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Heavy Mesons In A Relativistic ModelJ. Zeng, J. W. Van Orden and W. RobertsyDepartment of Physics, Old Dominion University, Norfolk, VA 23529andContinuous Electron Beam Accelerator Facility12000 Je�erson Avenue, Newport News, VA 23606.Motivated by the present interest in the heavy quark e�ective theory, we use thespectator equation to treat the mesonic bound states of heavy quarks. The kernel weuse is based on scalar con�ning and vector Coulomb potentials. Wave functions aretreated to leading order and energies to order 1=mQ in the heavy-light systems, andorder 1=m2Q in heavy-heavy systems. Our results are in reasonable agreement withexperimental measurements. We estimate two of the parameters of the heavy quarke�ective theory, and propose further calculations that may be undertaken in the future.I. INTRODUCTIONRecently, there has been great theoretical interest in hadrons containing band c quarks. This has stemmed largely from the realization that, in the formallimit when the mass of one of the quarks in a hadron is taken to in�nity, symme-tries above and beyond those usually associated with quantum chromodynamics(QCD) arise. This realization has led to the development of the heavy quarke�ective theory (HQET) [1] [2] [3]. In the framework of this e�ective theory, cor-rections to the formal limit can be systematically included. One very importantphenomenological consequence of this has been a number of attempts to extractVcb from experimental data, with little model dependence in the result.Despite the power inherent in HQET, there is still much that this e�ectivetheory can not tell us about the properties of heavy hadrons. As an example,HQET allows us to infer the absolute normalization of some of the form fac-tors necessary for describing the decays of hadrons with beauty to those withcharm. We also know how to include, in a systematic way, corrections to thesenormalizations due to the �nite masses of the b and c quarks, as well as thosedue to perturbative QCD e�ects. We can even deduce bounds on the slopes of
these form factors at a particular kinematic point. However, we know nothingabout the exact dependence of these form factors on kinematic invariants. Asa second example, HQET leads us to the conclusion that the spectra of B andD mesons should be very much alike, modulo 1=mb and 1=mc e�ects. However,this e�ective theory tells us nothing about the details of the spectra, such as theexact ordering of states, or their masses. In essence, HQET provides a frameworkfor systematically extracting symmetry relations and the corrections to the for-mal heavy-quark limit but can predict neither the spectra of the heavy mesonsnor the approach to the heavy-quark limit. Until we know how to solve non-perturbative QCD, the details mentioned above, along with many others, are therealm of models: such models continue to play a crucial role in our understandingof QCD.A model that is quite successful in predicting the mesonic spectra is the rel-ativised constituent quark model of Godfrey and Isgur [4]. Indeed, it was thismodel and its applications to weak decays that originally suggested the existenceof heavy-quark symmetries which in turn led to HQET. This model providesrelativistic kinematic corrections to the standard nonrelativistic quark model us-ing a linear con�ning potential and a color Coulomb interaction. Meson spectracalculated with this model are remarkably close to experimental masses in all
avor sectors. However, since one of the objectives of heavy quark theory is thecalculation of weak decay amplitudes and form factors, it is necessary to use arelativistically covariant model.A covariant extension to the Godfrey-Isgur model can be constructed usingthe spectator or Gross equation [5], which has been used with some success inmodels of the nucleon-nucleon interaction [6], as well as in quark models of mesonscomposed of equal mass quarks and antiquarks [7]. This equation can be relatedto the Bethe-Salpeter equation by placing one of the intermediate-state particleson the positive-energy mass-shell. This has the advantages that the prescribedconstraint on the relative energy is manifestly covariant and that in the limit thatthe mass of one constituent goes to in�nity (the static limit), the wave equationreduces to the Dirac equation for the light particle [8]. This is a property of the2



full Bethe-Salpeter equation that is lost when the in�nite sum of contributionsto the kernel is truncated. Clearly, the properties of the spectator equation makeit ideal for studying the properties of heavy mesons at �nite mass.In this article we use the spectator equation to construct a constituent quarkmodel of heavy mesons. In particular, we will use the spectator equation asa basis for construction and expansion of the heavy meson spectra and wavefunctions in 1=mQ, where mQ is the heavy quark mass. This allows us to studythe heavy meson spectra in the approach to the heavy quark symmetry limit. Bychoosing a reasonable set of model parameters we are able to obtain a respectable�t to the observed heavy meson masses and to predict the approximate massesof heavy mesons which have not yet been observed.This article is organized as follows. In the next section, we describe the modelthat we use for heavy mesons, including the derivation of a wave equation fromthe spectator equation. In Section III, three methods of obtaining solutions ofthe wave equation are described, while in Section IV we display our results. InSection V, we present some conclusions.II. THE MODELA. Q�q and q �Q mesonsThe spectator equation is most easily understood in relation to the Bethe-Salpeter equation. The Bethe-Salpeter vertex function for two bound fermions isrepresented by Fig. 1 and can be written as�(p; P ) = i Z d4k(2�)4V (p; k;P )S(1)F (k1;m1)S(2)F (k2;m2)�(k; P ); (1)where p = 12(p1 � p2), k = 12(k1 � k2), V is the Bethe-Salpeter kernel andS(i)F (ki;mi) is the free Dirac propagator for particle i. The Dirac indices aresuppressed for simplicity.The spectator vertex function can be obtained from the Bethe-Salpeter vertexfunction by placing one of the fermions on its positive-energy mass-shell. For ourmodel the heavy quark (particle 2) is placed on shell while the light quark (particle1) remains o� shell. This is achieved by a replacement of the propagatorS(2)F (k2;m2)!�2�i m2E(k2;m2)��k0 � P 02 + E(k2;m2)��+(2)(k2;m2); (2)where
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ΓFIG. 1. Feynman diagrams representing the equation for the Bethe-Salpeter vertexfunction. �+(2)(k2;m2) =Xs02 u(2)(k2; s02;m2)�u(2)(k2; s02;m2); (3)and replacing p, k and k1 by the corresponding quantities �p, �k and �k1 withparticle 2 on mass shell. The on-shell energy is given by E(p;m) = pp2 +m2.The spectator vertex function is then�(�p; P ) = Z d3k(2�)3 m2E(k2;m2)V (�p; �k;P )S(1)F (�k1;m1)�+(2)(k2;m2)�(�k; P ): (4)De�ning the spectator wave function as s2(�p; P ) = S(1)F (�p1;m1)�u(2)(p2; s2;m2)�(�p; P ); (5)the wave function satis�es the wave equationS(1)F �1(�p1;m1) s2(�p; P ) =Z d3k(2�)3 m2E(k2;m2)Xs02 Vs2;s02(�p; �k;P ) s02(�k; P ); (6)where Vs2;s02(�p; �k;P ) = �u(2)(p2; s2;m2)V (�p; �k;P )u(2)(k2; s02;m2): (7)This wave equation is covariant and can be easily boosted from frame to frame.It is generally easier to solve the wave equation in the bound-state rest framewhere the angular expansions of the wave function and potential are de�ned. Inthe rest frame P = (W;0), p1 = �p2 = p, k1 = �k2 = k, p01 = W � E(p;m2),p02 = E(p;m2), k01 = W � E(k;m2), and k02 = E(k;m2) where W is the bound-state mass. The wave equation can be written ash
(1)0(W �E(p;m2))� 
(1) �p�m1i s2(p;W ) =Z d3k(2�)3 m2E(k;m2)Xs02 Vs2;s02(p;k;W ) s02(k;W ); (8)3 4



where Vs2;s02(p;k;W ) = �u(2)(�p; s2;m2)V (p;k;W )u(2)(�k; s02;m2): (9)Since we wish to examine the approach to the limit m2 ! 1, it is useful torewrite this equation in a noncovariant form by de�ning	s2(p) �r m2E(p;m2) s2(p;W ) (10)and Us2;s02(p;k;W ) �r m2E(p;m2)Vs2;s02(p;k;W )r m2E(k;m2) (11)to give h
(1)0(W �E(p;m2)) � 
(1) � p�m1i	s2(p) =Z d3k(2�)3 Xs02 Us2;s02(p;k;W )	s02(k): (12)It is necessary to assume some form for the kernel V in order to expand aboutthe in�nite mass limit. Here we assume that the kernel is of the simplest formwhich can be reduced to that used in ref. [4]. We choose the kernel to beV (p; k;P ) = Vs(Q2) + 
(1) � 
(2)Vv(Q2); (13)where Q2 = (k � p)2 � [E(k;m2)� E(p;m2)]2 : (14)Vv(Q2) is a vector potential which is a color Coulomb interaction and the con�n-ing force is the result of the scalar potential Vs(Q2). This choice of interactionassumes that the Lorentz gauge is used in the color Coulomb interaction.Using the explicit form of the Dirac spinors in (12) and the Dirac 
-matricesto reduce particle 2 to the Pauli spin space, and de�ning a wave function whichis an operator in the Dirac space of particle 1 and the Pauli space of particle 2,	 =Ps02 �s02	s02 , (12) becomes�
(1)0(W �E(p;m2)) � 
 (1) � p�m1�	(p) =
Z d3k(2�)3 �(E(p;m2) +m2)(E(k;m2) +m2)4E(p;m2)E(k;m2) �12���1� �(2) � p�(2) � k(E(p;m2) +m2)(E(k;m2) +m2)�Vs(Q2)+
(1)0 �1 + �(2) �p�(2) � k(E(p;m2) +m2)(E(k;m2) +m2)�Vv(Q2)+ 
(1) �� �(2) � p�(2)(E(p;m2) +m2) + �(2)�(2) � k(E(k;m2) +m2)�Vv(Q2)�	(k); (15)Expanding eq. (15) to order 1=m2, we �nd�
(1)0 (W �m2 � p22m2 )� 
(1) � p�m1�	(p) =Z d3k(2�)3 �Vs(q2) + 
(1)0Vv(q2)+ 12m2
 (1) � (�(2)�(2) � k + �(2) � p�(2))Vv(q2)�	(k): (16)where q = k � p.Eq. (16) can be Fourier transformed to coordinate space, multiplied from theleft by 
(1)0 and then rearranged to give the wave equationH	(r) = W	(r); (17)where the hermitian hamiltonian is H = H0 +H1 withH0 = �(1) � 1ir+ �(1)m1 + �(1)Vs(r) + Vv(r) +m2; (18a)H1 = 12m2 n�r2 � inVv(r);�(1) �ro+�(1) ��(2) � ^rV 0v (r)o ; (18b)where ^r is the unit vector in the radial direction.Eq. (18a) is the Dirac equation for particle 1 with scalar and vector potentialsplus the mass of the heavy quark, particle 2. The solutions of the Dirac equationwith such a potential have been extensively studied. The operatorsnj(1)2; j(1)z ;K; S(2)z o (19)5 6



TABLE I. Values of ` and �` for various values of �` �`�1 < 0 j1 � 12 j1 + 12�1 > 0 j1 + 12 j1 � 12are a set of mutually commuting operators which commute with H0, where j(1) =L+S(1), S(1) = 12�(1) = 12
(1)5 �(1), K(1) = �(1)(�(1) � j(1)� 12 ) and S(2) = 12�(2).The eigenstates of H0 can then be labelled by the corresponding set of quantumnumbers fn; j1;mj1 ; �1; s2g. The wave equation associated with H0 can then bewritten as H0	(0)n�1j1mj1 s2(r) =W (0)n�1j1	(0)n�1j1mj1 s2(r); (20)where 	(0)n�1j1mj1 s2(r) = 0@ Gn`j1 (r)r Ymj1`12 j1(
)iFn`j1 (r)r Ymj1�` 12 j1(
) 1A�s2 ; (21)with Ymj1` 12 j1(
) = Xm`;s1 �`m`; 12s1���� j1mj1�Y`m` (
)�s1 ; (22)and �s1 and �s2 are the Pauli spinors for particles 1 and 2, respectively. Theeigenvalue �1 = �(j1 + 12) can be any nonzero integer. The values of ` and �`associated with various values of �1 are displayed in Table I.Note that the zeroth order invariant mass W (0)n�1j1 is determined by n, �1 andj1, or equivalently by n, j1, and `. The parity of the Q�q bound state is given byP = (�1)`+1.The �rst term on the right hand side of (18b) is the kinetic energy of particle2. Both the �rst and second terms on the right hand side of (18b) commute withthe set of operators given in (19). However, the third term does not commutewith any of these operators, but instead commutes with�J2; Jz;P	 (23)where J = j(1) + S(2) and P is the parity operator. The eigenstates of the totalhamiltonian H = H0 +H1 can then be labelled by the set of quantum numbersfn; J;MJ ; Pg.

The eigenstates and eigenenergies of the hamitonian H can be calculateddirectly. However, the objective of the calculations presented here is to producewave functions which can be used in the calculation of form factors and decayconstants as an expansion in powers of the inverse of the heavy quark mass m2.In order to maintain consistency in this expansion, the masses and wave functionsshould be calculated perturbatively. The �rst order correction to the quark boundstate mass is given byW (1)nJP = Z d3r	(0)yn�1j1JMJ (r)H1	(0)n�1j1JMJ (r); (24)where 	(0)n�1j1JMJ (r) = Xmj1 ;s2 �j1mj1 ; 12s2���� JMJ�	(0)n�1j1mj1 s2(r): (25)The bound state mass to �rst order isWnJP = W (0)n�1j1 +W (1)nJP : (26)The scalar and vector potentials in the calculations presented here have theform Vs(r) = br + c; (27)Vv(r) = �43 3Xi=1 �ir erf(
ir): (28)The vector potential is, as in ref. [4], based on a parametrization of the runningQCD coupling constant. B. Q �Q mesonsThe situation for mesons made of a heavy quark and the corresponding an-tiquark is somewhat more complicated. The problem is that the prescriptionof placing particle 2 on mass shell in the Bethe-Salpeter vertex equation (1) toobtain the spectator vertex equation (4) is clearly asymmetrical. This resultsin a spectator vertex function which is no longer an eigenfunction of the chargeconjugation operator. The solution of this problem is to construct a set of cou-pled equations for the vertex functions which have either particle 1 or particle7 8



2 on mass shell [7]. These equations have been solved in ref. [7] for q�q-systemscontaining only light quarks.However, since we are interested in expanding about the in�nite mass limit,this additional complication is not necessary and a hamiltonian with leading1=mQ corrections can be constructed from (4). The starting point is the spinordecomposition of the Dirac propagator of particle 1 in the meson rest frameS(1)F (�k1;mQ) = mQE(k;mQ)Xs01 �u(1)(k; s01;mQ)�u(1)(k; s01;mQ)W � 2E(k;mQ) + i�+ v(1)(�k; s01;mQ)�v(1)(�k; s01;mQ)W � i� � : (29)Using eqs. (29) and (3) in eq. (4), we can write [9]�(�p; P ) = Xs01s02 Z d3k(2�)3 mQE(k;mQ)V (�p; �k;P )�u(1)(k; s01;mQ)u(2)(�k; s02;mQ)	(+)s01;s02(k)+v(1)(�k; s01;mQ)u(2)(�k; s02;mQ)	(�)s01;s02(k)� ; (30)where 	(+)s01;s02(k) = mQE(k;mQ) �u(1)(k; s01;mQ)�u(2)(�k; s02;mQ)�(�k; P )W � 2E(k;mQ) ; (31)and 	(�)s01;s02(k) = mQE(k;mQ) �v(1)(�k; s01;mQ)�u(2)(�k; s02;mQ)�(�k; P )W : (32)Multiplying the terms of (30) to the left respectively bymQE(p;mQ) �u(1)(p; s1;mQ)�u(2)(�p; s2;mQ) (33)and mQE(p;mQ) �v(1)(�p; s1;mQ)�u(2)(�p; s2;mQ); (34)means that eq. (12) can be rewritten as the pair of coupled integral equations
(W � 2E(p;mQ))	(+)s1;s2(p) = Xs01;s02 Z d3k(2�)3 hU++s1;s2;s01 ;s02(p;k;W )	(+)s01;s02(k)+ U+�s1;s2;s01 ;s02(p;k;W )	(�)s01;s02(k)i ; (35)and W	(�)s1;s2(p) = Xs01;s02 Z d3k(2�)3 hU�+s1;s2;s01;s02(p;k;W )	(+)s01;s02(k)+ U��s1;s2;s01;s02(p;k;W )	(�)s01;s02(k)i ; (36)whereU++s1;s2;s01;s02(p;k;W ) = m2QE(p;mQ)E(k;mQ)��u(1)(p; s1)�u(2)(�p; s2)V (p;k;W )u(1)(k; s01)u(2)(�k; s02); (37)U+�s1;s2;s01;s02(p;k;W ) = m2QE(p;mQ)E(k;mQ)��u(1)(p; s1;mQ)�u(2)(�p; s2)V (p;k;W )v(1)(�k; s01)u(2)(�k; s02); (38)U�+s1;s2;s01;s02(p;k;W ) = m2QE(p;mQ)E(k;mQ)��v(1)(�p; s1)�u(2)(�p; s2)V (p;k;W )u(1)(k; s01)u(2)(�k; s02); (39)U��s1;s2;s01;s02(p;k;W ) = m2QE(p;mQ)E(k;mQ)��v(1)(�p; s1;mQ)�u(2)(�p; s2)V (p;k;W )v(1)(�k; s01)u(2)(�k; s02): (40)These coupled equations can then be reduced to the Pauli spin space andexpanded in powers of 1=mQ. In this case, only U++	(+) contributes to order1=m2Q. De�ning a wave function which is an operator in the spin spaces of bothparticles as 	 = Xs01;s02 �s01�s02	(+)s01 ;s02; (41)eq. (35) becomes�W � 2mQ � p2mQ�	(p) = Z d3k(2�)3U (p;k)	(k); (42)9 10



whereU (p;k) = Vs(q2) + Vv(q2)� 14m2Q h�V 0s (q2) + V 0v(q2)� �k2 � p2�2+Vs(q2)�p2 + k2 + �(1) �p�(1) � k + �(2) � p�(2) � k�+Vv(q2)�p2 + k2 � �(1) �p�(1) � k � �(2) � p�(2) � k�� Vv(q2)��(1)�(1) � k + �(1) � p�(1)� � ��(2)�(2) � k+ �(2) � p�(2)�i : (43)Eq. (42) can then be Fourier transformed to coordinate space to extract thehamiltonian H = H0 +H1; (44)with H1 = Hc +Hhyp +Hso +HSR +HVR; (45)where H0 = � r2mQ + Vs(r) + Vv(r) + 2mQ; (46a)Hc = 1m2Q �14 �r2Vs(r)� � [Vv(r)� Vs(r)]r2 + [V 0s (r)� V 0v(r)] @@r� ; (46b)Hhyp = 1m2Q �12 �1rV 0v(r) � V 00v (r)��S � ^rS � ^r� 13S2�+ �r2Vv(r)��13S2 � 12�� ; (46c)Hso = 12m2Qr [3V 0v(r)� V 0s (r)]S � L; (46d)HS(V)R = � 14m2Q �r2; �r2; FS(V)R(x)�� ; (46e)
and S = S(1) + S(2). Here FS(V)R(x) is the Fourier transformation ofdVs(v)(q2)=dq2. For our choices of Vs(r) and Vv(r), we �ndHSR = bm2Q �L22r � 3 @@r � r @2@r2 � 1r�� cm2Q �1r @@r + 12 @2@r2 � L22r2� ; (46f)HVR = Vv(r)2m2Qr2L2� 13m2Qp�Xi �i
i e�
2i r2 �10
2i � 4
4i r2 + 8
2i r @@r � 8r @@r � 4 @2@r2� ;(46g)Eq. (46a) is the nonrelativistic hamiltonian for equal mass quarks in scalarand vector potentials. Hc contains central and orbital contributions. Hhyp is thehyper�ne interaction consisting of a tensor-force term and a spin-spin interaction.Hso is the spin-orbit interaction. HSR and HVR are scalar and vector retardationterms associated with the third term on the right-hand side of (43). Note thatour spin-dependent interactions Hhyp and Hso have the same forms as those inmany other quark models (see for example: [4,10,11]), but the spin-independentinteractions do not.The spin-independent correction includes Hc, HSR and HVR. In these con-tributions, HSR, HVR and the term [V 0s (r)� V 0v(r)] @@r in Hc are gauge depen-dent. HSR and HVR are from the second term in the expansion of V (Q2) =V (q2)� 14m2QV 0(q2) �k2 � p2�2 +O(1=m3Q). Had we chosen the Coulomb gauge,these terms would not exist. Most other quark models do not include retardedinteractions. (Ref. [12] gives another expression for the retardation e�ect.) Wewill show that with the scalar and vector potentials in (27) and (28), retardationcontributions are comparable with the spin-dependent interactions.The operators fH0;L2;S2;J2;Jzg where J = L + S, are a set of mutuallycommuting hermitian operators. The eigenstates of H0 can then be labelled bythe corresponding set of quantum numbers fn; L; S; J;MJg. The wave equationassociated with H0 can then be written asH0	(0)nLSJMJ (r) =W (0)nL	(0)nLSJMJ (r); (47)where 	(0)nLSJMJ (r) = unL(r)r YMJLSJ (
); (48)11 12



and YMJLSJ (
) = XML;MS hLMLSMS jJMJ iYLML(
) jSMS i (49)is the spin spherical harmonic.The hyper�ne interaction (46c) mixes states with �L = �2 for S = 1. Asa result, L is no longer a good quantum number for solutions of the completehamiltonian. However, these states have the same parity and charge quantumnumbers since P = (�1)L+1 andC = (�1)L+S for 	(0). The �rst-order correctionto the mass can then be written asW (1)nJPC = Z d3r	(0)ynLSJMJ (r)H1	(0)nLSJMJ (r)= Ec +Ehyp +Eso +ESR +EVR: (50)where P = (�1)L+1 and C = (�1)L+S . The bound state mass to �rst order isWnJPC = W (0)nL +W (1)nJPC (51)One may also include an annihilation term in the hamiltonian. However, thisterm �rst appears at order �2sm2Q [13] [4], while in our model the leading spin-dependent e�ects are of order �sm2Q . Since �s is small in the heavy quark system(�s(m2c) � 0:35 and �s(m2b) � 0:22), we expect the annihilation e�ects on Q �Qspectra to be small.III. SOLUTION OF THE WAVE EQUATIONSA. Q�q sectorThe Dirac equation (20) can be reduced by using the explicit forms of thezeroth order wave function (21) and the Dirac matrices � and � along with theidentity �(1) �^rYmj1` 12 j1(
) = �Ymj1�` 12 j1(
) (52)to extract the coupled radial wave equations [14]dGn`j1(r)dr + �1r Gn`j1(r) = (m1 + Vs(r)� Vv(r) +E(0)n`j1)Fn`j1(r); (53)dFn`j1(r)dr � �1r Fn`j1(r) = (m1 + Vs(r) + Vv(r) �E(0)n`j1)G`j1(r); (54)
where E(0)n`j1 = W (0)n�1j1 �m2: (55)We have obtained three separate numerical solutions of these coupledequations using two di�erent techniques, direct integration and the matrixdiagonalization-variational technique.1. Direct IntegrationThis approach uses stepping techniques to obtain solutions to the di�eren-tial equations. Such techniques are much more e�cient if any large asymptoticdamping of the radial wave functions can be extracted and reduced radial waveequations can then be integrated. The scale of the asymptotic variation of the ra-dial wave functions is determined by the string tension b appearing in the scalarpotential (27). De�ning a dimensionless radial variable � = b1=2r, and deter-mining the asymptotic behavior of the radial wave functions, the reduced wavefunctions g(�) and f(�) are de�ned in terms of G and F byG(r) = g(�)e� 12 (�2+
�);F (r) = f(�)e� 12 (�2+
�); (56)where 
 = 2(m1 + c)=b1=2, and c is the constant shift in the scalar potential.Coupled equations for the reduced wave functions that result are� dd� � � � 
2 + �1� � g(�) = ��+ + � � V v(�)� f(�); (57)� dd� � �� 
2 � �1� � f(�) = ��� + � + V v(�)� g(�); (58)where V v(�) = Vv(r)=b1=2, �� = 
2 � " and " = E(0)n`j1=b1=2.In order to integrate the di�erential equations it is necessary to know thevalues of the functions and their derivatives at some point and then to have astepping algorithm that predicts the values of the functions and their derivativesat subsequent points. The values of the functions and their �rst derivativesat � = 0 are obtained by construction of a series solution for the functions forsmall �. An adaptive Runge-Kutte routine [15] is used to integrate the di�erentialequations for increasing values of �. Energy eigenvalues can be found by adjustingthe value of the energy until the functions have the correct asymptotic behavior13 14



as determined by an asymptotic expansion of the functions at some large �nite�. This process of �nding the eigenenergies is called the shooting method [15].In the calculations shown here, the accuracy of the eigenvalues is increased byintegrating up from � = 0 and down from some large �nite � to some intermediatepoint where the values of g(�) and f(�) are required to match.A second variation on this method is to use the reduced radial wave equations(57) and (58) to eliminate f(�) to obtain a second order di�erential equation forg(�). This equation can then be integrated in a manner similar to the Shr�odingerequation for the Q �Q sector. 2. Variational MethodThe starting point for the `variational' solution of eqs. (53, 54) is the pair ofequationsE(0)n`jGnj`(r) = (m1 + Vs + Vv)Gnj`(r) + �1 � 1r Fnj�`(r)� dFnj�`(r)dr ;E(0)n`jFnj�`(r) = (Vv �m1 � Vs)Fnj�`(r) + �1 + 1r Gnj`(r) + dGnj`(r)dr ;Fnj�`(r) = Fn`j(r)r ; Gnj;`(r) = Gn`j(r)r : (59)The functions F and G are expanded in a set of orthonormal basis functions�i`(r=%) Gnj`(r) = NXi=1 �ni �i`(r=%);Fnj�`(r) = NXi=1 �ni �i�`(r=%); (60)with Z 10 drr2�i�` (r=%)�k` (r=%) = �i;k: (61)% is the size parameter of the wave functions, and is used as the variationalparameter in this calculation.Substituting the expansion of eq. (60) into eq. (59), multiplying by �k�`(�`)(r=%)and integrating, leads to the set of equations
E(0)n`j�nk = NXi=1 �m1 + Vs(r) + Vv(r)�k`;i`�ni+ NXi=1 ��1 � 1r �k`;i�` �ni � NXi=1 � ddr�k`;i�` �ni ;E(0)n`j�nk = NXi=1 �Vv(r) �m1 � Vs(r)�k�`;i�` �ni+ NXi=1 ��1 + 1r �k�`;i`�ni + NXi=1 � ddr�k�`;i`�ni ; (62)where we use the symbolic notation� (r)�k`1;i`2 = Z 10 drr2�k�`1 (r=%) (r)�i`2 (r=%): (63)The two sets of equations represented by eq. (62) can be combined into the singleeigenvalue equation�
m + Vs(r) + Vv(r) �E� 
�1�1r � ddr �
�1+1r + ddr � 
Vv(r)�m� Vs(r)� E����� � = 0: (64)The size of the matrix in eq. (64) is 2N � 2N . Solutions to the eq. (59)are obtained by varying the wave function size parameter %, diagonalising thematrix in eq. (64) for each value of %, and searching for stationary points in theeigenvalues as functions of %. In principle, if the size of the expansion basis N istaken to 1, solutions obtained in this way would be exact and independent of%. In practice, the procedure outlined above is carried out for �nite N , and N isincreased until the eigenvalues are largely independent of %, for some reasonablerange in %. With this method, the lower N eigenvalues obtained correspond tonegative energy states, while the higher N eigenvalues are those of interest forthis problem.For this problem we have used harmonic oscillator wave functions for theexpansion, with N = 10 and N = 20. We compare the numerical solutionsthat we obtain using this procedure with those that are obtained using the otherpreviously described methods. As expected, the variational solutions are betterfor N = 20, and the eigenvalues are within 1% of those obtained by solving theequations by the methods described in the previous subsection.15 16
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FIG. 2. Energy eigenvalues as a function of 1% , for N = 10 and N = 20 .B. Q �Q sectorUsing eq. (48) in eq. (47) and de�ning � = b1=2r, the di�erential equation forthe radial wave function is�� 1� � d2d�2 � L(L + 1)�2 �+ V v(�) + ��unL(�) = "unL(�); (65)where � = mQ=b1=2 , " = (W (0)nL � 2mQ � c)=b1=2 and V v(�) = Vv(r)=b1=2.Determining the asymptotic behavior of the radial wave function, the reducedradial wave function g(�) can be de�ned byunL(�) = g(�)e�� 12 ( 23� 32�"� 12 ) (66)The appearance of fractional powers of � in the argument of the exponentialfunction in (66) leads to coe�cients with fractional powers of � in the di�erentialequation for g(�). This complicates the expansion of the reduced radial wavefunctions for small and large values of �. It is, therefore, convenient to de�ne thevariable � = �1=2. The di�erential equation for g(�) can then be written as
���2 d2d�2 + �� � 2"� 12 �2 + 4��4� dd�+�4L(L+ 1) + � 12 ("� + 2�3) � �"2�2 + 4��4V v(�2)��g(�) = 0 (67)This equation can be used to develop expansions for small and large � to provideboundary conditions for numerical integration of the di�erential equation.Since the Runge-Kutte method is designed to integrate systems of coupled�rst-order di�erential equations it is necessary to reexpress the di�erential equa-tion (67) as the coupled pair dd� g(�) = f(�); (68)and���2 dd� + �� � 2"� 12 �2 + 4��4�� f(�)+�4L(L + 1) + � 12 ("� + 2�3)� �"2�2 + 4��4V v(�2)� g(�) = 0: (69)This system can then be solved by Runge-Kutte integration and intermediate-point shooting techniques. IV. RESULTSOnce the zeroth-order solutions are found, the perturbed energies can becalculated using (24) and (50). The masses associated with the bound states aregiven by (26) and (51). These depend on the quark masses mu, ms, mc and mbas applicable for each meson; the parameters of the scalar potential (27) b andc; and the parameters of the vector potential (28) �i and 
i for i = 1; 2; 3. Themodel contains a total of twelve parameters. In obtaining the results shown here,the vector potential parameters�2 = 0:15; �3 = 0:2;
1 = 0:5; 
2 = 1:581; 
3 = 15:81; (70)are �xed at the same values as given in ref. [4]. The remaining vector potentialparameter �1 is reexpressed as�1 = �crit � �2 � �3: (71)17 18



TABLE II. Parameters of the model.parameter value comments�crit 0.674 limiting value of �sb 0.180 GeV2 string tensionc 0.02 GeV see eq. (27)mu 0.258 GeVms 0.400 GeVmc 1.53 GeVmb 4.87 GeVTABLE III. Fitted meson spectra for Q�q mesons.Mass (GeV)Meson JP theory experimentaD 0� 1.85 1.87D� 1� 2.02 2.01D1 1+ 2.41 2.42D�2 2+ 2.46 2.46B 0� 5.28 5.28B� 1� 5.33 5.33Ds 0� 1.94 1.97D�s 1� 2.13 2.11Bs 0� 5.37 5.38B�s 1� 5.43 5.43aExperimental values are quoted [16] to the nearest 10 MeV due to ambiguities inassigning the calculated values to speci�c charge states.where �crit is the value of the running coupling constant at Q2 = 0 asparametrized in ref. [4].�crit and the remaining model parameters are adjusted to �t the masses of aselection of mesons. The resulting values are listed in Table II. The �tted mesonspectra for the Q�q sector are listed in Table III and the �tted meson spectra forthe Q �Q are listed in Table IV. Additional states which were not used in the�tting procedure were calculated and a detailed discussion of the results for theQ�q and Q �Q is presented in the following two subsections.
TABLE IV. Fitted meson spectra for Q �Q mesons.Mass (GeV)Meson JPC theory experiment�c 0�+ 3.00 2.98J= (1S) 1�� 3.10 3.10�c0 0++ 3.44 3.42�c1 1++ 3.50 3.51�c2 2++ 3.54 3.56J= (2S) 1�� 3.73 3.69�(1S) 1�� 9.46 9.46�b0(1P ) 0++ 9.85 9.86�b1(1P ) 1++ 9.87 9.89�b2(1P ) 2++ 9.89 9.92�(2S) 1�� 10.02 10.02�b0(2P ) 0++ 10.24 10.24�b1(2P ) 1++ 10.26 10.26�b2(2P ) 2++ 10.28 10.27�(3S) 1�� 10.39 10.36A. Q�q sectorFor the Q�q sector, the zeroth-order eigenenergy E(0)n`j1 = W (0)n�1j1 � m2 isindependent of the heavy quark mass, as would be expected in the heavy quarklimit, where the heavy quark should act as a static source. The zeroth-orderspectrum depends only on the light quark mass. The �rst-order correction to themass W (1)nJP is proportional to 1=m2 and splits each of the unperturbed states.These features are illustrated in Fig. 3 which shows W (0)n�1j1�m2 for a �u quark assolid lines and WnJP �m2 = W (0)n�1j1 +W (1)nJP �m2 with a c quark as the heavyquark (dotdashed lines) and with a b quark as the heavy quark (dashed lines).Fig. 4 is a similar spectrum where the light quark is now an �s quark.Note that to zeroth order the ordering of the j1 = ` � 1=2 states is reversedfor the ` = 2 states in comparison to the ` = 1 states. This phenomenon, calledmultiplet inversion, has been predicted [17] for Q�q mesons with m2 � m1. Itresults from the dominance of the Thomas-precession over the spin-dependentforces in this limit.For the states presented here, the root mean square momentum of the zeroth-order wave function is approximately 0:9 GeV. Clearly, both u and s quarks arevery relativistic. In addition, it is possible to obtain some sense of the convergence19 20
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In these �gures, the results are in good agreement with the data, which vindi-cates our choices of potentials and parameters. However, the calculated hyper�nesplittings are all larger than in the data. The agreement is much better in theb-
avored mesons than in the c-
avored mesons. There are three possible reasonsfor this discrepancy. First, as has been mentioned earlier, this model is expectedto work better for b-
avored mesons than for c-
avored mesons due to the morerapid convergence of the nonrelativistic expansion applied to the heavy quark.Secondly, these calculations do not include any e�ects associated with possiblestrong decay of the heavy mesons. The coupling to these strong decay channelswill result in shifts in the meson masses as well as decay widths for heavy mesonsabove decay thresholds. These shifts will be greatest near the decay thresholds.The third possible reason for the large hyper�ne splittings may have its originin the parametrization of �s(r), particularly at small r. While many functionalforms may be used for this parametrization, each form may be expected to leadto quite di�erent 1=mQ contributions, especially in the hyper�ne term. Thisquestion is currently under investigation.The third term on the right hand side of (18b) has o�-diagonal matrix ele-ments between states with j1 di�ering by unity and with ` di�ering by either 0or 2. These mixings do not a�ect the spectrum to order 1mQ but should resultin shifts in some states at higher order in all of these systems. This should beparticularly apparent for the 1+ states which are nearly degenerate to order 1mQfor all Q�q mesons calculated here.One very interesting aspect of this calculation is the mapping of our modelonto the heavy quark e�ective theory, with a view to evaluating some of theparameters and dynamical quantities (such as universal form factors) of the ef-fective theory. While we do not endeavor to perform such a calculation for allsuch quantities here, some comments are merited.Although we have included all of the 1=mQ terms that arise from the spectatorequation, it is not clear that these correspond to all of the 1=mQ terms of HQET.In particular, in the spectator equation, the heavy quark is treated as beingexactly on its mass shell. In contrast, in HQET, the heavy quark is allowedto be slightly o� its mass shell (via the equation p� = mQv� + k�), and thisleads to terms that may be absent from the formulation presented here. The fullrami�cations of this are also under investigation.Until this question is resolved, we dare not examine quantities that are inti-mately bound up in the 1=mQ structure of the e�ective theory or the model. Wecan, however, examine quantities that depend only on the leading-order structureof the model, as we believe that this is a reasonably accurate representation ofthe e�ective theory. In particular, in the e�ective theory, one expects that the27 28



heavy quark should act as a static color source. This very important feature isreproduced in the model, as the leading dynamical behavior is described in termsof a Dirac equation for the light quark.Two quantities of interest in HQET are �� and �1, which are de�ned byMM = mQ + �� +O� 1mQ� ;
M (v) ���hQ(iD)2hQ��M (v)� = 2MM�1:�� is crucial for the e�ective theory, as it appears as the coe�cient in the 1=mQexpansion: the expansion coe�cient is written as ��=mQ. �� is, in essence, thecontribution to the mass of the meson from the mass and kinetic energy of the\brown muck". The left hand side of the second expression above is proportionalto the kinetic energy of the heavy quark. The meson states in the bra and ketabove are the leading order representation, and so correspond to our zeroth-order calculation. From our model, we obtain �� = 0:45 GeV for the groundstate pseudoscalar/vector doublet, and �1 = 0:67 GeV2. These values are inreasonable agreement with other values in the literature [3]. Further aspects ofthe relationship of our model to HQET are discussed in the conclusions.B. Q �Q sectorFigs. 10 and 11 show the spectra for c�c and b�b mesons as calculated witheqs. (44)-(51). As before, the calculated masses are shown as solid lines and theexperimental masses as dotted lines. The D �D and B �B thresholds are shown ashorizontal dotdashed lines across the Figs. 10 and 11 respectively. Ref. [16] hasalso listed states hc(1P ) with mass 3:526 GeV and �c(2S) with mass 3:590 GeV.We believe they correspond to the states 21S0(3:67) and 11P1(3:51) in Fig. 10respectively.The b�b spectrum is in quite good agreement with the data for the states lyingbelow the BB threshold. The agreement deteriorates as the masses approach andcross the BB threshold. As argued in the previous section, this may be the resultof the absence of coupling to strong decay channels. The agreement for the c�c isless satisfactory. This may be an indication of the inadequacy of the truncation ofthe nonrelativistic expansion at order 1m2Q . In both cases the hyper�ne splittingof the spin triplet states is too large.Since the hyper�ne tensor interaction has non-zero o� diagonal matrix ele-ments for states with spin 1 and with L di�ering by 0 or 2, there should bemixings of states such as 3S1 with 3D1 and 3P2 with 3F2. These mixings do
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TABLE V. Zeroth order and various �rst order interaction energies in the b�b spectrum(GeV)State W W (0) Ec Ehyp Eso ESR EVR ESR + EVR11S0 9.41 9.5315 -0.0602 -0.0367 0.0000 0.0072 -0.0297 -0.022413S1 9.46 9.5315 -0.0602 0.0122 0.0000 0.0072 -0.0297 -0.022421S0 10.00 10.0892 -0.0708 -0.0192 0.0000 0.0175 -0.0192 -0.001723S1 10.02 10.0892 -0.0708 0.0064 0.0000 0.0175 -0.0192 -0.001731S0 10.37 10.4511 -0.0839 -0.0146 0.0000 0.0302 -0.0160 0.014233S1 10.39 10.4511 -0.0839 0.0049 0.0000 0.0302 -0.0160 0.014241S0 10.66 10.7411 -0.0992 -0.0125 0.0000 0.0447 -0.0144 0.030343S1 10.68 10.7411 -0.0992 0.0042 0.0000 0.0447 -0.0144 0.030351S0 10.91 10.9928 -0.1162 -0.0113 0.0000 0.0608 -0.0135 0.047353S1 10.93 10.9928 -0.1162 0.0038 0.0000 0.0608 -0.0135 0.047361S0 11.14 11.2202 -0.1345 -0.0105 0.0000 0.0781 -0.0128 0.065363S1 11.15 11.2202 -0.1345 0.0035 0.0000 0.0781 -0.0128 0.065311P1 9.88 9.9438 -0.0610 -0.0023 0.0000 0.0126 -0.0169 -0.004313P0 9.85 9.9438 -0.0610 -0.0074 -0.0243 0.0126 -0.0169 -0.004313P1 9.87 9.9438 -0.0610 0.0049 -0.0121 0.0126 -0.0169 -0.004313P2 9.89 9.9438 -0.0610 -0.0001 0.0121 0.0126 -0.0169 -0.004321P1 10.27 10.3321 -0.0752 -0.0016 0.0000 0.0244 -0.0143 0.010123P0 10.24 10.3321 -0.0752 -0.0056 -0.0182 0.0244 -0.0143 0.010123P1 10.26 10.3321 -0.0752 0.0036 -0.0091 0.0244 -0.0143 0.010123P2 10.28 10.3321 -0.0752 -0.0001 0.0091 0.0244 -0.0143 0.010111D2 10.15 10.2072 -0.0637 -0.0008 0.0000 0.0186 -0.0139 0.004713D1 10.14 10.2072 -0.0637 -0.0011 -0.0097 0.0186 -0.0139 0.004713D2 10.15 10.2072 -0.0637 0.0016 -0.0032 0.0186 -0.0139 0.004713D3 10.15 10.2072 -0.0637 -0.0001 0.0064 0.0186 -0.0139 0.004721D2 10.47 10.5277 -0.0792 -0.0006 0.0000 0.0315 -0.0125 0.019023D1 10.46 10.5277 -0.0792 -0.0009 -0.0080 0.0315 -0.0125 0.019023D2 10.47 10.5277 -0.0792 0.0013 -0.0027 0.0315 -0.0125 0.019023D3 10.47 10.5277 -0.0792 -0.0001 0.0053 0.0315 -0.0125 0.019011F3 10.36 10.4164 -0.0717 -0.0004 0.0000 0.0250 -0.0124 0.012613F2 10.35 10.4164 -0.0717 -0.0004 -0.0047 0.0250 -0.0124 0.012613F3 10.36 10.4164 -0.0717 0.0008 -0.0012 0.0250 -0.0124 0.012613F4 10.36 10.4164 -0.0717 -0.0001 0.0035 0.0250 -0.0124 0.012631 32



V. CONCLUSION AND OUTLOOKWe have constructed this model for heavy mesons based on a relativisticbound state equation, namely the spectator equation. The calculated spectra arein quite good agreement with the experimental data. The parameter values wehave are reasonable, and comparable to other models of similar type. The modelis derived by expanding the spectator equation in 1=MQ, whereMQ is the mass ofthe heavy quark. This treatment is expected to work better for b-
avored mesonsthan for c-
avored mesons since in c-
avored mesons, v � 12c, but in b-
avoredmesons, v � 15c, and our results con�rm this expectation.The retardation contribution to the Q �Q mesons, which is missing in otherquark models, has a noticeable e�ect. Annihilation e�ects have been neglected, asthey are suppressed by additional powers of �s(MQ), which is a small parameter.In addition to the questions currently being investigated (parametrizationof �s(r), 1=mQ terms), this work opens up many avenues of investigation. Ofprimary importance is the application of the model to decay processes of heavymesons. In particular, the calculation of the Isgur-Wise functions that describethe semileptonic decays, not only for decays to pseudoscalars and vectors, but alsoto excited states, are of great interest. In HQET, these form factors are essentiallythe overlaps of the appropriately boosted wave functions. It will be interestingto see if this relationship between the form factors and the wave functions arisesin the present model, and if so, how. In addition, the slope of the Isgur-Wisefunction for the elastic decays may also be calculated, and various HQET sumrules checked.The strong and electromagnetic decays may also be treated with the wavefunctions that we have. These are particularly interesting for the D� and D�sstates, as the former lie so close to the D� threshold, while the latter lie belowthe DK threshold, and thus decay radiatively. In addition, quantities such asmeson decay constants may also be evaluated.ACKNOWLEDGEMENTSThe authors would like to acknowledge many useful conversations with FranzGross and Nathan Isgur. This work was supported by the Department of Energyunder contracts DE-AC05-84ER40150 and DE-FG05-94ER40832, and by the Na-tional Science Foundation under the National Young Investigator program.
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