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Motivated by the present interest in the heavy quark effective theory, we use the
spectator equation to treat the mesonic bound states of heavy quarks. The kernel we
use is based on scalar confining and vector Coulomb potentials. Wave functions are
treated to leading order and energies to order 1/m¢ in the heavy-light systems, and
order 1/m2Q in heavy-heavy systems. Our results are in reasonable agreement with
experimental measurements. We estimate two of the parameters of the heavy quark

effective theory, and propose further calculations that may be undertaken in the future.

I. INTRODUCTION

Recently, there has been great theoretical interest in hadrons containing b
and ¢ quarks. This has stemmed largely from the realization that, in the formal
limit when the mass of one of the quarks in a hadron is taken to infinity, symme-
tries above and beyond those usually associated with quantum chromodynamics
(QCD) arise. This realization has led to the development of the heavy quark
effective theory (HQET) [1] [2] [3]. In the framework of this effective theory, cor-
rections to the formal limit can be systematically included. One very important
phenomenological consequence of this has been a number of attempts to extract
V. from experimental data, with little model dependence in the result.

Despite the power inherent in HQET, there is still much that this effective
theory can not tell us about the properties of heavy hadrons. As an example,
HQET allows us to infer the absolute normalization of some of the form fac-
tors necessary for describing the decays of hadrons with beauty to those with
charm. We also know how to include, in a systematic way, corrections to these
normalizations due to the finite masses of the b and ¢ quarks, as well as those
due to perturbative QCD effects. We can even deduce bounds on the slopes of

these form factors at a particular kinematic point. However, we know nothing
about the exact dependence of these form factors on kinematic invariants. As
a second example, HQET leads us to the conclusion that the spectra of B and
D mesons should be very much alike, modulo 1/my, and 1/m, effects. However,
this effective theory tells us nothing about the details of the spectra, such as the
exact ordering of states, or their masses. In essence, HQET provides a framework
for systematically extracting symmetry relations and the corrections to the for-
mal heavy-quark limit but can predict neither the spectra of the heavy mesons
nor the approach to the heavy-quark limit. Until we know how to solve non-
perturbative QCD, the details mentioned above, along with many others, are the
realm of models: such models continue to play a crucial role in our understanding
of QCD.

A model that is quite successful in predicting the mesonic spectra is the rel-
ativised constituent quark model of Godfrey and Isgur [4]. Indeed, it was this
model and its applications to weak decays that originally suggested the existence
of heavy-quark symmetries which in turn led to HQET. This model provides
relativistic kinematic corrections to the standard nonrelativistic quark model us-
ing a linear confining potential and a color Coulomb interaction. Meson spectra
calculated with this model are remarkably close to experimental masses in all
flavor sectors. However, since one of the objectives of heavy quark theory is the
calculation of weak decay amplitudes and form factors, it is necessary to use a
relativistically covariant model.

A covariant extension to the Godfrey-Isgur model can be constructed using
the spectator or Gross equation [5], which has been used with some success in
models of the nucleon-nucleon interaction [6], as well as in quark models of mesons
composed of equal mass quarks and antiquarks [7]. This equation can be related
to the Bethe-Salpeter equation by placing one of the intermediate-state particles
on the positive-energy mass-shell. This has the advantages that the prescribed
constraint on the relative energy i1s manifestly covariant and that in the limit that
the mass of one constituent goes to infinity (the static limit), the wave equation
reduces to the Dirac equation for the light particle [8]. This is a property of the



full Bethe-Salpeter equation that is lost when the infinite sum of contributions
to the kernel is truncated. Clearly, the properties of the spectator equation make
it 1deal for studying the properties of heavy mesons at finite mass.

In this article we use the spectator equation to construct a constituent quark
model of heavy mesons. In particular, we will use the spectator equation as
a basis for construction and expansion of the heavy meson spectra and wave
functions in 1/mg, where mg is the heavy quark mass. This allows us to study
the heavy meson spectra in the approach to the heavy quark symmetry limit. By
choosing a reasonable set of model parameters we are able to obtain a respectable
fit to the observed heavy meson masses and to predict the approximate masses
of heavy mesons which have not yet been observed.

This article is organized as follows. In the next section, we describe the model
that we use for heavy mesons, including the derivation of a wave equation from
the spectator equation. In Section III, three methods of obtaining solutions of
the wave equation are described, while in Section IV we display our results. In
Section V, we present some conclusions.

II. THE MODEL
A. Qg and ¢Q mesons

The spectator equation is most easily understood in relation to the Bethe-
Salpeter equation. The Bethe-Salpeter vertex function for two bound fermions is
represented by Fig. 1 and can be written as

v =i [ %V(P,k;P)S%l)(kl,ml)Sg)(kz,mz)F(k,P)’ 1)

where p = %(pl —pa), k = %(kl — ko), V is the Bethe-Salpeter kernel and

S;f)(ki, m;) is the free Dirac propagator for particle . The Dirac indices are
suppressed for simplicity.

The spectator vertex function can be obtained from the Bethe-Salpeter vertex
function by placing one of the fermions on its positive-energy mass-shell. For our
model the heavy quark (particle 2) is placed on shell while the light quark (particle
1) remains off shell. This is achieved by a replacement of the propagator

0
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FIG. 1. Feynman diagrams representing the equation for the Bethe-Salpeter vertex
function.

A+(2)(]€2, mz) = Z u(z)(kz, 5/2, mz)a(z)(kz, 5/2, mz), (3)

and replacing p, k and ki by the corresponding quantities p, k and k; with
particle 2 on mass shell. The on-shell energy is given by E(p,m) = \/p? + m?.

The spectator vertex function is then

r(p,P):/%mwp,k;P)S}l)(/}l,ml)A+<2>(/€2,m2)r(/},P>. (4)

Defining the spectator wave function as
Yea(B, P) = S5 (51, m)u® (pa, s2,m)D(p, P), (5)

the wave function satisfies the wave equation

=t . - Dy
Sy’ (P1, )Y, (P, P) =

[ s et S Ve P (. ) ©)
(27‘_)3 E(kz,mz) , 52,5’2 D, K] 8’2 s s
where

%g,s;(paic;P) = a(Z)(pza52amZ)V(pak;P)u(z)(kzasgam2)~ (7)

This wave equation is covariant and can be easily boosted from frame to frame.
It is generally easier to solve the wave equation in the bound-state rest frame
where the angular expansions of the wave function and potential are defined. In
the rest frame P = (W,0), p1 = —p2 = p, k1 = —k2 = k, p{ = W — E(p, m2),
py = E(p,m2), kY = W — E(k,m2), and k3 = E(k, m2) where W is the bound-

state mass. The wave equation can be written as

[7<1>0(W — E(p,m2)) =+ p — ml] Vurl, W) =

43k
/(27)3ﬁznz,s;(nk%)%;(k,m, 8)
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where

Veoor (D, ks W) = @ (=p, 52, ma)V(p, ks W)u'D(=k, s, ms). (9)
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Since we wish to examine the approach to the limit ms — oo, 1t is useful to
rewrite this equation in a noncovariant form by defining

ma
\Ils = So aW 10
and
mo m2
/ k: = k: 11
U52752(p; aW) E(p,mz) ‘/82782(1)’ ’W) E(k,mQ) ( )
to give

W = B(p,ma)) =4 p— i | W, (p) =

/%ZUSMIQ(p,k;W)\IJ%(k). (12)

It is necessary to assume some form for the kernel V' in order to expand about
the infinite mass limit. Here we assume that the kernel is of the simplest form
which can be reduced to that used in ref. [4]. We choose the kernel to be

Vip, k; P) = Vo (Q%) + vV - D1, (Q?), (13)

where
Q* = (k — p)” — [E(k, m2) — E(p,m2)]” . (14)

V,(Q?) is a vector potential which is a color Coulomb interaction and the confin-
ing force is the result of the scalar potential V;(Q?). This choice of interaction
assumes that the Lorentz gauge is used in the color Coulomb interaction.

Using the explicit form of the Dirac spinors in (12) and the Dirac y-matrices
to reduce particle 2 to the Pauli spin space, and defining a wave function which
i1s an operator in the Dirac space of particle 1 and the Pauli space of particle 2,
= Zs; Xst ¥, (12) becomes

(7(1)0(W B, ma)) — 4D p— ml) U(p) =

/ &3k ((E(p,mz)—|—m2)(E(k,m2)—|—m2) )
(27)3 4E(p, m2)E(k, ma)

: { (1 ~ (E(p, mz)aj-z;zr))?;()li.,l:nz) + mz)) V(@)

o (2) . (2) .k
(1) g po 2
” (1 T (Ep ) + ) (B, ) T mz>) (@)

o?  po@ g %
(1. P ,
o ((E(P,mz) T ma) | (B(K, ma) +m2)) Vu(Q )} ¥(k), (15)

Expanding eq. (15) to order 1/ms, we find

2
<7<1> (W —my— 2y 4y ml) ¥(p) =
2

2m
&k e
Ak OV (¢
/(27)3 (Vela®) ++M" Vila?)
1
+ 5 (6P k4 o). p0<2>)vv(qz)) (k). (16)

where q = k — p.
Eq. (16) can be Fourier transformed to coordinate space, multiplied from the

left by 7(1)0 and then rearranged to give the wave equation
H¥(xr) = W¥(r), (17)

where the hermitian hamiltonian 1s H = Hy + H; with

Hy= oV %V+6<1>m1 + BOV(r) + V() + ma, (18a)

1 2 . (1) (1) g2« 31
Hl_%{—v —i{Vi(r), e v+ a® e xevi(n},  (18b)

where 7 is the unit vector in the radial direction.

Eq. (18a) is the Dirac equation for particle 1 with scalar and vector potentials
plus the mass of the heavy quark, particle 2. The solutions of the Dirac equation
with such a potential have been extensively studied. The operators

{j<1>2,jgl>, K, 552>} (19)



TABLE I. Values of ¢ and £ for various values of &
£ £
k1 <0 J1— itz
k1 >0 Ja+ 1%

[SIESIT

are a set of mutually commuting operators which commute with Hy, where j(1) =
L+SM), s = 1w = %»ygma(l), KW = gO(nM.j0 _ 1y and 82 = 152,
The eigenstates of Hy can then be labelled by the corresponding set of quantum
numbers {n, j1,m;,, k1, s2}. The wave equation associated with Hy can then be
written as

0 0 0
HoW') s () = W W) (), (20)
where
Grejy (1) y,ms
Jntnl’y) ) 1 (Q)
W) i @ = il v, (21)
1115 S2 Fnz;1( )yZ%]JII(Q)
with
m; 1 .
Vi (@) = > <€mz,§51 J1m]’1>Yzm[(Q)x51, (22)

mMe,81

and ys, and y;, are the Pauli spinors for particles 1 and 2, respectively. The
eigenvalue k1 = +(j1 + %) can be any nonzero integer. The values of ¢ and ¢
assoclated with various values of x; are displayed in Table I.

Note that the zeroth order invariant mass Wr(z?c)ljl is determined by n, k1 and
Jj1, or equivalently by n, j1, and £. The parity of the Q¢ bound state is given by
P= (—1)“’1.

The first term on the right hand side of (18b) is the kinetic energy of particle
2. Both the first and second terms on the right hand side of (18b) commute with
the set of operators given in (19). However, the third term does not commute
with any of these operators, but instead commutes with

{32, J.,P} (23)

where J = j(1) 4+ 8(2) and P is the parity operator. The eigenstates of the total
hamiltonian H = Hy 4+ Hi can then be labelled by the set of quantum numbers
{TL, Ja M-Ia P}

The eigenstates and eigenenergies of the hamitonian H can be calculated
directly. However, the objective of the calculations presented here is to produce
wave functions which can be used in the calculation of form factors and decay
constants as an expansion in powers of the inverse of the heavy quark mass ms.
In order to maintain consistency in this expansion, the masses and wave functions
should be calculated perturbatively. The first order correction to the quark bound
state mass is given by

WrglJ)P = /dBT‘I’glofgjleMJ(P)Hl‘l’glofglleMJ(r)a (24)
where
¥, 0= 5 (i goe| M) W 009
The bound state mass to first order is
Whip = Wrg?c)ljl + Wr(zlJ)P' (26)

The scalar and vector potentials in the calculations presented here have the
form

K3

Vi(r) =br+ec, (27)
Vuo(r) = —% Z %erf('yir). (28)

1

The vector potential is, as in ref. [4], based on a parametrization of the running
QCD coupling constant.

B. QQ mesons

The situation for mesons made of a heavy quark and the corresponding an-
tiquark is somewhat more complicated. The problem is that the prescription
of placing particle 2 on mass shell in the Bethe-Salpeter vertex equation (1) to
obtain the spectator vertex equation (4) is clearly asymmetrical. This results
in a spectator vertex function which is no longer an eigenfunction of the charge
conjugation operator. The solution of this problem is to construct a set of cou-
pled equations for the vertex functions which have either particle 1 or particle



2 on mass shell [7]. These equations have been solved in ref. [7] for ¢g-systems
containing only light quarks.

However, since we are interested in expanding about the infinite mass limit,
this additional complication is not necessary and a hamiltonian with leading
1/mgq corrections can be constructed from (4). The starting point is the spinor
decomposition of the Dirac propagator of particle 1 in the meson rest frame

. (k. s adW(k. s
S%l)(kl,mQ): mQ Z[u ( ’Sl’mQ)u ( ’Sl’mQ)

E(k,mq) - W —2E(k,mg) + in
v (k, 51, mg)o (=k, 51, mq)
bl bl bl 2
+ W —in (29)
Using eqs. (29) and (3) in eq. (4), we can write [9]
d3k mg .
p, k; P
Z/ 27)3 E(k mQ)V(p’ P)
(u( )(k,sl,mQ)u( )(—k,slz,mQ)\I!S_)s,(k)
+o D (=K, s, mo)u(—k, 54, mg) ¥, (1)), (30)
where
g+ (k) = mq ﬂ(l)(k,5’1,mQ)a(z)(—k,sg,mQ)F(/;',P) (31)
5102 E(k,mq) W —2E(k, mg) ’
and
(k. ¢ a(2)(—k. s i
\I!(,_),(k) _ mg =k, s}, mg)ut?( k,sz,mQ)F(k,P). (32)
f153 E(k,mqg) w
Multiplying the terms of (30) to the left respectively by
_me . 22—
E(p,mQ)u (p’sl’mQ)u ( p’52’mQ) (33)
and
_Me a®
E(p,mQ) ( P, 51, mQ) ( p’SQ’mQ)’ (34)

means that eq. (12) can be rewritten as the pair of coupled integral equations

d3k

+UR @ kW) ()], (35)

and
_ >k _
W\Ijgh?m(p) = Z / (271')3 |:U51:I;2751175/2(p’k’W)\Ijgjll—’lg(k)
UL g (P W () (36)
where
++ M
Urt o (kW)=
51752751752( ) E(pamQ)E(k’mQ)
<M (p, s1)a®)(=p, 52)V (p, k; W)ul(k, 57 )ul? (=K, 55), (37)
my

+- . _
Us1,sz;s’1,s’2(p’ k’ W) -

E(p, mq)E(k, mq)

xﬂ(l)(p, 81, mQ)ﬂ(z)(—p, s2)V(p, k; W)v(l)(—k
2

Sll)u(Z)(_k’S/Z)’ (38)

U_+./ /(P,k;W): e
FLE2 8 E(p’mQ)E(k’mQ)
xﬁ(l)(—p, sl)ﬁ(z)(—p, s2)V(p, k; W)u(l)(k, sll)u(z)(—k, 59), (39)
- e my
Us1,52,sl,s2(p’k’W)_ E(p,mQ)E(k,mQ)

)0 (=p, s1,mg)u? (—p, s2)V(p, k; W)oD(=k, s )u'?) (=k, s5).  (40)

These coupled equations can then be reduced to the Pauli spin space and
expanded in powers of 1/mg. In this case, only UtT¥(+) contributes to order
l/mé Defining a wave function which is an operator in the spin spaces of both
particles as

v= Xs;ng‘I’ﬁzr,)s;’ (41)
eq. (35) becomes N
(= 2me = 2w = [ L L0maova0, (42
10



where

o (Vi) + Vi) (7 - p?)
Q

+Vi(a®) (p2 1k + 0™ . pe) k4 o® . pe®. k)

U(p,k) = Vi(a®) + Vu(q?) — ’

+Vv(q2) (P2 + k? — 0'(1) ~p0'(1) k — 0'(2) . po-(z) . k)

— Vy(a?) (c,<1>,,<1> k4o .pc,<1>) . (0<2>0<2> k4 o® .pC,(z))] . (43)

Eq. (42) can then be Fourier transformed to coordinate space to extract the
hamiltonian

H==Hq+ Hy, (44)
with
o, = Hc+thp+Hso+HSR+HVRa (45)
where
vZ
Hy=——+V(r)+ Vo (r) 4+ 2myg, (46a)
mq
o= v - e = v v £ vy — v 9 46b
¢ = 2 4 [ 5(7“)] [ U(r) 5(70)] +[ 5(7“) v(r)] 9 ) ( )
mQ r

+[V2Ve(r)] (%52 - %) } : (46¢)

1
Heo = —— BV/(r) = V!(1)] S - L, 46d
sy BV = V() (164)

1
Hsovn =~ g7 [V, V% Fsovr(x)]] (46e)

11

and § = SMU 4 82 Here Fs(vyr(x) is the Fourier transformation of
st(v)(qz)/dqz. For our choices of V;(r) and V,(r), we find

b L? 0 0? 1 c 10 102 L?
Hp=—|—3——pr———2" | - — [ F— 4 = — — — 461
St mg <2r 36r "o r) mg (r ar + 2 Or? 2r2)’ (46)
HvR—vigr)z ’
myr
1 2,2 a 89 9*
S E:“.—v,r 1092 —doytp? 4 8y2r— — 2 4~
3mg/m - e ( vi N T or T v or orz )’
(468)

Eq. (46a) is the nonrelativistic hamiltonian for equal mass quarks in scalar
and vector potentials. H. contains central and orbital contributions. Hyyp, is the
hyperfine interaction consisting of a tensor-force term and a spin-spin interaction.
Hyg, 18 the spin-orbit interaction. Hgr and Hyg are scalar and vector retardation
terms associated with the third term on the right-hand side of (43). Note that
our spin-dependent interactions Hyyp and Hg, have the same forms as those in
many other quark models (see for example: [4,10,11]), but the spin-independent
interactions do not.

The spin-independent correction includes H., Hgr and Hygr. In these con-
3

tributions, Hsr, Hyr and the term [V/(r) — VJ(r)] 5= in H. are gauge depen-

dent. Hgr and Hygr are from the second term in the expansion of V(Qz) =
V(g?) — 2 V'(q?) (k* - p2)2 + O(1/m). Had we chosen the Coulomb gauge,

4m?2
these terms would not exist. Most other quark models do not include retarded
interactions. (Ref. [12] gives another expression for the retardation effect.) We
will show that with the scalar and vector potentials in (27) and (28), retardation
contributions are comparable with the spin-dependent interactions.

The operators {Ho, L% 8% J% J,} where J = L + S, are a set of mutually
commuting hermitian operators. The eigenstates of Hy can then be labelled by
the corresponding set of quantum numbers {n, L, S, J, M;}. The wave equation
assoclated with Hy can then be written as

HO‘I’gloL)SJMJ(I') = WTS,%)\IIS)[)/SJMJ(I‘)’ (47)
where
Un\T 7
W, () = Lyt (@) (48)
12



and

VIS = > (LMpSMs |JMy) Yrar, (Q)|SMs) (49)
My Mg

is the spin spherical harmonic.
The hyperfine interaction (46¢) mixes states with AL = £2 for S = 1. As
a result, L 1s no longer a good quantum number for solutions of the complete

hamiltonian. However, these states have the same parity and charge quantum
numbers since P = (—1)L‘|'1 and C' = (—1)L+S for ¥(9 . The first-order correction
to the mass can then be written as

1 0 0
WTEJ)PC = / dST\Ijgl[)/gJMj(r)Hl\Ijgl[)/SJMj(r)
= Ec+ Enyp + Eso + Esr + Evr. (50)

where P = (—1)L‘|'1 and C' = (—1)L+S. The bound state mass to first order is
Waspc = WS + W pe (51)

One may also include an annihilation term in the hamiltonian. However, this
2

term first appears at order —s [13] [4], while in our model the leading spin-
Q

dependent effects are of order >5-. Since a; is small in the heavy quark system

(as(m?) ~ 0.35 and a;(m?) ~ 0.22), we expect the annihilation effects on QQ

spectra to be small.

III. SOLUTION OF THE WAVE EQUATIONS
A. Qg sector

The Dirac equation (20) can be reduced by using the explicit forms of the
zeroth order wave function (21) and the Dirac matrices a and g along with the
identity

oV (@) =~V (@) (52)

351

to extract the coupled radial wave equations [14]

G,

Gil0) | FL ) = (i Va(r) = V) 4 B VP (), (53)
dr r J1

dF
G L) = O+ V() + V) — EO )G, 6

13

where

0 W(O) )

néji = ' nkij1

— mMms. (55)

We have obtained three separate numerical solutions of these coupled
equations using two different techniques, direct integration and the matrix
diagonalization-variational technique.

1. Duirect Integration

This approach uses stepping techniques to obtain solutions to the differen-
tial equations. Such techniques are much more efficient if any large asymptotic
damping of the radial wave functions can be extracted and reduced radial wave
equations can then be integrated. The scale of the asymptotic variation of the ra-
dial wave functions i1s determined by the string tension b appearing in the scalar
potential (27). Defining a dimensionless radial variable p = b1/2r, and deter-
mining the asymptotic behavior of the radial wave functions, the reduced wave
functions g(p) and f(p) are defined in terms of G and F' by

G(r) = glp)e™ 3040,
F(r) = f(p)e 2740, (56)

where v = 2(my + c)/bl/z, and c is the constant shift in the scalar potential.
Coupled equations for the reduced wave functions that result are

(- 3+2) o000 = (s +=To00) S0 (7)
(;Lp e % . %) Fp) = (a—+p+Vu(p)) 9(p), (58)

where Vi, (p) = Vy(r)/bY/%, ay = T £cand e = Er(%l/bl/z.

In order to integrate the differential equations it is necessary to know the
values of the functions and their derivatives at some point and then to have a
stepping algorithm that predicts the values of the functions and their derivatives
at subsequent points. The values of the functions and their first derivatives
at p = 0 are obtained by construction of a series solution for the functions for
small p. An adaptive Runge-Kutte routine [15] is used to integrate the differential
equations for increasing values of p. Energy eigenvalues can be found by adjusting
the value of the energy until the functions have the correct asymptotic behavior

14



as determined by an asymptotic expansion of the functions at some large finite
p. This process of finding the eigenenergies is called the shooting method [15].
In the calculations shown here, the accuracy of the eigenvalues is increased by
integrating up from p = 0 and down from some large finite p to some intermediate
point where the values of g(p) and f(p) are required to match.

A second variation on this method is to use the reduced radial wave equations
(57) and (58) to eliminate f(p) to obtain a second order differential equation for
¢(p). This equation can then be integrated in a manner similar to the Shrédinger
equation for the QQ sector.

2. Variational Method

The starting point for the ‘variational’ solution of eqs. (53, 54) is the pair of
equations

-1 dF(r)
Er(l(Z Lir)=(m + Vi + W) ]’»Lz(r) + a f;[(r) - c]lf“ )
n +1 dG?,(r)
BOF) = (Ve = mi — Vo + 2 g + 20
Fogj " Ge
ffz(r) = ii(r) LGP (r) = 73( r) . (59)

The functions F and G are expanded in a set of orthonormal basis functions

Pi(r/0)
N .
r) = Z a ¢y(r/e),

N
= Z Bl o5(r/ o), (60)
with
/0°° drr* ¢y (r/0)¢f (r/0) = bik. (61)

¢ 1s the size parameter of the wave functions, and i1s used as the variational
parameter in this calculation.
Substituting the expansion of eq. (60) into eq. (59), multiplying by QSZ(Z)(T/Q)

and integrating, leads to the set of equations
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N
E£%3a2=2<m1+v<>+v<>> ol
= kel
N N
K1 -1 d
L w-y (g
ZZ:; r [YXT ; dr [YXT
N
0 T T
B0 =Y <m<r> o - vs<r>> B
= kZil

where we use the symbolic notation

<¢<r>>% = [ amoti o, oo (63)

0

The two sets of equations represented by eq. (62) can be combined into the single
eigenvalue equation

<<m B KZK(1+)1+ Vi (7;) E) <%(r)<51:;1—_v§2) i E>) (;) Lo

The size of the matrix in eq. (64) is 2N x 2N. Solutions to the eq. (59)
are obtained by varying the wave function size parameter g, diagonalising the
matrix in eq. (64) for each value of g, and searching for stationary points in the
eigenvalues as functions of g. In principle, if the size of the expansion basis N is
taken to oo, solutions obtained in this way would be exact and independent of
¢. In practice, the procedure outlined above is carried out for finite NV, and N is
increased until the eigenvalues are largely independent of g, for some reasonable
range in g. With this method, the lower N eigenvalues obtained correspond to
negative energy states, while the higher N eigenvalues are those of interest for
this problem.

For this problem we have used harmonic oscillator wave functions for the
expansion, with N = 10 and N = 20. We compare the numerical solutions
that we obtain using this procedure with those that are obtained using the other
previously described methods. As expected, the variational solutions are better
for N = 20, and the eigenvalues are within 1% of those obtained by solving the
equations by the methods described in the previous subsection.

16



15 20 25 0.0 05

0.0 05 10 10
Up(GeV) Up(GeV)

FIG. 2. Energy eigenvalues as a function of lg, for N =10 and N =20 .

B. QQ sector

Using eq. (48) in eq. (47) and defining p = b'/%r, the differential equation for
the radial wave function is

[_% (5_; _ %) V) + p] uni(p) = cunc(p). (65)

where p = mqg/b'/? | & = (WT(LOL) — 2mg — ¢)/bY? and V,(p) = V,(r)/b"/2.
Determining the asymptotic behavior of the radial wave function, the reduced
radial wave function ¢g(p) can be defined by

1

unr(p) = g(p)e #7370 (66)

The appearance of fractional powers of p in the argument of the exponential
function in (66) leads to coefficients with fractional powers of p in the differential
equation for g(p). This complicates the expansion of the reduced radial wave
functions for small and large values of p. It is, therefore, convenient to define the
variable & = p/2. The differential equation for ¢(&) can then be written as

17

d? 1 d
[—&2@ (62 ane)

+ (14 1) 4 e+ 260) - €+ 48T a0 =0 (6)

This equation can be used to develop expansions for small and large ¢ to provide
boundary conditions for numerical integration of the differential equation.

Since the Runge-Kutte method is designed to integrate systems of coupled
first-order differential equations it is necessary to reexpress the differential equa-
tion (67) as the coupled pair

j—gg@) — f(e), (68)

and

[_€25_€ t(e-oetes 4ug4)] 1)

(AL + 1)+ (e +26%) = pe€ + 4pET(€9)) (&) = 0. (69)

This system can then be solved by Runge-Kutte integration and intermediate-
point shooting techniques.

IV. RESULTS

Once the zeroth-order solutions are found, the perturbed energies can be
calculated using (24) and (50). The masses associated with the bound states are
given by (26) and (51). These depend on the quark masses m,, my, m, and my
as applicable for each meson; the parameters of the scalar potential (27) & and
¢; and the parameters of the vector potential (28) «; and 5; for i = 1,2,3. The
model contains a total of twelve parameters. In obtaining the results shown here,
the vector potential parameters

o = 015,
Y= 05a

a3 = 02,

yo = 1581, 3 =1581, (70)

are fixed at the same values as given in ref. [4]. The remaining vector potential
parameter «vq 1s reexpressed as

O] = Qepit — @3 — Q3. (71)
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TABLE II. Parameters of the model.

TABLE IV. Fitted meson spectra for @ mesons.

parameter value comments

Qerit 0.674 limiting value of «,

b 0.180 GeV? string tension
c 0.02 GeV see eq. (27)

My 0.258 GeV

ms 0.400 GeV

Me 1.53 GeV

my 4.87 GeV

TABLE III. Fitted meson spectra for (§ mesons.
Mass (GeV)

Meson JE theory experiment®
D 0~ 1.85 1.87
D* 1~ 2.02 2.01
Dy 1t 2.41 2.42
D3 2t 2.46 2.46
B 0~ 5.28 5.28
B* 1~ 5.33 5.33
D 0~ 1.94 1.97
Dz 1~ 2.13 2.11
B: 0~ 5.37 5.38
B? 1~ 5.43 5.43

*Experimental values are quoted [16] to the nearest 10 MeV due to ambiguities in
assigning the calculated values to specific charge states.

where a,,;; is the value of the running coupling constant at Q? = 0 as
parametrized in ref. [4].

a.rir and the remaining model parameters are adjusted to fit the masses of a
selection of mesons. The resulting values are listed in Table II. The fitted meson
spectra for the Qg sector are listed in Table III and the fitted meson spectra for
the QQ are listed in Table IV. Additional states which were not used in the
fitting procedure were calculated and a detailed discussion of the results for the
Qg and QQ is presented in the following two subsections.
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Mass (GeV)
Meson Jre theory experiment
e 0—+ 3.00 2.98
J/(18) 1=~ 3.10 3.10
X <0 ott 3.44 3.42
Xel 1+t 3.50 3.51
Xe2 ott 3.54 3.56
J/9(29) 1=~ 3.73 3.69
T(1S) 1=~ 9.46 9.46
xwo(1P) ot 9.85 9.86
x61(1P) 1t 9.87 9.89
xu2(1P) 2t 9.89 9.92
T(25) 1=~ 10.02 10.02
xv0(2P) ott 10.24 10.24
x61(2P) 1t 10.26 10.26
xv2(2P) AR 10.28 10.27
T(35) 1=~ 10.39 10.36

A. Qg sector

For the Qg sector, the zeroth-order eigenenergy En%l = w

ki — My 18
independent of the heavy quark mass, as would be expected in the hlé;wy quark
limit, where the heavy quark should act as a static source. The zeroth-order
spectrum depends only on the light quark mass. The first-order correction to the
mass WTEIJ)P is proportional to 1/my and splits each of the unperturbed states.

These features are illustrated in Fig. 3 which shows w0

nK1jJ1
solid lines and W, ;p — ms = Wrg?c)ljl + WTEIJ)P — mo with a ¢ quark as the heavy
quark (dotdashed lines) and with a b quark as the heavy quark (dashed lines).
Fig. 4 is a similar spectrum where the light quark is now an s quark.

Note that to zeroth order the ordering of the j; = £ & 1/2 states is reversed
for the ¢ = 2 states in comparison to the £ = 1 states. This phenomenon, called
multiplet inversion, has been predicted [17] for Q¢ mesons with mqy > my. It
results from the dominance of the Thomas-precession over the spin-dependent
forces in this limit.

For the states presented here, the root mean square momentum of the zeroth-
order wave function is approximately 0.9 GeV. Clearly, both u and s quarks are
very relativistic. In addition, it is possible to obtain some sense of the convergence

—mso for a u quark as

20
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FIG. 5. ca spectrum. In this figure, solid lines represent the results of our calculation
for the masses of ca mesons, W, to the first order in the perturbation; dotted lines
represent the data.

of the p/m expansion for the corrections to the infinite-heavy-quark-mass limit
since p;n_n;s ~ % while p;n_n;s ~ % Therefore, the higher-order correction that
are neglected here should be considerably larger for the the ¢ quark than the
b quark. Indeed, this problem will become worse with increasing n since ppms
should increase with increasing n. This is seen in the shift of the 07 states relative
to the unperturbed states which increases with n.

Figs. 5 to 9 show predictions for the masses of )¢ mesons, W, to first order
in the perturbation (solid lines). In the spectra for mesons with @ and s quarks,
the available data are plotted for comparison as dotted lines. Ref. [16] has also
listed states Dy(2.440) and D;;(2.573) with uncertain quantum numbers. We
believe they correspond to the state 17(2.41) in Fig. 5 and the state 2%(2.58)
in Fig. 6 respectively. For the b¢ mesons, calculated masses from [4] are plotted
because no data exist at present. For the b¢ mesons, p;n"zs ~ 1. This shows that
although the mass of the ¢ quark is relatively large it is quite relativistic in this
case.
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FIG. 6. ¢3 spectrum. See caption of Fig. 5.
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FIG. 9. b¢ spectrum. See caption of Fig. 5.
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In these figures, the results are in good agreement with the data, which vindi-
cates our choices of potentials and parameters. However, the calculated hyperfine
splittings are all larger than in the data. The agreement is much better in the
b-flavored mesons than in the c-flavored mesons. There are three possible reasons
for this discrepancy. First, as has been mentioned earlier, this model 1s expected
to work better for b-flavored mesons than for c-flavored mesons due to the more
rapid convergence of the nonrelativistic expansion applied to the heavy quark.
Secondly, these calculations do not include any effects associated with possible
strong decay of the heavy mesons. The coupling to these strong decay channels
will result in shifts in the meson masses as well as decay widths for heavy mesons
above decay thresholds. These shifts will be greatest near the decay thresholds.

The third possible reason for the large hyperfine splittings may have its origin
in the parametrization of a;(r), particularly at small ». While many functional
forms may be used for this parametrization, each form may be expected to lead
to quite different 1/mg contributions, especially in the hyperfine term. This
question is currently under investigation.

The third term on the right hand side of (18b) has off-diagonal matrix ele-
ments between states with j; differing by unity and with ¢ differing by either 0
or 2. These mixings do not affect the spectrum to order % but should result
in shifts in some states at higher order in all of these systems. This should be

particularly apparent for the 11 states which are nearly degenerate to order ml—Q

for all ()¢ mesons calculated here.

One very interesting aspect of this calculation i1s the mapping of our model
onto the heavy quark effective theory, with a view to evaluating some of the
parameters and dynamical quantities (such as universal form factors) of the ef-
fective theory. While we do not endeavor to perform such a calculation for all
such quantities here, some comments are merited.

Although we have included all of the 1/m¢ terms that arise from the spectator
equation, it is not clear that these correspond to all of the 1/mg terms of HQET.
In particular, in the spectator equation, the heavy quark is treated as being
exactly on its mass shell. In contrast, in HQET, the heavy quark is allowed
to be slightly off its mass shell (via the equation p, = mgv, + k,.), and this
leads to terms that may be absent from the formulation presented here. The full
ramifications of this are also under investigation.

Until this question is resolved, we dare not examine quantities that are inti-
mately bound up in the 1/mg structure of the effective theory or the model. We
can, however, examine quantities that depend only on the leading-order structure
of the model, as we believe that this is a reasonably accurate representation of
the effective theory. In particular, in the effective theory, one expects that the
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heavy quark should act as a static color source. This very important feature is
reproduced in the model, as the leading dynamical behavior is described in terms
of a Dirac equation for the light quark.

Two quantities of interest in HQET are A and Aq, which are defined by

My =mqg+A+0 (mLQ) ,
(M(v) |hq(iD)*ho| M(v)) = 2Mp .

A is crucial for the effective theory, as it appears as the coefficient in the 1/mg
expansion: the expansion coefficient is written as A/mQ. A is, in essence, the
contribution to the mass of the meson from the mass and kinetic energy of the
“brown muck”. The left hand side of the second expression above is proportional
to the kinetic energy of the heavy quark. The meson states in the bra and ket
above are the leading order representation, and so correspond to our zeroth-
order calculation. From our model, we obtain A = 0.45 GeV for the ground
state pseudoscalar/vector doublet, and A\; = 0.67 GeV?. These values are in
reasonable agreement with other values in the literature [3]. Further aspects of
the relationship of our model to HQET are discussed in the conclusions.

B. QQ sector

Figs. 10 and 11 show the spectra for ¢é and bb mesons as calculated with
eqs. (44)-(51). As before, the calculated masses are shown as solid lines and the
experimental masses as dotted lines. The DD and BB thresholds are shown as
horizontal dotdashed lines across the Figs. 10 and 11 respectively. Ref. [16] has
also listed states h.(1P) with mass 3.526 GeV and 7,(25) with mass 3.590 GeV.
We believe they correspond to the states 2154(3.67) and 11 Py(3.51) in Fig. 10
respectively.

The bb spectrum is in quite good agreement with the data for the states lying
below the BB threshold. The agreement deteriorates as the masses approach and
cross the BB threshold. As argued in the previous section, this may be the result
of the absence of coupling to strong decay channels. The agreement for the cc is
less satisfactory. This may be an indication of the inadequacy of the truncation of

the nonrelativistic expansion at order —. In both cases the hyperfine splitting
mQ

of the spin triplet states is too large.

Since the hyperfine tensor interaction has non-zero off diagonal matrix ele-
ments for states with spin 1 and with L differing by 0 or 2, there should be
mixings of states such as 35, with 3Dy and 3P, with 3F,. These mixings do
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FIG. 10. c¢ spectra. See caption of Fig. 5.

not affect the spectrum to order m% but should result in shifts in some states at
Q

higher order in both the b6 and cé spectra.

Table V shows the individual contributions to the masses W of a number of
bb states from W(O), Fe, Enyp, Bso, Esr and Evg. The retardation contributions
FEsr and Evyg are clearly gauge dependent since they would not appear in the
Coulomb gauge. FE. is also gauge dependent. These contributions may also be
sensitive to the choice of quasipotential prescription. To this order Ehyp, Fso
should be independent of these factors. Note that the scalar and vector retarda-
tion contributions are of opposite sign and therefore tend to cancel. However the
sum of these contributions is comparable with Fyy, and Es,. The assumption
that the scalar retardation potential depends only on the square of the exchanged
four-momentum Q7 is uncontrolled and it is possible to propose forms for this
retardation potential which would eliminate the scalar term altogether.
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TABLE V. Zeroth order and various first order interaction energies in the bb spectrum

(GeV)
State W w0 E. Bhyp Eso Esp Eyr  Esp + Evm
115 941 9.5315 -0.0602 -0.0367 0.0000 0.0072 -0.0297 -0.0224
125, 9.46 9.5315 -0.0602 0.0122 0.0000 0.0072 -0.0297 -0.0224
215, 10.00 10.0892 -0.0708 -0.0192 0.0000 0.0175 -0.0192 -0.0017
225, 10.02 10.0892 -0.0708 0.0064 0.0000 0.0175 -0.0192 -0.0017
3lsy 1037 10.4511 -0.0839 -0.0146 0.0000 0.0302 -0.0160 0.0142
335, 10.39 10.4511 -0.0839 0.0049 0.0000 0.0302 -0.0160 0.0142
4lsy, 1066 10.7411 -0.0992 -0.0125 0.0000 0.0447 -0.0144 0.0303
435, 1068 10.7411 -0.0992 0.0042 0.0000 0.0447 -0.0144 0.0303
11.20 + 1
6%s,(11.15) 5150 1091 10.9928 -0.1162 -0.0113 0.0000 0.0608 -0.0135 0.0473
| 525, 1093 10.9928 -0.1162 0.0038 0.0000 0.0608 -0.0135 0.0473
5°S,(10.93)
} 615y 11.14 11.2202 -0.1345 -0.0105 0.0000 0.0781 -0.0128 0.0653
10.80 | ¥0,(1073) 65, 11.15 11.2202 -0.1345 0.0035 0.0000 0.0781 -0.0128 0.0653
8
T tse BB threshold
) 2'D,(1046) 2/D1047) ZD1047) ZD41047) 1 1'p, 9.88 9.9438 -0.0610 -0.0023 0.0000 0.0126 -0.0169 -0.0043
3 10.40 3’1037 35,(1039) TF(1035) L1036 1%(1036) 1F,(10.36) 12Py 985 9.9438 -0.0610 -0.0074 -0.0243 0.0126 -0.0169 -0.0043
1,
o Mmmﬂiﬂwwmm 1°p 987 9.9438 -0.0610 0.0049 -0.0121 0.0126 -0.0169 -0.0043
1%0,(10.14) 7 1'p1015) IDy(10.15) 1Dy10.15) 2Py, 989 9.9438 -0.0610 -0.0001 0.0121 0.0126 -0.0169 -0.0043
1 (10.00) 2S1(10.02)
10.00 Z200 . 1 2'p) 1027 10.3321 -0.0752 -0.0016 0.0000 0.0244 -0.0143 0.0101
1P(989) 1% (985 s 22p, 1024 10.3321 -0.0752 -0.0056 -0.0182 0.0244 -0.0143 0.0101
huosT) T 22p; 1026 10.3321 -0.0752 0.0036 -0.0091 0.0244 -0.0143 0.0101
22p, 1028 10.3321 -0.0752 -0.0001 0.0091 0.0244 -0.0143 0.0101
9.60
1'59.41 L) —_—
1504 o 1'D, 1015 10.2072 -0.0637 -0.0008 0.0000 0.0186 -0.0139 0.0047
thiswork 1°Dq,  10.14 10.2072 -0.0637 -0.0011 -0.0097 0.0186 -0.0139 0.0047
9.20 \ \ \ \ \ \ \ \ \ 1D, 1015 10.2072 -0.0637 0.0016 -0.0032 0.0186 -0.0139 0.0047
. -+ -- +- + + ++ + + -+ - - - - + - + + ++ 3
0 1 1 0 1 2 2 2 3 3 3 4 1°Dy 1015 10.2072 -0.0637 -0.0001 0.0064 0.0186 -0.0139 0.0047
FIG. 11. bb spectra. See caption of Fig. 5. 21D, 1047 105277  -0.0792  -0.0006 0.0000 0.0315  -0.0125 0.0190
22D, 10.46 10.5277 -0.0792 -0.0009 -0.0080 0.0315 -0.0125 0.0190
22D, 1047 10.5277 -0.0792 0.0013 -0.0027 0.0315 -0.0125 0.0190
22Dg 1047 10.5277 -0.0792 -0.0001 0.0053 0.0315 -0.0125 0.0190
11/ 1036 10.4164 -0.0717 -0.0004 0.0000 0.0250 -0.0124 0.0126
1*F, 1035 10.4164 -0.0717 -0.0004 -0.0047 0.0250 -0.0124 0.0126
1Py 10.36 10.4164 -0.0717 0.0008 -0.0012 0.0250 -0.0124 0.0126
1°F, 10.36 10.4164 -0.0717 -0.0001 0.0035 0.0250 -0.0124 0.0126
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V. CONCLUSION AND OUTLOOK

We have constructed this model for heavy mesons based on a relativistic
bound state equation, namely the spectator equation. The calculated spectra are
in quite good agreement with the experimental data. The parameter values we
have are reasonable, and comparable to other models of similar type. The model
is derived by expanding the spectator equation in 1/Mg, where Mg is the mass of
the heavy quark. This treatment is expected to work better for b-flavored mesons
than for c-flavored mesons since in c-flavored mesons, v ~ %c, but in b-flavored
mesons, v ~ %c, and our results confirm this expectation.

The retardation contribution to the Q@ mesons, which is missing in other
quark models, has a noticeable effect. Annihilation effects have been neglected, as
they are suppressed by additional powers of «; (M), which is a small parameter.

In addition to the questions currently being investigated (parametrization
of (), 1/mg terms), this work opens up many avenues of investigation. Of
primary importance is the application of the model to decay processes of heavy
mesons. In particular, the calculation of the Isgur-Wise functions that describe
the semileptonic decays, not only for decays to pseudoscalars and vectors, but also
to excited states, are of great interest. In HQET, these form factors are essentially
the overlaps of the appropriately boosted wave functions. It will be interesting
to see if this relationship between the form factors and the wave functions arises
in the present model, and if so, how. In addition, the slope of the Isgur-Wise
function for the elastic decays may also be calculated, and various HQET sum
rules checked.

The strong and electromagnetic decays may also be treated with the wave
functions that we have. These are particularly interesting for the D* and D;}
states, as the former lie so close to the Dm threshold, while the latter lie below
the DK threshold, and thus decay radiatively. In addition, quantities such as
meson decay constants may also be evaluated.
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