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Abstract  

Plants such as Arabidopsis thaliana respond to foliar shade and neighbors who may become 

competitors for light resources by elongation growth to secure access to unfiltered sunlight. 

Challenges faced during this Shade Avoidance Response (SAR) are different under a light-

absorbing canopy and during neighbor detection where light remains abundant. In both situations 

elongation growth depends on auxin and bHLH class transcription factors of the Phytochrome 

Interacting Factor (PIF) class. Using a computational modeling approach to study the SAR 

regulatory network, we identify and experimentally validate a novel role for HFR1 (long 

Hypocotyl in Far Red 1) a negative regulator of the PIFs. Moreover, we find that during neighbor 

detection, growth is promoted primarily by the production of auxin. In contrast, in true shade the 

system operates with less auxin but with an increased sensitivity to the hormonal signal. Our data 

suggest that this latter signal is less robust, which may reflect a cost-to-robustness trade-off, a 

system trait long recognized by engineers and forming the basis of information theory.  

 

Significance statement (120 words max) 

Plants sense foliar shade and neighbors who may become competitors for light.  Shade-sensitive 

species elongate in response to both situation to enhance access to unfiltered sunlight, which is 

known as the Shade Avoidance Response (SAR). During neighbor detection plants have access to 

plenty of light (energy resources) while in true shade light resources are scarce. Our analysis of 

the molecular mechanisms underlying SAR under these contrasting conditions shows that light 

intensity balances the production and sensitivity of the growth hormone auxin. In foliar shade the 

production of auxin is reduced while the downstream sensitivity to the auxin signal is enhanced. 

This hints at a resource-aware signaling where the strength of the hormonal signal is tuned to the 



available resources. 

  



\body 

Introduction 

Being photoautotrophic and inescapably exposed to their environment, plants have developed 

sophisticated ways to adapt to their surroundings and secure access to light (1). For example, 

when grown in close proximity to neighboring plants, many species develop elongated stems and 

smaller leaves, a behavior called the Shade Avoidance Response (SAR) (Fig. 1A) (2). This 

increases their chance of reaching out to the sunlight above other plants and thus constitutes a 

competitive advantage (3). Committing additional resources to upward growth is so crucial that it 

happens at the expense of other functions, such as defense against pest and pathogens (4). An 

appropriate allocation of resources is vital for the plant, especially during its early and vulnerable 

developmental stage (5). 

 

The SAR is triggered not only by a reduction in the amount of light but also by specific 

modifications of its spectrum due to plant properties. Photosynthetic pigments absorb red (R) and 

blue (B) light, while plants scatter far-red light (FR) leading to a reduction of the R:FR ratio in 

their vicinity. Under a foliar canopy, access to exploitable light (the Photosynthetically Active 

Radiation, PAR) is reduced and plants sense both a low level of PAR and a low R:FR ratio. Due 

to FR scattering, a low R:FR ratio can also occur without a decrease in light resources when a 

plant is surrounded by non-shading neighbors (potential future competitors for light), a feature 

termed neighbor detection (2). Both neighbor detection and foliar shade lead to similar growth 

responses characterized in seedlings by the elongation of the embryonic stem (hypocotyl). 

However, it remains poorly understood how this can be achieved either in light-limiting 

conditions (true shade) or when plants retain access to the full solar spectrum (neighbor 



detection). In order to investigate how the R:FR ratio is transduced in these two contexts, we 

analyzed the effect of low R:FR in high versus low PAR using combined computational and 

biological approaches. As both pathways require the hormone auxin and the transcription factors 

PIF4 and PIF5 (Phytochrome Interacting Factor), we concentrated our analysis on these 

regulators of the SAR (6–8), leaving out other regulators such as PIF7, whose role have only 

been described in one of those conditions (9).  

Current knowledge regarding the interplay between PIF4/5 and auxin during the SAR can be 

summarized into a simplified model shown in Fig. 1B. The R:FR ratio is perceived by the 

phytochrome B (phyB) photoreceptor that shifts between an inactive (PrB) and active (PfrB) 

form. The active form interacts with and inactivates the PIFs, which are positive regulators of the 

SAR. In high R:FR, phyB is active and targets the PIFs for phosphorylation/degradation, thus 

repressing the activation of the shade-avoidance program (7, 9). In the vicinity of other plants, the 

low R:FR converts phyB into its inactive form and the PIFs are free to activate gene expression. 

In particular PIFs modulate the auxin pathway as well as the activation of a negative feedback 

loop involving the transcription factor HFR1 (10, 11). In low R:FR auxin is quickly produced by 

the TAA1-YUCCA pathway in the cotyledons (embryonic leaves). It is then transported to the 

hypocotyl to induce its elongation (12, 13).  

We modeled this regulation by a network model and rely on it to generate different hypotheses 

that were experimentally validated to untangle the interaction between the PIFs and the auxin 

pathways. This combination of computational modeling with experimental validation lead us to 

uncover that HFR1 regulates auxin levels independently of PIF4 and PIF5 and that the intensity 

of the auxin signal and its downstream sensitivity depend on the light intensity, i.e., on the 

availability of resources.  



Results 

Model assessment 

The network model (Fig. 1C) has the R:FR ratio as single input and the hypocotyl elongation as 

the single output. Molecular activities are represented by nodes that are connected to each other 

by arrows representing positive or negative effects. The network is modeled by a dynamical 

system, where the state of each node is determined by the equation in Fig. 1D at steady-state. The 

corresponding node is set to zero when the activity is null, for example in a mutant (see Material 

and Methods). 

The network model was first tested in one condition, true shade (low R:FR and low PAR). To do 

so, we determined hypocotyl length of seedlings grown for four days in high R:FR before being 

transferred to high or low R:FR for four more days. The elongation during these last four days 

was used as an experimental read-out corresponding to the elongation node of the network model 

(Fig. S1). This protocol was performed with the wild type (Col) and the following genotypes 

pif4pif5, hfr1, a taa1 allele called sav3-2, hfr1pif4pif5, hfr1taa1, pif4pif5taa1 (see Material and 

Methods).  

Rather than estimating or optimizing the parameters as it is usually done (14), we sample them 

from a distribution determined from the biological data. This parameter distribution is used to 

predict the hypocotyl elongation in a given condition. To evaluate the network model, a leave-

one-mutant-out cross-validation procedure was applied, and the mean prediction error was used 

as the model score. This makes the model evaluation independent from a particular choice of 

parameters (which are hardly accessible), takes into account the intrinsic variability of the 

biological data and avoids overfitting (see Material and Methods). This procedure was applied to 

test the ability of our initial model to predict the elongation of seedlings in response to high or 



low R:FR, when trained on all other mutants and the WT elongation data. This analysis showed 

that the elongation of many mutants was not properly predicted (Fig. 2A), hinting at some 

weakness in the model.  

 

HFR1 inhibits auxin production, while PIF4 and PIF5 regulate auxin sensitivity in true 

shade. 

To increase the prediction accuracy of the model, we tried to add edges to our network. Looking 

at the elongation data, we noticed that the hfr1pif4pif5 mutant differs from the pif4pif5 mutant, a 

fact that cannot be accounted for from the literature or in our present network, as it assumes that 

HFR1 acts through PIF4 and PIF5 (10). The best improvements we found was adding a negative 

edge from HFR1 to auxin or to the YUCs, the simulations being unable to significantly 

distinguish between both scenarios. This suggests that HFR1 (directly or indirectly) inhibits the 

production of auxin in a pathway parallel to PIF4 and PIF5 (Fig. 2B).  

This new edge significantly increased the network prediction accuracy, however, some mutants 

were still poorly predicted, especially the pif4pif5 double mutant (Fig. 2B). In a previous paper, 

we reported that PIF4 and PIF5 control auxin production but also sensitivity (8). We thus tested 

whether the model predicted that PIF4 and PIF5 increased auxin sensitivity rather than 

production or both. As sensitivity cannot be described with the equation of Fig. 1D, we model it 

as a product between PIF4/5 and auxin activities (see Material and Methods). This link rather 

than the PIF4/PIF5-YUCs link provided a strong improvement in the prediction accuracy (Fig. 

2C and Fig. S2) 

Taken together, the results of our network simulation suggest that 1) HFR1 inhibits auxin 



production 2) HFR1 also acts independently of PIF4 and PIF5 and 3) PIF4 and PIF5 regulate 

auxin sensitivity rather than production in low light intensity. 

To determine whether the excessive growth of hfr1 was mediated by an increase in auxin levels 

we first grew seedlings in the presence of the polar auxin transport inhibitor NPA, which totally 

suppressed growth (Fig. 3A). We then determined the sensitivity of hfr1 to the auxin biosynthesis 

inhibitor L-kynurenine (15). The hfr1 mutant was less affected by L-kynurenine than the wild 

type, suggesting that auxin production is up-regulated in hfr1 (Fig. 3B). This was further 

established by measuring auxin content, which was higher in hfr1 than in the wild type (Fig. 3C). 

To explore how HFR1 regulates auxin content, gene expression quantification using RT-qPCR 

was performed. YUC2, YUC8 and YUC9, which encode rate-limiting enzymes in auxin synthesis 

downstream of TAA1, were over-expressed in hfr1 (Fig. 3D and Fig. S3) (16). This is consistent 

with the finding that auxin levels are also increased in hfr1taa1 compared to taa1 (Fig. 3C). The 

second prediction from our simulations was that HFR1 represses auxin production independently 

from PIF4 and PIF5. The normal expression of YUC2, YUC8 and YUC9 in pif4pif5 and the 

elevated expression of YUC genes in hfr1pif4pif5 support this hypothesis (Fig. 3D and Fig. S3). 

The important role played by PIF7 during the shade avoidance prompted us to check whether 

HFR1 may act by inhibiting this member of the PIF family (9). Expression quantification of YUC 

genes in pif7, hfr1 and the double mutant showed that elevated YUC expression levels in hfr1 

depended partially or totally on PIF7 (Fig. S4). Finally, our third prediction - that PIF4 and PIF5 

rather act downstream of auxin production - is consistent with our gene expression data (Fig. 3D 

and Fig. S3). We thus propose that in low light, PIF4 and PIF5 modulate the low R:FR signal 

through HFR1 inhibition of auxin production and through their effect on auxin sensitivity.  

 



Stronger auxin production but weaker sensitivity in neighbor detection than in true shade 

To determine whether the same regulatory network explains the growth response during neighbor 

detection, we repeated this experimental protocol but in high PAR. The network providing the 

best predictions was the one where PIFs induce auxin production and do not influence auxin 

sensitivity (Fig. 4A and Fig. S5). This, along with the best-performing network obtained in true 

shade conditions, suggests a differential role for PIF4/5 in low and high light intensity in 

response to low R:FR treatment. This is consistent with our previously published results that 

PIF4 and PIF5 have a weaker effect on auxin sensitivity in high than in low light intensity (8). To 

test whether PIF4 and PIF5 have a differential effect on auxin production depending on PAR, we 

analyzed the sensitivity of pif4pif5 to yucasin, an inhibitor of YUC enzymes (17), in seedlings 

grown in high versus low PAR and subjected to low R/FR. Interestingly, pif4pif5 displayed an 

increased sensitivity to yucasin only in high PAR, consistent with the hypothesis that PIF4 and 

PIF5 primarily control YUC-mediated auxin production in this condition (Fig S6). 

More generally, the difference between the best-performing network in both conditions hints at a 

modulation of auxin production versus sensitivity dependent on light intensity. We thus propose 

that for low R:FR signaling, in low light intensity auxin sensitivity is enhanced, while auxin 

production is stronger in high light intensity. This would suggest an adaptive signaling depending 

on the availability of resources. As photosynthesis is less productive in low light, we 

hypothetized that less auxin would be produced (18, 19). Consequently the SAR would involve 

lower levels of auxin that would be compensated at least partially by a higher sensitivity.  

Supporting our hypothesis, we measured more auxin in the aerial part of the plant in high than in 

low light intensity (Fig. 4B). Another observation points to elevated auxin levels in high light that 

involves both TAA1-dependent and independent pathways. In our conditions, the taa1 mutant 



reacted to the low R:FR treatment in high but not in low light intensity, a response that was 

inhibited by the auxin perception inhibitor PEO-IAA (Fig. S7).  

The effect of light intensity on auxin production and sensitivity was further validated by the 

differential effect of competitive inhibitors (Fig. 4C). On one hand, the auxin biosynthesis 

inhibitor L-kynurenine was more efficient to inhibit hypocotyl elongation under low than under 

high light conditions, while the auxin perception inhibitor PEO-IAA was more efficient in high 

than in low light intensity. This is consistent with more auxin production under high PAR (see 

also Fig. 4B), while in low PAR auxin sensitivity is enhanced. The mechanisms underlying auxin 

sensitivity are presumably multifactorial, however, the effect of PEO-IAA suggested a possible 

role for auxin receptors (Fig. 4C). Our previous ChIP-seq. analysis identified AFB1, a gene 

coding for an auxin receptor, as a potential PIF5 target gene (8). We reasoned that to control 

auxin sensitivity of hypocotyl growth this gene should be expressed in hypocotyls. We thus 

analyzed expression of AFB1 in dissected seedlings grown in high or low PAR and transferred 

into low R:FR. Interestingly low R:FR led to up-regulation of AFB1 expression in hypocotyls 

while in cotyledons this response was marginal (Fig. 4D and Fig. S8). Moreover, low R/FR-

mediated AFB1 expression was significantly stronger when seedlings were grown in low than in 

high PAR (Fig. 4D). Finally, we showed that in seedlings grown in low PAR, low R/FR-

mediated AFB1 expression largely depended on PIF4 and PIF5 (Fig. 4E). 

Collectively, our results indicate that light quantity and thus resource availability determines the 

amount of auxin produced, in other words the hormonal signal intensity. A strong signal (high 

auxin level) is more costly and requires more resources, but is likely to be more robust than a 

cheaper and weaker signal. To verify whether this trade-off prediction is supported by our data, 

we fitted the data to a noise model that distinguishes the measurement noise from the auxin signal 



read-out noise (see Supplemental Information). The latter was indeed significantly reduced in 

high versus low PAR for Col, (F-test, p-value < 1e-7). This was reproduced in an independent 

dataset (F-test, p-value < 1e-4) but was not observed in pif4pif5 and hfr1pif4pif5 (Fig S9) in line 

with a putative role of the PIFs in the modulation of the auxin signal intensity. 

  



Discussion 

This work, which integrates modeling and experimental approaches, provides new insights both 

in terms of biology and methodology. Regarding the methodological aspects, it shows that 

although the model is very coarse, it can provide novel insights into a biological system, 

something that has long been argued by the boolean network community (20). However, in 

contrast to standard boolean networks and their continuous extension (21), our model can make 

accurate quantitative predictions, which is particularly appropriate for a system with a continuous 

output such as hypocotyl elongation. The accuracy of the predictions is attributable to the 

parameter sampling approach that we used. This approach, which is reminiscent of Approximate 

Bayesian Computation (see Material and Methods), marginalizes over the parameters and seems 

to extract the global constraints imposed by the network topology, irrespective of particular 

parameter values. This is why the coarseness of the model, assuming only linear and bilinear 

activation and inactivation, does not hamper the precision of the predictions.  

Regarding the biological aspects, our experimental validations made extensive use of drug 

treatments. This pharmacological approach allows us to deal with the genetic redundancy at the 

level of auxin biosynthesis and auxin receptor genes. Moreover, it allowed us to challenge auxin 

signaling or biosynthesis at specific times, which is otherwise only doable with conditional 

mutants that are, to our knowledge, unfortunately inexistent. Pharmacological experiments 

indicated that HFR1 inhibits auxin production (Fig. 3A and B), which was further demonstrated 

by direct auxin measurements (Fig. 3C). Moreover we show that in the conditions tested here 

HFR1 acts independently from PIF4 and PIF5 (Fig. 3D). In contrast, HFR1 acts partially but not 

exclusively through PIF7, as the epistatic relationship between hfr1 and pif7 is distinct for the 

expression of different YUC genes (Fig. S4). We propose that the elevated levels of auxin in hfr1 



are the result of the increased expression of the YUC genes in the mutant as it has been reported 

that over-expression of YUC1 can rescue the short hypocotyl phenotype of taa1 in shade (16). 

Consistent with this idea hfr1 partially suppresses the shade phenotype of taa1 (Fig. 2 and Fig. 

S5). 

More globally, our study indicates that the way the low R:FR signal is transduced into auxin 

signaling pathway depends on the availability of light resources (Fig. 4). Under high light 

conditions where resources are abundant, plants produce more carbohydrates that may be 

associated with more auxin production (18, 19). Thus in response to low R:FR a strong auxin 

signal can be produced. However, in a low light environment, the overall auxin production is 

weaker (Fig. 4B) and thus signal intensity may be reduced. We propose that to compensate for 

reduced auxin levels due to a lack of resources in low light conditions, the sensitivity to auxin is 

enhanced, as if the hypocotyl expecting a lower signal, was “listening” more carefully (Fig. S10). 

How auxin sensitivity is translated in terms of molecular activity is complex and poorly 

understood. Auxin is perceived by a co-receptor formed by a member of the TIR1/AFB family 

and an Aux/IAA protein (22, 23). Here we show that in response to shade AFB1 is selectively up-

regulated in the hypocotyl, which may contribute to enhanced sensitivity of this organ to auxin 

(Fig. 4D, Fig 4E and Fig. S8). Interestingly, robust AFB1 up-regulation depends on PIF4 and 

PIF5 and is greater at low than high PAR (Fig. 4D and E). Moreover, PIF4 and PIF5 directly 

control the expression of members of the Aux/IAA family (8), which may also contribute to the 

control of auxin sensitivity. The increased sensitivity to auxin could also be achieved through the 

brassinosteroids, previously shown to be required for low blue induced shade avoidance (13), and 

to increase auxin sensitivity (24). 

This signal modulation is likely related to the energetic cost of signal transduction, the reduction 



of which would be advantageous in conditions of low resources even at the cost of its robustness. 

The difference between signaling cascades in the context of neighbor detection and canopy shade 

avoidance may thus depend not only on light signals as such, but also on the internal energy 

status of the plant. The co-regulation of hormonal signal production and downstream sensitivity 

to the same hormone has also been described in the case of insulin (25). The present study begs 

the question of the optimization by the plant of a trade-off between cost and robustness of the 

signal. This trade-off has long been recognized as fundamental by engineers and its study laid the 

foundation of information theory to quantify the amount, cost and reliability of information 

transmission (26). Biological systems also face this trade-off, which was investigated in the case 

of neural signal transduction (27). Our work on shade avoidance suggests that in plants, hormonal 

signaling can also be subjected to this trade-off. Interestingly, a recent study involving 

information theoretic measures on mammalian cells showed that transmitting an information 

through the amplitude of a signal (as is usually assumed) is not the most robust way (28), thus 

also hinting that more elaborate modes of signaling should also be envisaged  in the study of 

biological systems. 

  



Material and Methods 

 

Growth conditions 

For determination of hypocotyl length, approx. 40 seeds were plated on 1.6 % agar ½ MS plate 

on a 180 μm nylon net filter (Millipore). Plates were kept 3 days in the dark and cold before 

being transferred at 20-21°C in a Percival AR22L incubator (http://www.percival-

scientific.com/products/arabidopsis-chamber) in constant white light (PAR =110 µmol m-2 s-1, 

R:FR=12.2 or PAR =30 µmol m-2 s-1, R:FR=13.8). The spectral light composition in the Percival 

incubator was measured as described in (29). Plates were kept vertically so that seedlings grew 

along the mesh. After 4 days in high R:FR ratio, plates were transferred into low R:FR conditions 

(PAR= 110 µmol m-2 s-1 supplemented with FR=60 µmol m-2 s-1, R:FR=0.7 or PAR =30 µmol 

m-2 s-1, R:FR=40 µmol m-2 s-1, R:FR=0.3) or kept in the same conditions as a control for 4 

more days. Pictures of the plates were taken at days 04 and 08. Hypocotyl length was measured 

using the ImageJ software (http://rsbweb.nih.gov/ij/).  

Further information on the biological material and methods is available in the supplement. 

 

Computational method 

A detailed account of the computational method is provided in the Supplemental Information. In 

summary, the network is modeled using the following Ordinary Differential Equation (ODE) 

system: 



ijjiiiijiii xxdxkxasx −−+= , 

where xi is the positive molecular activity of node i, si a constant activation term,  ki a constant 

inactivation rate, and aji and dji are the activation and inactivation effects of node j on node i. To 

model sensitivity, a bilinear activation term aijkxjxk is added to this equation. The network output, 

(elongation) is gated by a sigmoidal function of the form 
1))2/exp(1( −+−+= ββ xy , of 

amplitude β. 

The network parameter vector θ thus contains one (effective) parameter per node (si/ki), one 

parameter per edge and β. To train the network, a parameter sampling approach is taken rather 

than optimizing the parameters. This is done by sampling the parameter space such that the 

distribution of network outputs generated by the distribution of network parameters approximates 

the distribution of observed elongation data. More formally, if the vector λ describes the network 

inputs reflecting the experimental conditions (light conditions and inactivated genes), g(θ, λ) is 

the vector of network outputs for inputs λ and parameter θ and Ω is the (multi-dimensional) 

distribution of observed elongations in the conditions corresponding to λ, then the parameter 

space is sampled according to  

)),(()( λθθ gpp Ω∝  

This way, not only the average of observed elongations is taken into account, but also their 

variability, which also provides additional useful information. Sampling is done using GaA-

MCMC (30), resulting in a distribution for the parameter vector θ. This distribution can then be 

used to make predictions for a new experimental condition by looking at the corresponding 

distribution of the network output for this new input. The mean of this distribution is estimated 



and used as prediction value.  

In order to evaluate a network, a leave-one-mutant-out procedure is  followed, whereby the data 

for all genotypes but one mutant is used to train the parameters (i.e., estimate the distribution of 

θ) and predict the remaining mutant. This prediction is then compared to the actual observations 

for that mutant. This is done ten times for each mutant to evaluate the robustness of the prediction 

to random sampling effects. The network score is defined by the average Mahalanobis distance 

between the observed elongations and the predicted ones.  

The model is implemented in C++ and the code is freely available under a GPL license on 

www.unil.ch/cbg. It uses the CVODE library (31) as numerical equation solver . The sampling 

GaA-MCMC algorithm is implemented in matlab and provided by (30). Generating the 

simulation data presented in Fig 2 takes about two days on 30 CPUs (2.27 GHz, 256 GB RAM). 
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Figure legends 

Fig.1: Regulation of the Shade Avoidance Response. (A) 8 day-old seedlings grown under 

high or low R:FR conditions. (B) Main components regulating the shade-avoidance 

responses (see main text). (C and D) Network model and equation used for modeling. 

Arrows are inhibitory (red), or positive (black). 

 

Fig 2: Observed and predicted elongation of seedlings grown in low light intensity in 

normal (white background) and low R:FR (shaded background). Box-plots correspond 

to observed experimental data and color dots indicate elongations predicted by the model 

(10 non-deterministic predictions are made for each condition). A, B and C correspond to 

predictions of the same data (identical box-plots) by different models, indicated in the 

upper-right corner (colored dots change across panels). The mean prediction error is 

indicated in the upper-right corner.  

 

Fig. 3. HFR1 inhibits auxin production. (A) Hypocotyl length of seedlings grown with or 

without the auxin transport inhibitor NPA under low light conditions (see material and 

methods for seedling growth conditions). Data are mean +/- 2SE, n=23-29. (B) Relative 

hypocotyl elongation in low light and in low R:FR in presence of L-kynurenine, an 

inhibitor of auxin production. n=25-34, error bars=2SE. (C) Free auxin content in seedlings 

grown under low light conditions subjected to 1hr of high or low R:FR. Data are mean +/- 

SE (n=5). (D) Quantitative RT-PCR analysis of 2 genes participating in the auxin 

production pathway. Seedlings were collected after 4 days in constant high R:FR light 

followed by 3 days in low or high R:FR.  Data are mean +/-SE, n=3.   



 

Fig. 4. Auxin sensitivity and production depends on the light intensity. (A) Modeling 

suggests different networks for low and high light intensity (best score in red, p-values 

obtained by a t-test) (B) Free auxin content in seedlings grown under high or low light 

intensity subjected to 1h of low R:FR or kept in high R:FR as a control. Data are mean +/-

SE (n=5). Low light intensity data already presented in (8). (C) Relative hypocotyl 

elongation of wild-type seedlings in low R:FR in presence of inhibitor of auxin synthesis (L-

kynurenine) or perception (PEO-IAA). n= 22-32, error bars= 2SE. (*) represents statistical 

difference (t-test, p<0.01). (D) AFB1 expression in hypocotyls of 7 day-old wild type 

seedlings grown in high and low light intensity, high R:FR or subjected for 2 hours to 

low R:FR. In low R:FR,  AFB1 is more expressed in low than in high light (*, t-test, 

p<0.05). Data are mean +/-2SE (n=3 x 40 seedlings). (E) AFB1 expression in entire 

seedlings of 7 day-old seedlings grown in low light intensity, high R:FR and subjected 

to 2 or 4h of low R:FR. Data are mean +/-2SE (n=3 x 40 seedlings). 
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Supplemental information 
 

Biological method 

Plant material  

All mutants were generated in the Col background. The pif4pif5, hfr1, hfr1pif4pif5, and sav3-2/taa1 

mutants have been described previously by (1–3). The hfr1taa1 and pif4pif5taa1 mutants were obtained 

by crossing sav3-2 respectively to hfr1-101 and pif4-101pif5 (pil6-1) and genotyping was performed as 

described in (1–3). For sav3-2, genomic DNA was amplified with CF505 

(AACATCCCCATGTCCGATTT) and CF506 (AACACAAGTTCGTCATGTCGC). After digestion with 

Mnl1, the WT fragment produces 2 bands of 220 and 108bp while the sav3-2 is not digested.  

 

Pharmacological treatment 

For picloram (SIGMA-Aldrich)/PEO-IAA (provided by H. Nozaki)/L-kynurenine (SIGMA-

Aldrich)/yucasin (provided by T. Koshiba) treatment, seedlings were first grown on ½ MS. After 4 days, 

the meshes were transferred on new ½ MS plates containing different concentrations of the drugs or 

DMSO as a control. All products were kept frozen as a 1000-time concentrated stock in DMSO. 

Hypocotyl elongation during the treatment was measured as the difference of hypocotyl length between 

day 4 and day 8 and expressed relative to the elongation of seedlings grown on DMSO.  

 

RNA extraction and RT-qPCR  

These experiments were performed as described in (4). For Real Time RT-PCR on dissected hypocotyls 

and cotyledons, 7-day-old seedlings grown on horizontal plates were harvested in cold acetone and 

vacuum infiltrated for fixation. Seedlings were moved to 70% Ethanol to dissect cotyledons and 
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hypocotyls. After removal of Ethanol samples were ground with glass beads and RNA was extracted using 

the RNeasy plant mini kit with on-column DNA digestion (Qiagen). 200 ng RNA was used for the reverse 

transcription as described in (8). Except when indicating in the figure legends, YLS8 and UBC10 were 

used as housekeeping genes. 

 

Determination of auxin content 

Aerial parts of seedlings were pooled, weighed, and frozen in liquid nitrogen for quantification of free 

IAA content. The sample fresh weight was around 10 mg, and five replicates were analyzed for each line 

and treatment. 500 pg 13C6-IAA internal standard was added to each sample, and the samples were 

purified and analyzed using gas chromatography coupled to tandem mass spectrometry as described in (5), 

with minor modifications.  

 

Computational methods 

Model 

The regulatory network was modeled using ordinary differential equations. The same general purpose 

equation was used to model molecular activity. It is given by 

ijjiiiijiii xxdxkxasx −−+=        (1) 

Here ix  represents the activity of node i, in our case the molecular activity and jia  and jid  are the weight 

of the positive and negative edges from node j to node i and are strictly positive. The positive source term 

is  models all activating effects not explicitly represented in the network, such as baseline protein 

production. The degradation term ii xk  models all inactivating effects not explicitly in the network. In this 
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equation, all effects are very coarsely approximated by a linear function, and the degradation term is 

bilinear. In sum, each positive edge corresponds to a linear activation, and each negative edge corresponds 

to a bilinear inhibition that ensures a positive activity. Relevant biological knowledge is also inserted in 

the model. For example, for mutants, the corresponding node activities are constrained to zero and the 

ratio of phyB activity in high versus low R:FR was set to 10, as documented by spectral measurements 

(6). Using contraction analysis (7), the system can be shown to converge to a single attractor as long as 

there is no cycle of positive edges in the network. The system is thus safely assumed to be at steady-state.. 

This set of equations differs from other general purpose network equations proposed in the literature, such 

as boolean network, continuous boolean networks (8) or Hopfield-like networks (9). In those networks, 

activities have a lower and upper bound (usually zero and one). Our network only has a lower bound but 

no upper bound. This, along with the use of linear activation terms, reduces the non-linearity of the 

network, which is very advantageous for the performance of the sampling algorithm we subsequently use. 

It can be justified on a theoretically level by assuming that molecular activities do not reach saturation 

level. Indeed, there can be differences of many orders of magnitude in the concentrations of proteins and 

assigning a gating function to the activities is also somewhat arbitrary, especially as units are left 

unspecified. Only for the readout node, hypocotyl elongation, we add a bounding sigmoidal function as 

we know that the observed elongations belong to the same order of magnitude. The sigmoidal function 

takes the following form 

1))2/exp(1( −+−+= ββ xy  

where β gives the amplitude (or saturation level) of the function, which has 2/β  as a fixed point. 

We define the network parameter vector θ consisting of the weight of all edges, the source and 

degradation terms of all nodes and β. Morevover, we set the list of experimental conditions λ as the 

(discrete) inputs of the network specifying the combinations of light conditions and the mutant used. We 

can then define the output vector g(θ, λ) as the values of the elongation at steady state when using 

parameter values θ and all experimental conditions λ. So for each parameter vector θ, there is a vector of 
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outcomes g(θ, λ), specifying the values of the read-out node at steady state for each experimental 

condition in λ. These steady states are computed numerically. 

The advantage of this model lies in its simplicity, as it only contains one effective parameter per node (

ii ks / ) and one parameter per edge. In the present study, the network topology is also kept as simple as 

possible. If needed however the role of additional players can be explored since both node and edges can 

be expanded into more detailed sub-networks as long as we can generate enough data to constrain it with 

the relevant mutant combinations. 

As mentioned above, this model cannot model sensitivity as activations are linear. When needed, we 

modeled the influence of node j on the sensitivity of node i to node k with a bilinear term kjijk xxa . 

Parameter sampling versus estimation 

In the method suggested here, a parameter sampling strategy rather than a parameter estimation strategy is 

applied. The idea behind it is to go beyond the “average response” criticized by Trewavas (10) and 

consider the distribution of the experimentally observed responses. Indeed, biological replicates differ one 

from another because each individual is to some extent unique, and this uniqueness can be related to the 

model parameters. One could argue that each biological replicate has a somewhat different parameter 

vector. So instead of considering an average response and estimating a vector of optimal parameters, as is 

commonly done, we sample the parameter space according to a particular distribution that depends on the 

distribution of the experimental data. Let Ω be this m-dimensional experimental read-out distribution, 

where m is the number of different conditions and genotypes (i.e., the size of λ). In other words, Ω is the 

distribution of measured hypocotyl elongations, where each mutant and experimental condition runs along 

a different dimension. Since the conditions are independent, this distribution is assumed to be Gaussian 

with diagonal covariance matrix. Using a Markov Chain Monte Carlo method, GaA-MCMC (11), we then 

sample a parameter vector θ according to  

)),(()( λθθ gpp Ω∝         
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In other words, θ is sampled such that the distribution of the corresponding network outcomes g(θ, λ) 

follows Ω, the experimental distribution of the hypocotyl elongation. This means that each point θ of the 

parameter space is (theoretically) assigned a probability and this probability corresponds to the probability 

of observing g(θ, λ) according to Ω. The distribution p(θ) captures our uncertainty of the parameter values 

as we do not settle for a single parameter vector, but assign a probability to the whole parameter space. 

This enables the exploitation of the information contained in the variance of the experimental data (both in 

terms of biological regulation and experimental uncertainties), and not only its average as done by 

classical parameter optimization. Having a distribution on the network parameters θ allows us to predict 

the effect of a new knock-out mutant by solving the network equation at steady-state for each of the 

sampled parameters and looking at the distribution of responses. The mean of the resulting response 

provides a prediction and its variance gives a measure of confidence in this prediction. 

This approach is similar to the Approximate Bayesian Computation (ABC) methods often used for 

stochastic models in population genetics (12), and which have also been applied to model selection 

(13).Those methods also sample the parameter space for example with MCMC (14) and the probabilistic 

(or varying) outcome of the model for each parameter θ is compared to the distribution of the observed 

data. This is done to estimate the posterior likelihood function of θ, which can then be maximized. In 

contrast, in our case, each parameter θ generates a single output and the distribution of θ in the biological 

samples is estimated by matching the distribution of corresponding model outcome to distribution of the 

observations. In this sense, it can hardly be said to be a Bayesian likelihood function and the Bayes factor 

(essentially a likelihood ratio) cannot by used for model selection. Instead we use leave-one-out cross-

validation, as described below.  

 

Network evaluation 

In order to evaluate the network we look at the accuracy of its predictions in a leave-one-out cross-

validation scheme. All but one mutant data are used to sample the parameter space (as described above) 
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and the resulting parameter distribution is then used to predict the elongation of the remaining mutant 

(called the test mutant). This prediction is done by estimating the mean of the distribution of elongations 

of the test mutant when sampling from the distribution of parameters. This is done for all mutants, 

providing a prediction for each mutant in normal and simulated shade conditions. The Mahalanobis 

distance between the predicted and the observed mean elongations are then used to quantify the accuracy 

of the predictions. This is equivalent to the absolute log z-score of the predictions according to the 

experimental distribution of elongations. It thus reflects how well the network can capture the essential 

features of the biological system. If the distance is zero, it means that all mean mutant elongations are 

perfectly predicted. The bigger the distance is, the poorer the predictions are (and thus the network). Since 

the sampling entails some randomness, we assess the reliability of the predictions and evaluation by 

running the evaluation procedure ten times and looking how much they vary from one another. The final 

score is the average score across the ten runs. This procedure penalizes overfitting, as can be seen from the 

simulation results where having both the sensitivity and production of the PIFs in the network does not 

produce a better score than having just one of them (see Fig 2C vs Fig. S2 and Fig. S5B vs Fig. S5C). 

Noise model 

We consider the following simple elongation model, ii xby lglglg = , where y is the observed elongation, x 

is the auxin signal, b is the auxin sensitivity and l, g and i denote respectively the light condition, the 

genotype and the seedling index. To model noise, we include a multiplicative noise ε and an additive 

measurement noise μ, obtaining iiii xby lglglglglg µε += . This model is justified by the fact that the 

standard deviation scales linearly with the average elongation (see Fig. ). We are interested in the variance 

of ε, which can be interpreted as the variance in the auxin signal read-out. Assuming noise independence, 

we have 2
lglg

lglg
lg )(

)var()var(
)var(

xb
y µ

ε
−

=   . We estimated the variance of measurement noise )var( lgµ  

(assumed to be the same for all l and g) by measuring twice the same data set, while lglg xb  is estimated as 
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the average elongation for a given light condition and genotype. Assuming normal distributions for μ 

(centered) and ε (centered on 1), a F-test can be used to assess whether )var( lgε  varies significantly 

between two conditions.  

 

 

List of Supplemental figures: 
 

Fig. S1: Experimental set-up.  

Fig. S2: Observed and predicted elongation of seedlings grown in low light intensity in normal (white 

background) and low R:FR (shaded background) for the network including the link between PIF and auxin 

production (through the YUC ) and auxin sensitivity. 

Fig. S3: Quantitative RT-PCR analysis of shade-responsive genes.  

Fig. S4: Quantitative RT-PCR analysis of YUC genes in the hfr1pif7 double mutant.  

Fig. S5: Observed and predicted elongation of seedlings grown in high light intensity conditions.  

Fig. S6: Differential effect of yucasin on pif4pif5 depending on PAR.  

Fig. S7: Hypocotyl elongation in response to low R:FR of taa1.  

Fig. S8: AFB1 expression is not induced in the cotyledons in response to low R:FR.  

Fig. S9: noise analysis.  

Fig. S10: Metaphorical illustration of the model. 
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Supplemental figure legend 
 

Fig. S1: Experimental set-up. (A) Seedlings were grown on vertical plates along a nylon mesh. Pictures 

were taken at day 4 and at day 8. (B) Hypocotyl elongation during the last 4 days of the experiment. 

Hypocotyl elongation during the treatment was measured as the difference of hypocotyl length between 

day 4 and day 8. n=25-34, error bars=2SE. 

 

Fig. S2: Observed and predicted elongation of seedlings grown in low light intensity in normal 

(white background) and low R:FR (shaded background) for the network including the link between PIF 

and auxin production (through the YUC ) and auxin sensitivity. 

 

Fig. S3: Quantitative RT-PCR analysis of shade-responsive genes. The different genotypes were 

grown 4 days in constant high R:FR light followed by 3 days in low or high R:FR. Gene expression was 

normalized to YLS8 and UBC and expressed relative to one WT control grown under high R:FR. Error 

bars represent the standard error of the mean of three biological replicates. 

 

Fig. S4: Quantitative RT-PCR analysis of YUC genes in the hfr1pif7 double mutant. The different 

genotypes were grown 4 days in constant high R:FR light followed by 3 days in low or high R:FR. Gene 

expression was normalized to YLS8 and UBC and expressed relative to one WT control grown under high 

R:FR. Error bars represent the standard error of the mean of three biological replicates. 
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Fig. S5: Observed and predicted elongation of seedlings grown in high light intensity conditions. 

Network B makes predictions significantly better than all other networks. Refer to the legend of Fig. 2 and 

to Fig. 4A for more details.  

 

Fig. S6: Differential effect of yucasin on pif4pif5 depending on PAR. Relative hypocotyl elongation of 

wild-type seedlings in low R:FR in presence of inhibitor of auxin synthesis (yucasin) at the concentration 

of 100µM. n>14, mean +/-2SE, (*) represents statistical difference (p<0.01) using a t-test. As previously 

published (15) , the efficiency of yucasin to inhibit hypocotyl elongation is limited.  

 

Fig. S7: Hypocotyl elongation in response to low R:FR of taa1. (A) Hypocotyl length of seedlings 

grown in high or low R:FR under low or high light conditions. n= 23-30, error bars=2SE. (B) Hypocotyl 

length of 8 day-old seedlings grown under high or low R:FR, high intensity in presence of inhibitor of 

auxin perception (PEO-IAA). Experiments were conducted as described in Fig. 2B. 

 

Fig. S8: AFB1 expression is not induced in the cotyledons in response to low R:FR.  

Gene expression was determined by RT-qPCR in cotyledons of 7 day-old wild type seedlings grown in 

low light intensity, high R:FR (T0) or subjected for 2hours to low R:FR (2h). Data are mean +/-2SE (n=3 

x 40 seedlings). 

 

Fig. S9: Noise analysis. For most genotypes and conditions, a linear relationship is observed between 

mean elongation and its standard deviation, confirming the validity of an additive and multiplicative noise 

model. In high light, the Col elongation displays less variability than what would be expected from its 
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mean elongation, suggesting that the increased auxin signal intensity makes it more robust. Interestingly, 

this is not the case for the pif4pif5 mutants. The regression line for low light conditions is shown in blue.  

 

Fig. S10: Metaphorical illustration of the model. In foliar shade, a weaker signal (represented by fewer 

auxin molecules) is compensated by an increased sensitivity (represented by the hearing aid) 
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