Flechner L, Qi L, Zhang X, Screaton RA, Jeffries S, et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. *Nature*. 2005;437(7062):1109-11.

18. Gibson WT, Pissios P, Trombly DJ, Luan J, Keogh J, Wareham NJ, et al. Melanin-concentrating hormone receptor mutations and human obesity: functional analysis. *Obesity research*. 2004;12(5):743-9.

19. Sadagurski M, Leshan RL, Patterson C, Rozzo A, Kuznetsova A, Skorupski J, et al. IRS2 signaling in LepR-b neurons suppresses FoxO1 to control energy balance independently of leptin action. *Cell metabolism*. 2012;15(5):703-12.

20. Esterbauer H, Oberkofler H, Krempler F, Patsch W. Human peroxisome proliferator activated receptor gamma coactivator 1 (PPARGC1) gene: cDNA sequence, genomic organization, chromosomal localization, and tissue expression. *Genomics*. 1999;62(1):98-102.

21. Choong E, Quteineh L, Cardinaux JR, Gholam-Rezaee M, Vandenberghe F, Dobrinas M, et al. Influence of CRTC1 polymorphisms on body mass index and fat mass in psychiatric patients and in the general adult population. *Jama Psychiatry* 2013;70(10):1011-9.

22. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. *Science*. 2007;316(5826):889-94.

23. Willer CJ, Speliotes EK, Loos RJ, Li S, Lindgren CM, Heid IM, et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. *Nature genetics*. 2009;41(1):25-34.

24. Thorleifsson G, Walters GB, Gudbjartsson DF, Steinthorsdottir V, Sulem P, Helgadottir A, et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. *Nature genetics*. 2009;41(1):18-24.

25. Okada Y, Kubo M, Ohmiya H, Takahashi A, Kumasaka N, Hosono N, et al. Common variants at CDKAL1 and KLF9 are associated with body mass index in east Asian populations. *Nature genetics*. 2012;44(3):302-6.

26. Loos RJ, Lindgren CM, Li S, Wheeler E, Zhao JH, Prokopenko I, et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. *Nature genetics*. 2008;40(6):768-75.

27. Pei YF, Zhang L, Liu Y, Li J, Shen H, Liu YZ, et al. Meta-analysis of genome-wide association data identifies novel susceptibility loci for obesity. *Human molecular genetics*. 2014;23(3):820-30.

28. Berndt SI, Gustafsson S, Magi R, Ganna A, Wheeler E, Feitosa MF, et al. Genome-wide metaanalysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. *Nature genetics*. 2013;45(5):501-12.

29. Wheeler E, Huang N, Bochukova EG, Keogh JM, Lindsay S, Garg S, et al. Genome-wide SNP and CNV analysis identifies common and low-frequency variants associated with severe early-onset obesity. *Nature genetics*. 2013;45(5):513-7.

30. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. *Nature*. 2015;518(7538):197-206.

31. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. *Nature genetics*. 2010;42(11):937-48.

32. Zhu J, Loos RJ, Lu L, Zong G, Gan W, Ye X, et al. Associations of genetic risk score with obesity and related traits and the modifying effect of physical activity in a Chinese Han population. *PLoS ONE*. 2014;9(3):e91442.

33. Peterson RE, Maes HH, Lin P, Kramer JR, Hesselbrock VM, Bauer LO, et al. On the association of common and rare genetic variation influencing body mass index: a combined SNP and CNV analysis. *BMC Genomics*. 2014;15:368.

34. Goumidi L, Cottel D, Dallongeville J, Amouyel P, Meirhaeghe A. Effects of established BMIassociated loci on obesity-related traits in a French representative population sample. *BMC Genet*. 2014;15:62.

35. Horne BD, Anderson JL, Carlquist JF, Muhlestein JB, Renlund DG, Bair TL, et al. Generating genetic risk scores from intermediate phenotypes for use in association studies of clinically significant endpoints. *Ann Hum Genet*. 2005;69(Pt 2):176-86.

36. Belsky DW, Moffitt TE, Sugden K, Williams B, Houts R, McCarthy J, et al. Development and evaluation of a genetic risk score for obesity. *Biodemography Soc Biol*. 2013;59(1):85-100.

37. Lin X, Song K, Lim N, Yuan X, Johnson T, Abderrahmani A, et al. Risk prediction of prevalent diabetes in a Swiss population using a weighted genetic score--the CoLaus Study. *Diabetologia*. 2009;52(4):600-8.

38. Derks EM, Vorstman JA, Ripke S, Kahn RS, Schizophrenia Psychiatric Genomic C, Ophoff RA. Investigation of the genetic association between quantitative measures of psychosis and schizophrenia: a polygenic risk score analysis. *PloS one*. 2012;7(6):e37852.

39. Rouskas K, Kouvatsi A, Paletas K, Papazoglou D, Tsapas A, Lobbens S, et al. Common variants in FTO, MC4R, TMEM18, PRL, AIF1, and PCSK1 show evidence of association with adult obesity in the Greek population. *Obesity*. 2012;20(2):389-95.

40. Ntalla I, Panoutsopoulou K, Vlachou P, Southam L, William Rayner N, Zeggini E, et al. Replication of established common genetic variants for adult BMI and childhood obesity in Greek adolescents: the TEENAGE study. *Annals of human genetics*. 2013;77(3):268-74.

41. Warrington NM, Howe LD, Wu YY, Timpson NJ, Tilling K, Pennell CE, et al. Association of a body mass index genetic risk score with growth throughout childhood and adolescence. *PLoS ONE*. 2013;8(11):e79547.

42. Hung CF, Rivera M, Craddock N, Owen MJ, Gill M, Korszun A, et al. Relationship between obesity and the risk of clinically significant depression: Mendelian randomisation study. *Br J Psychiatry*. 2014;205(1):24-8.

43. Hung CF, Breen G, Czamara D, Corre T, Wolf C, Kloiber S, et al. A genetic risk score combining 32 SNPs is associated with body mass index and improves obesity prediction in people with major depressive disorder. *BMC Med*. 2015;13:86.

44. Wali JA, Thomas HE, Sutherland AP. Linking obesity with type 2 diabetes: the role of T-bet. *Diabetes, metabolic syndrome and obesity : targets and therapy.* 2014;7:331-40.

45. Rui L. SH2B1 regulation of energy balance, body weight, and glucose metabolism. *World journal of diabetes*. 2014;5(4):511-26.

46. Choong E, Quteineh L, Cardinaux JR, Gholam-Rezaee M, Vandenberghe F, Dobrinas M, et al. Influence of CRTC1 polymorphisms on body mass index and fat mass in psychiatric patients and the general adult population. *JAMA psychiatry*. 2013;70(10):1011-9.

47. Comparative study of the efficacy of dipyrone, diclofenac sodium and pethidine in acute renal colic. Collaborative Group of the Spanish Society of Clinical Pharmacology. *European journal of clinical pharmacology*. 1991;40(6):543-6.

48. American Diabetes A, American Psychiatric A, American Association of Clinical E, North American Association for the Study of O. Consensus development conference on antipsychotic drugs and obesity and diabetes. *Diabetes care*. 2004;27(2):596-601.

49. Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F, et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. *Nature*. 2010;467(7317):832-8.

50. Heid IM, Jackson AU, Randall JC, Winkler TW, Qi L, Steinthorsdottir V, et al. Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. *Nature genetics*. 2010;42(11):949-60.

51. Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. *Nature genetics*. 2010;42(7):579-89.

52. Cross-Disorder Group of the Psychiatric Genomics C, Smoller JW, Craddock N, Kendler K, Lee PH, Neale BM, et al. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. *Lancet*. 2013;381(9875):1371-9.

53. Winham SJ, Colby CL, Freimuth RR, Wang X, de Andrade M, Huebner M, et al. SNP interaction detection with Random Forests in high-dimensional genetic data. *BMC bioinformatics*. 2012;13:164.

54. Voight BF, Kang HM, Ding J, Palmer CD, Sidore C, Chines PS, et al. The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. *PLoS genetics*. 2012;8(8):e1002793.

55. Lett TA, Wallace TJ, Chowdhury NI, Tiwari AK, Kennedy JL, Muller DJ. Pharmacogenetics of antipsychotic-induced weight gain: review and clinical implications. *Mol Psychiatry*. 2012;17(3):242-66.

56. Che R, Motsinger-Reif AA. A new explained-variance based genetic risk score for predictive modeling of disease risk. *Statistical applications in genetics and molecular biology*. 2012;11(4):Article 15.

57. R Core Team. R: A language and environment for statistical computing, R Fondation for Statistical Computing, Vienna, Austria. Vienna, Austria: R Development Core Team; 2013. Available at: http://www.R-project.org. Accessed June 11, 2014.

58. Venables WN, Ripley BD. *Modern Applied statistics with S*: Springer;2002.

59. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MH, et al. Generalized linear mixed models: a practical guide for ecology and evolution. *Trends in ecology & evolution*. 2009;24(3):127-35.

60. Wolfinger R, and O'connell, M. Generalized linear mixed models: a pseudo-likelihood approach. *Journal of Statistical Computation and Simulation*. 1993;48:233-43.

61. Lin X, Zhang D. Inference in generalized additive mixed models by using smoothing splines. *J R Statist Soc B*. 1999;61(2):381-400.

62. Wood SN. GAMMs with R. In: Carlin BP, Chatfield C, Tanner M, Zidek J, eds. *Generalized Additive Models - An Introduction with R*. Broken: Chapman & Hall/CRC; 2006. p. 319-24.

63. Dorajoo R, Blakemore AI, Sim X, Ong RT, Ng DP, Seielstad M, et al. Replication of 13 obesity loci among Singaporean Chinese, Malay and Asian-Indian populations. *International journal of obesity*. 2012;36(1):159-63.

64. Wen W, Cho YS, Zheng W, Dorajoo R, Kato N, Qi L, et al. Meta-analysis identifies common variants associated with body mass index in east Asians. *Nature genetics*. 2012;44(3):307-11.

65. Keshavarz P, Inoue H, Nakamura N, Yoshikawa T, Tanahashi T, Itakura M. Single nucleotide polymorphisms in genes encoding LKB1 (STK11), TORC2 (CRTC2) and AMPK alpha2-subunit (PRKAA2) and risk of type 2 diabetes. *Mol Genet Metab*. 2008;93(2):200-9.

66. Koo SH, Flechner L, Qi L, Zhang X, Screaton RA, Jeffries S, et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. *Nature*. 2005;437(7062):1109-11.

67. Zhou XY, Shibusawa N, Naik K, Porras D, Temple K, Ou H, et al. Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREB-binding protein. *Nature medicine*. 2004;10(6):633-7.

68. Wang Y, Inoue H, Ravnskjaer K, Viste K, Miller N, Liu Y, et al. Targeted disruption of the CREB coactivator Crtc2 increases insulin sensitivity. *Proc Natl Acad Sci U S A*. 2010;107(7):3087-92.

69. Tomlinson JW, Walker EA, Bujalska IJ, Draper N, Lavery GG, Cooper MS, et al. 11betahydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. *Endocr Rev*. 2004;25(5):831-66.

70. Masuzaki H, Paterson J, Shinyama H, Morton NM, Mullins JJ, Seckl JR, et al. A transgenic model of visceral obesity and the metabolic syndrome. *Science*. 2001;294(5549):2166-70.

71. Paterson JM, Morton NM, Fievet C, Kenyon CJ, Holmes MC, Staels B, et al. Metabolic syndrome without obesity: Hepatic overexpression of 11beta-hydroxysteroid dehydrogenase type 1 in transgenic mice. *Proc Natl Acad Sci U S A*. 2004;101(18):7088-93.

72. De Hert M, Dekker JM, Wood D, Kahl KG, Holt RI, Moller HJ. Cardiovascular disease and diabetes in people with severe mental illness position statement from the European Psychiatric Association (EPA), supported by the European Association for the Study of Diabetes (EASD) and the European Society of Cardiology (ESC). *Eur Psychiatry*. 2009;24(6):412-24.

73. Power ML, Schulkin J. Sex differences in fat storage, fat metabolism, and the health risks from obesity: possible evolutionary origins. *The British journal of nutrition*. 2008;99(5):931-40.

Fig 1. Evolution of BMI over time between Genetic Risk Score extreme percentiles

Boxplots show median values of BMI for each time of the treatment duration (solid horizontal line), 25th and 75th percentile values (box outline), the lowest and upper value within 1.5 Interquartile range (whiskers) and outlier values (open circles). (n) corresponds to individuals.

Characteristics	Sample 1 n = 425	Sample 2 n = 148	Sample 3 n = 177	Combined sample n=750
Male.%	43	55	62	50
Age. median (range), vears	51 (13-97)	42 (19-64)	42 (18-69)	45 (13-97)
Diagnosis	- ()		()	- ()
Psychotic disorders,%	28.6	24.5	9.0	31.4
Schizo-affective disorders,%	7.3	17.0	12.1	10.3
Bipolar disorders,%	18.8	34.7	16.8	21.5
Depression disorders,%	16.4	17.0	12.7	15.7
Others diagnosis,%	28.9	6.8	14.5	21.2
Initial BMI status [‡]				
BMI, median (range), kg/m ² 25 kg/m ² ≥ Initial BMI<30 kg/m ² ,	23 (13-44)	25 (15-46)	24 (16-46)	24 (13-46)
%	22	37	31	28
Initial BMI≥ 30 kg/m², %	13	16	15	14
Current BMI status [#]				
BMI, median (range), kg/m ² 25 kg/m ² \geq Current BMI<30	25 (15-50)	28 (16-40)	25 (17-43)	26 (15-50)
kg/m ² , %	25	38	29	27
Current BMI≥ 30 kg/m², %	18	35	18	21
Initial waist circumference [‡]				
WC, median (range), cm High WC \geq 94 cm (male), \geq 88	87 (54-138)			87 (54-138)
cm (female), %	41			41
Current waist circumference [#]				
WC., median (range), cm High WC≥ 94 cm (male), 88 cm	93 (57 – 162)		92 (73-136)	90 (57-162)
(female), %	51		53	51
Initial Lipid status [‡]				
High LDL cholesterol, % (n) ^a	9			9
High triglycerides, % (n) ^b	18			18
Low HDL cholesterol, % (n) ^c	23			23
Current Lipid status [#]				
High LDL cholesterol. % (n) ^a	15			15
High triglycerides. % (n) ^b	28			28
Low HDL cholesterol, % (n) ^c	26	26	17	26
Smoker, %	46	59	76	56

Table 1. Description of demographic and clinical psychiatric Caucasian samples.

	Sample 1 Sample 2 Sample 3 Combined		Combined sample		
Characteristics	n = 425	n = 148	n = 177	n=750	
Prescribed psychotropic drug ^{\$}					
Amisulpride, %	8	-	11	7	
Aripirazole, %	8	-	7	6	
Clozapine, %	8	14	9	9	
Olanzapine, %	11	16	12	12	
Quetiapine, %	35	20	24	29	
Risperidone, %	15	17	17	16	
Lithium, %	8	20	12	11	
Valproate, %	5	14	8	8	
Treatment duration, median					
(range), months	6 (1-12)	27 (3-333)	36 (1-390)	12 (1-390)	

‡ Before the current psychotropic treatment

For Sample 2 and 3 : current observation ; for Sample 1 : last observed data

-- Missing clinical values or obtained in non fasting conditions

^a High LDL cholesterol : equal or higher than 4.1 mmol/L

^b High triglycerides : equal or higher than 2.2 mmol/L

^c Low HDL cholesterol : less than 1 mmol/L

W.C: Waist circumference

^{\$} 2% of the Sample 1, was under paliperidone treatment

Table 2. Significant results obtained from individual SNP association with BMI in the psychiatric sample 1 at baseline and at 12 months of follow-up treatment.

		N de i en ducin en elle le	Difference of predicted BMI p			
nearest gene	SINP	Major/minor allele	at baseline	at 12 month of treatment	p-value	
CADM2	rs13078807	A>G	0.93 [0.89 – 1.97]	1.04 [-0.14 – 2.22]	0.01#	
HSD1181	rs3753519*	C>T	-2.11 [-3.22 – (-)1.00]	-2.35 [-3.60 – (-)1.10]	0.00001	
CRTC2	rs8450	G>A	0.62 [0.28 – 1.62]	0.69 [-0.44 – 1.83]	0.04 [#]	

CI: Confidence Interval. Predicted differences of BMI were calculated for polymorphisms that showed significant results (p-value<0.05).*a dominant model was used for this SNP(carriers of the variant allele were compared to wild type).[#]not significant after Bonferroni correction

Table 3. Weighted GRS association with BMI obtained from 32 Genome Wide Association Studies SNPs.

	n	BMI difference l	p-value		
		at baseline	at 12 months	at 24 months	
Sample 1*	425	2.01 [0.52 - 3.51]	2.26 [0.48-4.04]		0.009
Sample 2 **	148	-0.51 [-3.02 – 2.00]	-0.61 [-3.61 – 2.40]	-0.73 [-4.67 – 3.22]	0.7
Sample 3 **	177	2.54 [0.26-4.81]	2.75 [0.23-5.27]	2.99 [-0.01 - 6.00]	0.04
Samples 2 and 3 **	325	1.43 [-0.27 – 3.13]	1.61 [-0.33 – 3.56]	1.82 [-0.59 – 4.24]	0.1
All samples combined	750	1.68 [0.65 - 2.72]	1.89 [0.71 - 3.06]		0.002
FEND patients*	116	3.29 [0.79-5.78]	3.79 [0.88-6.71]		0.008
Men	375	2.59 [1.45-3.74]	2.91 [1.06-4.22]		0.0002
Women	375	0.76 [-0.55 – 2.06]	0.84 [-0.63 – 2.32]		0.3

GRS: Genetic Risk Score, p95: percentile 95 of GRS, p5: percentile 5 of GRS.

*follow-up to 12 months of treatment. **follow-up to 24 months of treatment.

FEND: First Episode and Newly Diagnosed Patients

Table 4. Description of 4 quartiles of GRS for 32 SNP in the combined sample.

GRS (n)	1st quartile 192	2nd quartile 170	3rd quartile 186	4th quartile 202	p-value
Score, mean (SD)	0.87 (0.06)	0.97 (0.02)	1.05 (0.02)	1.16 (0.07)	0.0001
Men, %	47	55	44	53	0.1
Age, median (range), years	47 (17-96)	47 (13-90)	48 (14-97)	48 (15-93)	0.9
Initial BMI (kg/m ²), median (range) *	23.2 (13-46)	24.6 (15-39)	25.1 (16-46)	25.1 (14-39)	0.0005
Current BMI (kg/m ²) [#] , median (range)	24.3 (16-40)	25.2 (15-40)	25.9 (16-50)	25.9 (17-41)	0.04
First episode and newly diagnosed					0.6
patients;%	13	15	16	17	0.0
Treatment prescription					
Ami, Ari, Li, Quet, Risp	74	70	71	67	0 5
Clo, Olan, Valp	26	30	29	33	0.5
Treatment duration, median (range),					0.0
months	6 (1-23)	3 (1-21)	3 (1-24)	3 (1-24)	0.9
High waist circumference (WC ≥ 94 cm men,					0.2
88 cm women); %	40	47	49	53	0.2
Diagnostic, %					
Psychotic disorders	42	42	38	46	
Bipolar disorders	21	22	21	21	0.6
Depression disorders	17	15	17	14	

Ami: amisulpride, Ari: aripiprazole, Li: lithium, Quet: quetiapine, Risp: risperidone, Clo: clozapine, Olan: olanzapine, Valp: valproate

* Before the current psychotropic treatment

Last observed data