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Introduction 

For over two decades cognitive neuroscience has been shaping our understanding of perception, 

cognition and consciousness 1. The term has been coined to describe the translation between 

cognition, the biological processes of the brain and computational modeling 2,3. From early on 

several fields of high clinical relevance were developed under the umbrella of cognitive 

neuroscience: neuropsychology 4, neuroimaging 5, neural plasticity 6 and neurorehabilitation 7.  

 

Stroke rehabilitation should benefit substantially from cognitive neuroscience in the coming 

years. To illustrate this point we draw here upon a series of well established studies and outline 

clinical trials which would be useful to perform. The conceptual shift from classical aphasic 

syndromes to cognitive models of speech and language processing 8 opened new vistas for 

rehabilitation, and the new therapeutic interventions are or will be soon ready for clinical trials. 

Predicting outcome is, however, still difficult 9, partially due to the poor understanding we have 

of neural mechanisms supporting recovery of cognitive functions. The investigation of simpler 

models such as the dual-stream model for auditory processing, rather than the very complex 

networks involved in speech and language processing, may offer useful insights into postlesional 

plasticity and reorganization. A very intriguing development is the use of brief behavioral 

interventions, such as prismatic adaptation in neglect, which are believed to enhance plasticity 

and/or alter the organization of the contralesional hemisphere 10. There is currently a 

“translational gap” between the demonstrated effects of prismatic adaptation in specific tasks and 

the clinically relevant reduction of neglect-related disability 11. To bridge this gap we need to 

understand better the mechanisms which underlie the effect of prismatic adaptation and to define 
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more precisely the indications for this treatment so that more focused randomized controlled 

trials can be carried out.  

 

From the Wernicke-Lichtheim-Geschwind model to current concepts of language 

processing 

Geschwind’s very influential re-analysis of aphasic syndromes emphasized a mechanistic model 

of language processing by Wernicke’s areas for comprehension and Broca’s area for production 

as well as by the connecting white matter pathways 12. Together with a large body of lesion 

studies, it determined the diagnostic tools we still use and shaped our bedside approach to 

aphasia. Its relevance for neurorehabilitation was, however, rather limited. The rehabilitation 

strategies that we use for aphasia today are based on models of speech and language processing 

which combine cognitive and biological approaches. 

 

Over four decades after Geschwind’s seminal paper, combined evidence from imaging and 

lesion studies, supported by data from non-human primates, offers a much more complex picture 

of the neural organization underlying language functions. Based on research in non-human 

primates, the dual-stream model for auditory processing offers a useful framework for 

understanding the neural substrates responsible for speech and language in humans 13,14. It posits 

the existence of a ventral stream, involved in comprehension, and of a dorsal stream, linking the 

auditory cortex to articulatory networks. In contrast to the Wernicke-Lichtheim-Geschwind 

model, the dual-stream model includes a right hemispheric contribution for the ventral, but not 

the dorsal, stream 13. The neurocognitive approach to grammatical functions, based on 
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neuroimaging and lesion studies, highlights the importance of specialized networks, which are 

partially co-extensive with the ventral and dorsal streams in the left hemisphere 15,16. 

 

The rehabilitation of aphasias benefits largely from cognitive neuroscience 17. To name a few 

examples, the understanding of Hebbian mechanisms, i. e. the increase of synaptic efficacy by 

repeated activation of the postsynaptic neuron by the corresponding presynaptic input 18, 

suggested the use of intensive practice in rehabilitation, which indeed proved to be efficient 19,20. 

The link between the auditory and motor cortices, highlighted in the dual-stream model, was the 

starting point of constrained induced aphasia therapy 21. For other approaches which have been 

practiced for decades, cognitive neuroscience helped to understand the mechanisms of action; 

this is the case for melodic intonation therapy, which appears to rely on the mirror neuron system 

and multimodal interactions as well as on postlesional plasticity within the language and music 

systems 22.  

 

Functional imaging in aphasic patients reveals changes in language organization, which is 

believed to underlie recovery and to reflect the effects of treatment 23. After stroke in left 

hemispheric language areas, the non-injured language networks, which tend to be poorly 

activated in the acute stage, are transiently up-regulated two weeks later, including the 

recruitment of additional regions in the right hemisphere 24. In the chronic stage neural activity 

induced by language tasks involves a complex network; within the left hemisphere this network 

corresponds to a reconstituted language-specific system, and in the right hemisphere to the 

recruitment of the homotopic regions. Based on a large body of activation studies, the latter has 

been interpreted either as an important contribution to recovery or a detrimental side-effect due 
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to the loss of transcallosal inhibition; a third option needs yet to be tested, namely that parts of 

the activated networks are not language-specific, but reflect the much greater cognitive load 

which the task represents for the aphasic patient 25. 

 

Long-term recovery of language after stroke is variable. The ischemic penumbra allows a fair 

prediction of functional improvement, which will take place during the acute stage 26. The 

recovery during the following months cannot, however, be predicted reliably on the basis of 

lesion size, language performance in the acute stage, age or education 9. Current research in 

predictive models of recovery aims at large scale databases, comparing anatomical and 

functional data 27,28. The lack of predictive power is possibly due to our still limited 

understanding of postlesional reorganization and the mechanisms that govern it.  

 

The evidence for the effectiveness of speech and language therapy is encouraging but not 

conclusive. Although a considerable number of studies were found to be indicative of empirical 

support for aphasia therapy 20,29, a critical review of the whole body of randomized controlled 

trials is more reserved. The latter concludes that there is “some evidence of the effectiveness of 

speech and language therapy ... in terms of improved functional communication, receptive and 

expressive language” 30. Furthermore, the same review draws attention to methodological issues, 

which should be avoided in future trials. 

 

In clinical practice our rehabilitation programs should use the new aphasia interventions for 

which the current evidence is encouraging. There is, however, a great need for clinicians to 

participate in research projects, so that the state of evidence can be improved. Collaborative 
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research with cognitive neuroscientists should help to sharpen indications for specific therapeutic 

interventions. The clinical relevance of interventions needs to be tested in large-scale 

randomized controlled trials with appropriate outcome measures. 

 

Analyzing postlesional plasticity by means of the dual-stream model of auditory processing 

Specialized perceptual networks which rely on finely tuned parallel and hierarchical processing 

offer a unique opportunity to investigate postlesional plasticity. In contrast to the highly complex 

networks which underlie speech and language processing, these models are simpler and allow 

addressing specific questions: What happens when a specialized network is damaged? Are the 

effects different in the acute and in the chronic stages? What happens to specialized networks 

(within an intact hemisphere) if the contralateral hemisphere is damaged? Work on non-verbal 

auditory processing offers such an insight. The two processing streams, which were originally 

described in non-human primates 31,32, were subsequently demonstrated in man in a series of 

fMRI studies (e. g. 33,34). A very similar organization was found in both hemispheres of normal 

subjects, where the temporal convexity is predominantly involved in sound recognition and the 

parietal convexity in auditory spatial aspects. The organization of the ventral stream is highly 

complex and proceeds in hierarchical steps from the analysis of spectro-temporal features of 

sounds within the early-stage auditory areas on the supratemporal plane 35 to semantic encoding 

near the temporal pole (e. g. 36–38). Specific classes of auditory stimuli involve other areas, in 

addition to the auditory regions on the temporal cortex, such as environmental sounds related to 

actions, which co-activate parts of the motor, premotor and prefrontal cortices (e.g. 37,39–41; 

Fig.1).  
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The recognition of an environmental sound follows a temporal sequence of processing steps, as 

demonstrated in a series of electrophysiological studies 43. The neuronal networks within the 

temporal lobe differentiate between sounds of living vs man-made categories as early as 70 ms 

post stimulus onset 44 and between the (non-verbal) vocalizations of humans vs animals at ca 170 

ms 38. Sounds related to actions yield different neural activity in the premotor cortex at ca 300 ms 

40. The neural networks within the temporal lobe keep track of prior exposure to the same sound 

object, even if other sounds have been heard in between; the so called repetition priming effect 

occurs very early, at 165-215 ms 45. It is essentially semantic 38 and persists even after frequent 

exposure to the implicated sound objects 46. The auditory representations within the two streams 

are highly plastic and can be modulated by even brief training 47. 

Large focal lesions centered on one or the other stream were shown to disrupt selectively the 

corresponding function, thus confirming the critical role and the specificity of the two streams. In 

cases of large lesions, these deficits persist into the chronic stage. Damage to one stream but not 

the other can lead to situations where a patient recognizes environmental sounds perfectly well, 

but is unable to indicate where they are, or another patient cannot recognize environmental 

sounds but can indicate with precision where they come from 48–52.  

 

The specificity of the two streams is lost during the acute and postacute stages of stroke. This 

was demonstrated by the effects of small focal lesions in the acute . Although specific deficits 

were sometimes associated with lesions of the corresponding stream this was often not the case; 

a striking example of this is provided by patients with normal sound recognition but with 

auditory localization deficits associated with small focal lesions of the ventral stream 53. 

Auditory deficits associated with small focal lesions in the acute stage have been shown to 

7 
 



recover subsequently, independently of whether there was congruence between the deficit and 

the specialized network 51. Sound recognition or localization deficits present during the postacute 

stage (14-30 days post-stroke) tended to be associated with larger lesions that tended to encroach 

onto the corresponding specialized network; the recovery rate was lower (about 43%). Similarly, 

sound recognition or localization deficits present during the early chronic stage (> 1 month post 

stroke) tended to be associated with even larger lesions that tended to be centered on the 

corresponding specialized network; the recovery rate was low (about 33%; 51). 

 

Focal unilateral lesions were shown to have an impact on the organization of the ventral and 

dorsal streams in the contralateral, intact hemisphere. The same fMRI paradigm that revealed the 

ventral and dorsal stream specificity in normal subjects 33 was applied to patients with a first 

focal lesion. Within the contralesional hemisphere sound recognition tasks no longer activated 

specifically the ventral stream, nor did auditory spatial tasks the dorsal stream; both types of 

tasks co-activated a common region within the upper temporal lobe 42. This loss of specificity is 

very likely the result of profound changes in transmitter receptors which were shown to occur 

throughout the cerebral cortex after focal lesions in animal models, including an up-regulation of 

NMDA receptors and a down-regulation of GABAA receptors 54. The GABAA receptors were 

shown to be modulated in the human cortex; in postacute and chronic stroke the anatomically 

intact auditory cortex displayed a layer-selective downregulation of the α2 subunit, whereas the 

α1, α3 and β2/3 subunits of the GABAA receptor and the GABAB receptors maintained normal 

levels of expression 55. 
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Whereas impairments of non-verbal auditory functions have a clinical impact, e. g. auditory 

agnosia as indicator of the severity in aphasia 56 and auditory spatial deficits in unilateral neglect 

57, the understanding of the underlying plasticity and reorganization is of conceptual importance. 

One take-home message is that the anatomically intact, contralesional hemisphere changes its 

intrinsic organization and opens a window of increased plasticity. This concept is driving 

currently research on therapeutic interventions in neglect. 

 

Bottom-up approaches to neglect rehabilitation – understanding the underlying 

mechanisms 

Left unilateral neglect is a frequent, albeit heterogeneous condition in right hemispheric stroke. 

Patients fail to respond or to orient spontaneously to stimuli presented on the left side and seem 

unaware of this part of space 58–60. The intriguing nature of the deficit, its high incidence and its 

negative impact on recovery have initiated a highly productive research field in cognitive and 

clinical neuroscience which has led to the development of several rehabilitation techniques 11,61–

64. 

 

Several reviews and meta-analyses noted that although therapeutic interventions tended to 

alleviate neglect symptoms, this was not the case in all studies 20,61,63,65–68 . As pointed out by a 

recent Cochrane meta-analysis, "the effectiveness of cognitive rehabilitation interventions for 

reducing the disabling effects of neglect and increasing independence remains unproven ", 

partially because available studies do not always report long term outcome and effects on 

activities of daily living 69. An additional challenge for randomized controlled trials and their 

meta-analyses is the heterogeneity of neglect syndromes, of which each may respond differently 
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to specific therapeutic paradigms. There is a great need to understand the mechanisms underlying 

these paradigms and to define indications for specific treatments. 

 

Rehabilitation methods for neglect rely either on top-down approaches, i. e. on increasing 

voluntarily attentional load to the left side, or on bottom-up mechanisms, i. e. on the modulation 

of spatial representations by means of sensory stimulations (for review e. g. 70). Bottom-up 

approaches include vestibular stimulation 71, neck muscle vibration 72, optokinetic stimulation 73 

and prismatic adaptation 74. The latter is based on a large body of evidence from basic and 

clinical studies, which offer an interesting insight into the plasticity of spatial representations in 

normal subject and in stroke patients. 

 

The prismatic adaptation therapy consists of a visuo-motor adaptation to right-deviating prisms 

during a pointing task, which induces an aftereffect characterized by pointing errors to the left. 

During the aftereffect neglect symptoms were shown to decrease on several standard 

neuropsychological tests such as line bisection, copying a simple drawing, drawing of a daisy 

from memory or reading 74. Further studies have demonstrated positive effects on wheelchair 

navigation 75, postural control 76, mental imagery 77,78, haptic spatial judgments 79, visual search 

80, tactile 81 and auditory attention 82,83 and activities of daily living 84. When prismatic adaptation 

is applied in a single brief session, the alleviation of neglect symptoms is limited to a few hours 

74,77,85. In several studies prismatic adaptation was administered daily over 2 weeks and the 

improvement lasted for up to 6 months 84,86–89. However, one study failed to show any significant 

improvement 90 and another found only a transient one 91. 

 

10 
 



The wide range of tasks and activities which can be improved by prismatic adaptation makes it a 

very desirable tool for neglect rehabilitation 92. However, not all neglect patients respond equally 

well to prismatic 84,93. Different types of neglect may be more or less susceptible to its effects 94, 

which may explain contradictory results in prospective studies 84,86,90,91,95. A recent review 

advocated against a general administration and proposed to apply prismatic adaptation 

specifically to neglect patients with motor-intentional aiming deficits 11. A better understanding 

of the neural mechanisms underlying the therapeutic effect of prismatic adaptation may indeed 

help to identify patients who will be good responders (Fig. 2). 

 

Activation studies in normal subjects revealed two types of neural mechanisms which may 

underlie the beneficial effects of prismatic adaptation in neglect patients. A series of studies 

focusing on the adaptation task itself showed that, during the pointing with prisms, normal 

subjects experience a profound modulation of neural activity within the posterior parietal cortex 

and cerebellum 96–99. Such a modulation may occur in neglect patients and favour postlesional 

reorganization of the attentional parieto-frontal networks 92. A recent study compared visual field 

representations before and after a brief exposure to prismatic adaptation; significant changes 

were found bilaterally in the inferior parietal lobule, corresponding to an increase of the 

ipsilateral field representation in the left and a decrease in the right inferior parietal lobule 100. 

Thus, in normal subjects prismatic adaptation reverses the right hemispheric dominance for 

visual space and the left hemisphere becomes competent both for right and left space. Increasing 

left hemispheric competence for the whole space would be highly beneficial to neglect patients. 

Two activation studies in neglect patients have demonstrated that prismatic adaptation enhances 

left hemispheric involvement in visual tasks. A PET study has shown that the beneficial effect of 
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prismatic adaptation on neglect symptoms correlates with bilateral modulation of cortical regions 

involved in spatial cognition 101 and a recent fMRI study has shown an increase in fronto-parietal 

regions bilaterally during bisection and visual search tasks 102. Both studies involved small 

numbers of patients (6 and 7) and further investigations are needed to assess fully the effects on 

the representation of visual space. 

 

Conclusions 

Cognitive neuroscience has had so far a very positive impact on stroke rehabilitation. To increase 

this impact in the future we need to implement the translation from bed to bedside to large scale 

clinical trials. The refinement of cognitive models, as witnessed for speech and language 

processing during the last two decades, led to very efficient, new rehabilitation strategies for 

aphasia. For neglect, bottom-up and top-down approaches introduced a wide range of new 

therapeutic options. Several issues remain, however, to be explored. Not all patients respond 

equally well to the one or the other therapeutic intervention. The current challenges lie in 

identifying correctly the indications for specific approaches, ie. in defining the profile of patients 

who will respond well to a specific treatment. This requires a better understanding of the 

mechanisms underlying the effects of treatments. Although studies in normal subjects contribute 

decisively to this, more hypothesis-driven studies need to be carried out in patients, since the 

finely tuned parallel and hierarchical processing networks which underlie cognitive functions 

experience profound reorganization after stroke, even in regions spared by the lesion and the 

penumbra. The therapeutic interventions with their indications need then to be tested in large-

scale randomized controlled trials, which take into account long-term outcome in terms of 

activities of daily living and of social and professional integration. 
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Figure 1. The ventral and dorsal auditory streams in a normal subject (A; adapted from 33 and in 
a patient with a right temporal lesion (B-D; adapted from 42). In the top two panels, areas more 
activated in recognition than in localization are shown in green, areas more activated in 
localization than in recognition are shown in red. Note the loss of the dual-stream dichotomy 
within the anatomically intact left hemisphere in B, due to the overlap of the regions which were 
activated by the sound recognition (C) and by the sound localization tasks (D).  
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Figure 2. Refining indications for neglect interventions. Instead of enrolling all neglect patients 
in a trial with a specific therapeutic intervention (e. g. Interv 3), only specific types of neglect (e. 
g. type A) may be included. Such an approach has been proposed for prismatic adaptation in 
neglect characterized by motor-aiming deficits 11. Alternatively a “probe” may be used to 
identify good responders to the treatment; for prismatic adaptation this could be the presence of 
the aftereffect after a single presentation 84.  
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