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Introduction
We provide an implementation of the model of [1], which reproduces single-neuron and
collective network behaviors during slow-wave oscillations in vitro in control conditions
and under pharmacological manipulations. In particular, we focus on the authors’
model results that include: (a) neuronal membrane potentials oscillating between Up
and Down states at <1Hz; (b) characteristic membrane resistance behavior and acti-
vation of neuronal ion channels with proportional excitation and inhibition during Up
states; (c) spontaneous and stimulus-evoked initiation and further wave-like propaga-
tion of population spiking activity. The original implementation is in C++, but the
source code is not publicly available. The implementation we propose is coded in the
NEST [5] framework, one of the modern actively developed simulation platforms that
is publicly available. The code uses the Python interface [4] for legibility. The model
and analysis scripts are implemented using Python 3.5.2, and also tested with Python
2.7.6.

Methods
We use the description of the model given in the original study, with the exception of
the synaptic kinetics, which is greatly simplified (see model description below). In the
original model, the majority of parameters are given per unit membrane surface area.
For simplicity, we combine these parameters with the surface areas of the corresponding
compartments in the following description. The resulting parameters are denoted with
a tilde.

The model for excitatory neurons contains a somatic and a dendritic compartment.
The somatic compartment includes fast Na+ and K+ spiking currents (ĨNa, ĨK), a
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leak current ĨL, a fast A-type K+ current ĨA, a non-inactivating slow K+ current ĨKS,
and a Na+-dependent K+ current ĨKNa. The dendritic compartment includes a high-
threshold Ca2+ current ĨCa, a Ca2+-dependent K+ current ĨKCa, a non-inactivating
(persistent) Na+ current ĨNaP, and an inward rectifier (activated by hyperpolarization)
non-inactivating K+ current ĨAR. Somato-dendritic coupling is implemented through
the axial dendritic conductance gsd. Non-synaptic currents are modeled using the
Hodgkin-Huxley formalism Ĩ (t) = g̃mkhl (V − Erev), where gating variables m and h
are calculated using a first-order activation scheme, dx

dt = ϕ [α (V ) (1− x)− β (V )x] =
(x∞ (V )− x) /τ (V ) with x∞ = α

α+β , τ = 1
ϕ(α+β) , and ϕ being the temperature factor

(constant). In cases where time dependence is neglected (due to rapid activation or in-
activation), gating variables are substituted by their saturation levels m∞ or h∞. The
concentration of intrinsic neuronal Ca2+ and Na+ ions (in mM) is drawn from first-
order differential equations d[Ca2+]

dt = αCaĨCa −
[
Ca2+

]
/τCa and d[Na+]

dt = αNa(ĨNa +

ĨNaP)−Rpump

(
[Na+]3 /

(
[Na+]3 + 153

)
− [Na+]3eq /

(
[Na+]3eq + 153

))
where αCa, αNa,

τCa, Rpump, [Na+]eq are constants. The model for inhibitory neurons just consists of a
somatic compartment with only ĨNa, ĨK, and ĨL currents. AMPA and NMDA synaptic
inputs target the dendritic compartment for excitatory and the somatic compartment
for inhibitory neurons. GABA inputs always target the somatic compartment.

Because of the complexity of the single-neuron model (with multiple voltage-
dependent channels), we verify that our implementation behaves like the original ac-
cording to the information given in the paper. Similar to the original work, 500ms
injection of 250pA current into the soma (Fig. 1) results in an adapting firing pattern
in pyramidal (PY) and non-adapting firing in fast-spiking (FS) neurons with aver-
age firing rates of 22 and 76 spikes/s, respectively. Distribution of the membrane
leak conductance with 10% (PY) and 2.5% (FS) standard deviation around the mean
value leads to a small fraction of PY and a negligible fraction of FS neurons showing
spontaneous activity.

Figure 1: Model response to 250 pA current injection for 500 ms into the soma of a
pyramidal (PY) (A) and a fast-spiking (FS) (B) neuron. The respective mean rates of 22
spikes/s for the PY neuron and 76 spikes/s for the FS neuron over the input period match those
in the original implementation of Compte et al. [1].

The notable difference in our implementation is the synaptic kinetics. In the orig-
inal model, synaptic gating variables depend on the presynaptic membrane potential.
Implementing such a dependence is at present highly nontrivial in NEST due to op-
timizations for distributed computing (see Kunkel et al. [8], Hahne et al. [6] for
background). For this reason, we simplify the synapse models while preserving the
amplitude and shape of postsynaptic conductances. Specifically, the first-order kinet-
ics of AMPA and GABA channels is replaced by a simple exponential decay ∂g

∂t =∑
i

Wδ (t− ti)− g
τ , where g is the synaptic conductance, τ is the synaptic decay time,

W is the synaptic weight, and i indexes the incoming spike times. The second-order
kinetics of NMDA channels is substituted by a difference of slow and fast exponential

ReScience | rescience.github.io 2 October 2016 | Volume 2 | Issue 1

http://rescience.github.io


 

   

ReScience

components, gNMDA = gNMDA
slow − gNMDA

fast with dgslow/fast
dt =

∑
i

Wδ (t− ti) −
gslow/fast
τslow/fast

.

These simplifications are justified by the stereotyped trajectory of the presynaptic
membrane potential during an action potential. Further, these simplifications allow
us to merge gating variables s of all synapses of one type (AMPA, NMDA or GABA)
into a single postsynaptic time-dependent conductance (see Table 6). While multi-
ple activations of the same synapse lead to linear summation of postsynaptic AMPA
and GABA conductances in the original model, NMDA conductances saturate at high
input rates. We model such behavior using the short-term plasticity formalism sug-
gested by [11]. In short, the amplitude of the postsynaptic current PSC = A ·R · u is
proportional to the fraction of available synaptic efficacy R and utilization of synaptic
efficacy u. Spike-triggered synaptic activation leads to a reduction of the available
synaptic efficacy (corresponding to short-term depression) together with an increase
in the utilization of synaptic efficacy (corresponding to short-term facilitation). In
the time period ∆t between subsequent spikes, R and u recover to corresponding
resting-state values (R0 = 1 and u0 = U) with time constants τrec and τfacil. Our
implementation closely follows the behavior of the original synapse model (Fig. 2).
Note that the equation describing the dynamics of the NMDA gating variable s in the
original paper contains a misprint and should read

ds

dt
= α(1− s)x− s/τ. (1)

Figure 2: Simplified synaptic kinetics (dashed curve) for AMPA, NMDA, and GABA con-
ductances closely reproduces the behavior of the original model (solid curve) in a wide range
of spiking rates. DC currents, simultaneously injected into the soma of a presynaptic excitatory
and an inhibitory neuron for 500ms, lead to synaptic activation of the postsynaptic by the presy-
naptic neuron at rates of 4, 14, 22 spikes/s (top to bottom) for AMPA and NMDA, and 14, 36,
52 spikes/s for GABA channels. These synaptic activation rates span the range of excitatory and
inhibitory neuronal firing rates observed during Up states in the model. Curves for the original
model obtained with the help of a reimplementation of the single-neuron and synapse dynamics
in Python. To construct this figure, synaptic inputs with a weight of W = 1 nS were provided to
AMPA (A), NMDA (B), and GABA (C) channels for the original implementation. Note that due
to gating variable s in the original implementation, the effective amplitude of a single synaptic
input differs from the synaptic weight. For the implementation with simplified synaptic kinetics,
synaptic weights are chosen to match the amplitude of the initial postsynaptic response in the
original implementation.

The network architecture represents a chain of excitatory and inhibitory neurons
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(of length lchain) equidistantly distributed over 5mm. Each neuron projects a given
total number (drawn from a Gaussian distribution) of outgoing connections. The prob-
ability of a connection between any two neurons decays with inter-neuronal distance
according to a Gaussian P (x) = exp(− x2

2λ2 )/
√
2πλ2 with characteristic scales λe and

λi for excitatory and inhibitory presynaptic neuron types, respectively. Excitatory
connections include both AMPA and NMDA channels, while inhibitory connections
use GABA channels. Multiple connections can exist for a given pair of neurons. In
Tables 1–7 we provide the description of the model.

The simulations are performed with NEST 2.8.0 [3] and combine an adaptive step
size for the single-neuron solver with communication between neurons at a step size
of 0.1ms. The time resolution of all recordings is 0.1ms.

In Fig. 6E excitatory and inhibitory conductances are filtered with a 40ms rect-
angular kernel. This kernel width is chosen to yield average input levels, rather than
individual synaptic events. We find that filtering is required to reproduce the propor-
tionality of excitatory and inhibitory conductances, shown in the original Figure 6,
although no corresponding information is given in the original paper.

To estimate the neuronal membrane conductance according to Eq. 3 in the model at
a time t0 near the membrane potential V0, we use a procedure we refer to as the “virtual
hyperpolarization method” (schematically shown in Fig. 3). First, an isolated copy of a
neuron model instance is created with its state identical to that of the original neuron
at the time of interest t0. Then, the neuron is allowed to relax to its equilibrium state,
while being clamped to the corresponding membrane potential V0. In this steady-
state configuration, the total cross-membrane current I0 is calculated as the sum of
all channel currents according to Eq. 4. Then the neuron is slightly hyperpolarized
to potential V1 and the corresponding steady-state current I1 is calculated. The ratio
∆I/∆V then gives an estimate of the membrane conductance at time t0. This approach
can be applied to the case where the membrane is approximately isopotential across the
whole neuron (true for the present model). In case of more complex non-isopotential
multi-compartment neurons, the corresponding equilibrium currents I0 and I1 should
be estimated through direct simulation. Note that during this procedure the state of
the synaptic input should be fixed at the level of time t0.

The relaxation time constant of certain ion concentrations (e.g., 80–350ms for
intracellular Ca2+ [10], [12]) can be much larger than the membrane time constant (on
average <20ms at rest, e.g., [9]) in cortical neurons. Therefore, the typical duration
of DC pulse injection (∼80 ms [2], [13]) used in experiments with active networks is
enough to overcome the transient phase of prominent capacitive currents, while certain
ion concentrations might be not equilibrated. In the present model, however, the
membrane relaxation time constant reaches hundreds of milliseconds (see relaxation
phase in Fig. 8), which makes it difficult to separate these two effects. Therefore, in
our application of the virtual hyperpolarization method to the model we consider limit
cases of both instantaneous (frozen) and equilibrated ion concentrations.
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Figure 3: Schematic representation of the virtual hyperpolarization method. An isolated
copy of a neuron model instance is created with its state identical to that of the original neuron
at the time of interest t0, including the level of synaptic input. Then the cross-membrane current
I0, required to keep the neuron clamped to membrane potential V0 in the steady-state scenario,
is determined. After that, the neuron is slightly hyperpolarized to the potential V1 and the
corresponding steady-state current I1 is estimated. The resulting ratio ∆I/∆V then gives the
conductance estimate at time t0. In case of an isopotential neuron model, the corresponding
currents I0 and I1 can be calculated using Eq. 4.

Table 1: Model summary.

Populations one excitatory and one inhibitory cortical population
Topology one-dimensional (chain); Gaussian spatial connectivity profile
Connectivity random connections with outdegree drawn from a Gaussian

distribution
Neuron
model

single or multi-compartment Hodgkin-Huxley-type model with
multiple channel types

Channel
model

Hodgkin-Huxley formalism

Synapse
model

single- or double-exponential-shaped postsynaptic conductances

Plasticity presynaptic short-term plasticity
External
input

None

Recordings Spike times from all neurons; membrane potential, Na+ and Ca2+

concentrations, and all conductances and currents from a subset of
neurons in both populations
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Table 2: Network topology and synapse model.

Connectivity
paradigm

number (drawn from Gaussian distribution) of outgoing
connections are randomly distributed across the target
population with probability drawn from a Gaussian
inter-somatic distance-dependent profile; multiple
connections for the same pair of neurons are allowed;
autapses are forbidden

Synaptic
weights

same for all connections of the same type

Synaptic
delays

same for all connections

Synaptic
model

static synapse for connections to AMPA and GABA
channels:
PSCi = W
synapse with short-term plasticity according to [11] for
NMDA channels:
PSCi+1 = W ·Ri+1 · ui+1

Ri+1 = 1 + (Ri −Riui − 1) · exp (−δt/τrec)
ui+1 = U + un (1− U) exp (−δt/τfac)

Ne 1024 number of excitatory neurons
Ni 256 number of inhibitory neurons
λe 250 characteristic scale of spatial connectivity decay (µm) for

excitatory connections
λi 125 characteristic scale of spatial connectivity decay (µm) for

inhibitory connections
lchain 5000 chain length (µm)
outdegree 20± 5 mean and standard deviation of Gaussian distribution

used to determine numbers of outgoing connections for
each neuron
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Table 3: Neuron model and postsynaptic conductances. Ionic concentrations are measured in
mM.

Neuron model Hodgkin-Huxley-type model with multiple channel types
and exponential-based synaptic conductances; two
compartments for excitatory and one compartment for
inhibitory neurons.

Subthreshold
dynamics
for PY
neurons

soma: Cm
dV
dt =

−
(
ĨL + ĨNa + ĨK + ĨA + ĨKS + ĨKNa + gsd (Vd − Vs) + IGABA

)
dendrite: Cm

dV
dt =

−
(
ĨCa + ĨKCa + ĨNaP + ĨAR + gsd (Vs − Vd) + IAMPA + INMDA

)
Subthreshold
dynamics for
FS neurons

soma:
Cm

dV
dt = −

(
ĨL + ĨNa + ĨK + IAMPA + INMDA + IGABA

)
Spike detection A spike is detected when the somatic membrane potential

rises above 0mV and its derivative becomes negative:
(Vs > 0) ∧

(
dVs

dt < 0
)
. After that, the neuron becomes

refractory and no spike emission is allowed during a fixed
time of 1ms.

Postsynaptic
conductances

gAMPA,GABA (t) = w exp (−t/τ)
gNMDA (t) = w (exp (−t/τslow)− exp (−t/τfast))

Channel dynamics Hodgkin-Huxley formalism Ĩ (t) = g̃mkhl (V − Erev);
m, h follow a first-order activation scheme,
dx
dt = ϕ [α (V ) (1− x)− β (V )x] = (x∞ (V )− x) /τ (V ) with
x∞ = α

α+β , τ = 1
ϕ(α+β)

Ca2+ concentration d[Ca2+]
dt = −αCaĨCa −

[
Ca2+

]
/τCa

Na+ concentration d[Na+]
dt = −αNa(ĨNa + ĨNaP)−

Rpump

([
Na+

]3
/
([

Na+
]3

+ 153
)
−
[
Na+

]3
eq /

([
Na+

]3
eq + 153

))
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Table 4: Channel dynamics for excitatory neurons. Membrane and reversal potentials are
measured in mV, conductances in nS, ionic concentrations in mM, and time constants in ms.

Fast sodium current,
soma
ĨNa = g̃Nam

3h (V − ENa)

activation variable m:
α = 0.1 (V + 33) / (1− exp (− (V + 33) /10))
β = 4 exp(−(V + 53.7)/12)
inactivation variable h:
α = 0.07 exp (− (V + 50) /10)
β = 1/ (1 + exp (− (V + 20) /10))
τ = 1

4(a+b)

Fast potassium
current, soma
ĨK = g̃Kk

4 (V − EK)

inactivation variable k:
α = 0.01 · (V + 34) / (1− exp (− (V + 34) /10))
β = 0.125 · exp (− (V + 44) /25)
τ = 1

4(a+b)

Leakage current, soma
ĨL = g̃L (V − EL)
Fast A-type K+

current, soma
ĨA = g̃Am

3h (V − EK)

activation variable m:
m∞ = 1/ (1 + exp (− (V + 50) /20))
inactivation variable h:
h∞ = 1/ (1 + exp ((V + 80) /6))
τ = 15

Non-inactivating K+

current, soma
ĨKS = g̃KSm (V − EK)

activation variable m:
m∞ = 1/ (1 + exp (− (V + 34) /6.5))
τ = 8/ (exp (− (V + 55) /30) + exp ((V + 55) /30))

Persistent Na+
current, dendrite
ĨNa = g̃NaPm

3 (V − ENa)

activation variable m:
m∞ = 1/ (1 + exp (− (V + 55.7) /7.7))

Inwardly rectifying K+

current, dendrite
ĨAR = g̃ARm (V − EK)

activation variable m:
m∞ = 1/ (1 + exp ((V + 75))/4))

High-threshold Ca2+
current, dendrite
ĨCa = g̃Cam

2 (V − ECa)

activation variable m:
m∞ = 1/ (1 + exp (− (V + 20) /9))

Na+-dependent K+

current, soma
ĨKNa = g̃KNam (V − EK)

activation variable m:
m∞ = 0.37/

(
1 +

(
38.7/

[
Na+

])3.5)
Ca2+-dependent K+

current, dendrite
ĨKCa = g̃KCam (V − EK)

activation variable m:
m∞ =

[
Ca2+

]
/
([

Ca2+
]
+ 30

)
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Table 5: Channel dynamics for inhibitory neurons. Membrane and reversal potentials are
measured in mV, conductances in nS, ionic concentrations in mM, and time constants in ms.

Fast sodium current,
soma
ĨNa = g̃Nam

3h (V − ENa)

activation variable m:
α = 0.5 (V + 35) / (1− exp (− (V + 35) /10))
β = 20 exp (− (V + 60) /18)
inactivation variable h:
α = 0.35 exp (− (V + 58) /20)
β = 5/ (1 + exp (− (V + 28) /10))
τ = 1

(a+b)

Fast potassium
current, soma
ĨK = g̃Kk

4 (V − EK)

inactivation variable k:
α = 0.05 (V + 34) / (1− exp (− (V + 34) /10))
β = 0.625 exp (− (V + 44) /80)
τ = 1

(a+b)

Leakage current, soma
ĨL = g̃L (V − EL)

Table 6: Parameter specification for our synaptic implementation. Note that the synaptic
conductances differ with respect to the original implementation.

delay 0.1 synaptic delay (ms)
We←AMPA 7 synaptic weights (nS)
Wi←AMPA 3
We←NMDA 0.15

Wi←NMDA 0
We←GABA 16
Wi←GABA 2
U 0.5 initial utilization of synaptic efficacy
τrec 130 recovery time constant (ms) of available synaptic efficacy for

NMDA synapses onto PY and FS neurons
τfacil 0 recovery time constant (ms) of utilization of synaptic efficacy
τAMPA 2 time constant of AMPA channels (ms)
τGABA 10 time constant of GABA channels (ms)
τ slow

NMDA 100 slow time constant of NMDA channels (ms)
τ fast

NMDA 2 fast time constant of NMDA channels (ms)
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Table 7: Parameter specification for our neuronal implementation. The superscripts soma
and dendr refer to the somatic and dendritic compartments. When parameters for excitatory
and inhibitory neurons are different, parameters for the latter are given in brackets. “(-)” means
parameter not used for the inhibitory neuron model.

ECa 120 reversal potential of Ca2+ channels (mV)
ENa 55 reversal potential of Na+ channels (mV)
EK −100(−90) reversal potential of K+ channels (mV)
EL −60.95± 0.3

(−63.8±0.15)
leak reversal potential (mV), mean and standard
deviation of Gaussian distribution

Eex 0 reversal potential AMPA and NMDA channels (mV)
Ein −70 reversal potential GABA channels (mV)
C̃soma

m 150(200) somatic membrane capacitance (pF)
C̃dendr

m 350(-) dendritic membrane capacitance (pF)
g̃soma

Na 7500 (7000) maximal conductance of fast Na+ channel (nS)
g̃soma

K 1575 (1800) maximal conductance of fast K+ channel (nS)
g̃soma

L 10± 1
(20.5± 0.5)

leak conductance (nS)

g̃soma
KA 150 (-) maximal conductance of A-type fast K+ channel

(nS)
g̃soma

KNa 200 (-) maximal conductance of Na+-dependent K+ channel
(nS)

g̃soma
KS 86.4 (-) maximal conductance of non-inactivating K+

channel (nS)
g̃dendr

KCa 200 (-) maximal conductance of Ca2+-dependent K+

channel (nS)
g̃dendr

KAR 9 (-) maximal conductance of inwardly rectifying K+

channel (nS)
g̃dendr

NaP 24 (-) maximal conductance of persistent Na+ channel
(nS)

g̃dendr
Ca 150.5 (-) maximal conductance of high-threshold Ca2+

channel (nS)
gax 1750 (-) axial dendritic conductance between somatic and

dendritic compartments

Results
We here focus on the main activity regime of the model, namely Up-Down oscilla-
tions that are either spontaneously generated or induced by stimulation. First, we
simulate the reimplemented model with the parameters corresponding to the original
paper. The simulated activity, however, is characterized by unreasonably high firing
rates due to the dominance of NMDA conductances far exceeding the potency of the
opposing GABAergic inhibition. This difference from the original results might be a
consequence of the different implementation of synaptic dynamics. Closer examination
of the original Figure 5C suggests that unitary excitatory and inhibitory postsynaptic
responses are approximately 0.5nS during periods of network silence. This contradicts
our implementation of the non-modified synaptic dynamics (see Fig. 2), where single
synaptic activations (with synaptic weights as in the original model) would result in
5.4 and 0.8nS postsynaptic response for AMPA and GABA channels, respectively.
This suggests an inconsistency between the reported dynamics and that which was
implemented already in the original work. Furthermore, we assumed the units of the
function defining the dependence of the synaptic conductances on the presynaptic
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membrane potential to be ms−1, but this is not strictly specified in the original work,
providing another potential source of discrepancies.

To achieve an appropriate network regime, we modify the synaptic strengths W
of all synapse types. Specifically, we match the firing rates, the duration of Up and
Down states, the wave propagation speed, and the response to network stimulation.
Corresponding synaptic strengths for the model with simplified synaptic dynamics are
given in Table 6. When transformed back to the original implementation (i.e., ex-
cluding the synaptic gating variable s), the modified strengths are gAMPA

ee = 6.6nS,
gNMDA

ee = 0.1nS, gAMPA
ei = 2.8nS, gNMDA

ei = 0 nS, gGABA
ie = 97 nS, gGABA

ii = 12 nS.
However, a range of different synaptic weight settings was able to produce qualitatively
identical network activity. Therefore, we chose a set of weights from among these pos-
sibilities based on relative proximity to the originally reported weight values. Besides
the reasons mentioned above, differences between the simplified and original synaptic
kinetics during network activity, not brought out by the simple inputs in Fig. 2, may
contribute to the need for weight changes to obtain a network state similar to that
in the original study. However, this is unlikely to account for the need to strongly
increase the inhibitory weights relative to the excitatory ones. In the absence of the
original code and since our network implementation does not allow using the original
synapse dynamics, we cannot resolve this issue here.

The adjusted weights result in periods of spontaneously generated activity (Up
states) which propagate along the network in a wave-like fashion (Fig. 4A) with prop-
agation speed 3 − 7mm/s. On the level of individual neurons, Up states are char-
acterized by a depolarized membrane potential and an increase of the intracellular
concentration of Na+ ions by 3–4.5mM (Fig. 4C,D for two neurons), similar to the
results shown in Figure 2 of the original work. When excitatory neurons are slightly
hyperpolarized to reduce the level of spontaneous activity, external stimulation of 40
adjacent excitatory neurons can initiate Up state propagation (Fig. 5A) with the fir-
ing rate profiles (Fig. 5C) being similar to those shown in Figure 3D of the original
work. The histogram of the intervals between the first spike of each pyramidal cell and
its immediately adjacent interneuron (Fig. 5B) closely resembles the original result in
Figure 3C. In analogy to the original work, repeated network stimulation within a few
seconds after the first one does not evoke an Up state transition (Fig. 5A).

During the spontaneous Up-Down oscillations shown in Fig. 4A, synaptic and in-
trinsic neuronal conductances (Fig. 6B–I) are tightly coupled to the membrane depo-
larization (Fig. 6A) and show a dynamic range very similar to that reported in the
original Figure 5. When filtered with a rectangular kernel (see Methods), excitatory
and inhibitory conductances are clearly coupled (Fig. 6E), like in the original model
(see their Figure 6).

When computed as the reciprocal of the sum of all conductances (see Eq. 2),
membrane resistance is decreased during Up states relative to silent Down states
(Fig. 6B, 7), consistent with the results shown in Figure 5B of the original work. We
also estimated membrane resistance by injecting hyperpolarizing DC pulses (300pA
for 100ms) into neurons, constantly hyperpolarized by 250pA current injection (see
Fig. 7A), similar to the way described in the original Figure 4. In agreement with the
original paper, the resulting membrane resistance, computed as the voltage deflection
at the end of the pulse divided by the pulse amplitude (Fig. 7B dots) is quantitatively
similar to the values obtained with the reciprocal of Eq. 2 (Fig. 7 solid line) at least
for membrane potentials below −80mV.

However, note that the authors define membrane conductance as

Gmodel
m =

∑
i

Gi (V ) (2)

where Gi are the instantaneous conductances of all ionic channels, which are typically
time- and voltage-dependent. This definition corresponds to the “instantaneous chord
conductance” according to the classification given by [7]. In contrast, the typical
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Figure 4: Spontaneous Up-Down oscillations generated in a network of 1280 neurons with
a chain-like architecture. (A) Spiking activity of excitatory (red) and inhibitory (blue) neurons
propagates along the chain in a wave-like fashion. (B, C) Intracellularly recorded membrane
potentials (top) and concentration of intracellular Na+ ions (bottom) of PY neurons are similar
to those reported in the original study (their Figure 2). The neuron in B shows spontaneous
activity with spiking during Down states, while the neuron in C is typical for the majority of
neurons and is characterized by well-defined Up and Down states.
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Figure 5: Transition to Up state is evoked by external stimulation in a network of 1280
neurons with a chain-like architecture. (A) Spiking activity of excitatory (red) and inhibitory
(blue) neurons propagates along the chain in a wave-like fashion when stimulated at time t = 2 s.
Stimulation at t = 6 s, however, does not evoke a transition to the Up state. All excitatory
neurons are continuously hyperpolarized by 5pA external current to reduce spontaneous activity.
Network stimulation is achieved by injection of 200pA current for 50ms into 40 adjacent excitatory
neurons. (B) Histogram of the intervals between the first spike of each pyramidal cell and its
immediately adjacent interneuron in the time window shown in A. (C) Firing rate averaged across
neurons for the time window shown in A. We substract from the spike times for each excitatory
(inhibitory) neuron the time of the first spike of the nearest inhibitory (excitatory) neuron, and
then we construct the time histogram of those intervals in the red (blue) curve. Gray curve
represents the red curve scaled to match the peak value of the blue curve.
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Figure 6: Membrane input resistance and various ionic conductances in the course of the
slow oscillation on the example of a representative neuron. (A) Membrane voltage trace shows
periods of high activity (Up states). (B) Total input resistance, measured as the reciprocal of
the summed open membrane conductances. Excitatory and inhibitory synaptic conductances (C,
D) are approximately proportional when binned with 40ms bin width (E). (F-J) The dynamics
of various other conductances (g̃NaP; g̃KS; g̃KAR; g̃KCa; g̃KNa) closely resembles that reported in
the original paper (their Figure 5).
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Figure 7: Accessing neuronal membrane resistance through the reciprocal of the sum of
open channel conductances and through the injection of brief hyperpolarizing pulses re-
sults in quantitatively similar estimates. (A) Membrane voltage trace in response to 100ms
hyperpolarizing pulses with amplitude 300pA while the neuron is continuously hyperpolarized by
a 250pA current, similarly to the procedure described in the original Figure 4. (B) Gray trace,
resistance corresponding to the trace in A as determined by the reciprocal of the sum of open
channel conductances. Black dots, corresponding resistance as estimated from the injection of
hyperpolarizing pulses.

experimentally measured quantity corresponds to “steady-state slope conductance”
from the same classification:

Gexp
m =

∆I

∆V
(3)

where ∆I is the extra current (injected into the soma) required to achieve a steady-
state membrane potential shift ∆V = V −V0 from the initial level V0 (prior to current
injection). The steady state here refers to the situation where transient capacitive
currents become negligible. To compare these two definitions we use the fact that in
the steady-state case, the externally injected current I is equal to minus the sum of
all ionic currents,

I =
∑
i

Gi (V ) · (V − Ei) , (4)

where Ei is the reversal potential of channel i. Combining Eqs 3 and 4 and using

∆(Gi (V ) · (V − Ei)) = ∆ (Gi (V )) · (V − Ei) +Gi (V ) ·∆(V − Ei)

= ∆ (Gi (V )) · (V − Ei) +Gi (V ) ·∆V

results in an overall membrane conductance

Gexp
m =

∑
i

∆(Gi (V ) · (V − Ei))

∆V
=

∑
i

∆(Gi (V ))

∆V
(V − Ei) +

∑
i

Gi (V ) . (5)

As one can see, the definition used in the original study (Eq. 2) excludes the first term.
To demonstrate the difference in these two definitions, we simulate isolated pyramidal
neurons (parameters are set to average values) with DC inputs of different amplitudes
injected for 20 seconds into the soma and record the membrane potential (Fig. 8A) as
well as all ionic channel conductances. A long pulse duration is chosen here to take
into account the long time required for the model neuron to reach a steady state. Then
we compute membrane conductance according to Eq. 5 and Eq. 2 a few milliseconds
before the DC input is switched off. The I-V curve shows a profound nonlinearity
(Fig. 8B) leading to Gexp

m (the reciprocal of the slope of the I-V curve) reaching 0.012nS
(corresponding to 83GΩ), while Gmodel

m remains near 15nS (corresponding to 0.07GΩ)
(Fig. 8C). Therefore, under the protocol mimicking a standard electrophysiological
procedure, the instantaneous chord and steady-state slope conductances deviate by
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several orders of magnitude for the present neuron model. To measure the steady-state
slope conductance (Eq. 3) during ongoing network activity in the model, we use the
virtual hyperpolarization method (see Methods). Freezing the state of the neuron as
done in this method is necessary because of the aforementioned long relaxation time of
the model neurons, which necessitates pulse durations that exceed the length of an Up
state and therefore prevents measuring steady-state resistances during freely evolving
activity. The results of this method for the above case of prolonged DC stimulation
closely match those obtained from the I-V curve (Fig. 8C). In the active network
model, this method results in a membrane conductance around 2nS (corresponding to
500MΩ) during the Down state (Fig. 9B,C). During the Up states, however, membrane
conductance tends to drop to zero and even becomes negative for 5 − 75ms with an
average of 32ms before oncoming spike events, indicating self-depolarizing dynamics
in the subthreshold periods. Note that in Fig. 9B,C time periods of 5ms before and
after each spike event are not considered to avoid the contamination of subthreshold
dynamics with spikes.

Figure 8: The method of accessing neuronal membrane conductance (or resistance) sug-
gested by [1] deviates from the approach based on the construction of an I-V curve. (A)
A 10 s DC injection (inside the region marked by vertical dashed lines) with various amplitudes
into the somatic compartment of a PY neuron results in neuronal hyper-/depolarization. Relax-
ation of membrane potentials after offset of the DC input takes hundreds of ms. (B) The I-V
curve shows a strong voltage dependence of the neuronal resistance (measured as the slope of the
curve). (C) Membrane conductance measured with the method suggested by the authors of [1]
(Eq. 2; dashed curve), is around 15 nS (corresponding to a 70MΩ resistance) for the neuron be-
ing hyper- or depolarized by ∆V = −3–7mV by DC currents. Membrane conductance measured
according to Eq. 5 (solid curve), reaches 0.012nS (corresponding to a 83GΩ resistance). The
virtual hyperpolarization method (circles, see Methods) closely reproduces the latter conductance
measure.

Figure 9: Application of the virtual hyperpolarization method to the network model. Neu-
ronal depolarization during Up states (A) is associated with dominant strongly negative membrane
conductance (B,C), which is the result of self-depolarization due to intrinsic neuronal dynamics.
Membrane conductance is calculated according to Eq. 3 with Na+ and Ca2+ frozen (B) and
steady-state (C). The time windows of 5ms just before and after individual spikes are masked in
the determination of the conductance to avoid contamination by supra-threshold activity.

Finally, in the original work modification of e-to-i and i-to-e synaptic weights by
10% results in noticeable differences in spiking activity, though oscillations are quali-
tatively preserved (see their Figure 6). In our model, however, similar modification of
synaptic weights results in negligible differences in spiking activity. Also, when AMPA,
NDMA, or GABA conductances are blocked in the model, corresponding changes in
the spiking pattern are similar in the original (their Figure 9) and the present model
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(Fig. 10).

Figure 10: When AMPA, NMDA, or GABA channels are blocked in the model, simulation
reproduces the results reported in the original Figure 9. Spiking activity is visualized as multi-
unit recordings with recording sites spatially separated by 250µm. Each site records from neurons
within a 50µm range.

Conclusion
After modifications to the model with respect to synaptic dynamics and strength, we
are able to reproduce the majority of the original results concerning spontaneously
generated and stimulation-evoked Up-Down oscillations. In particular, the dynamics
of membrane potentials, membrane resistances, channel conductances, intracellular
concentrations of Na+ and Ca2+ ions, and spiking activity closely resemble those of
the original model. In our implementation, the synaptic dynamics does not depend
on the shapes of individual presynaptic action potentials, but just incorporates the
average postsynaptic effect of an action potential. The fact that we can reproduce
the emerging network phenomena suggests that this detail of the synapse model is
not relevant on the network level. We provide a closer look at the method which
the authors of the original study use to access neuronal conductance (or resistance).
Their measure reflects an “instantaneous chord conductance”, which results in the
model in values around 15nS in an isolated pyramidal neuron, and around 20nS
throughout network activity. In experimental works, the typical measure approxi-
mates a “steady-state slope conductance” (see [7] for classification), which results in a
membrane conductance of less than 1nS for a slightly depolarized isolated pyramidal
neuron. Throughout network activity, this yields around 2nS during Down states,
strongly fluctuating membrane conductance during subthreshold Up state periods,
and a strong negative conductance lasting on average 32ms before each spike event.
These low and even negative long-lasting conductances are typically not reported in
the experimental literature. Therefore, the dynamics of membrane conductance in
the model merits further investigation. The present model successfully reproduces the
network response to blockade of AMPA, NMDA, or GABA channels. However, the
sensitivity of the present model to changes in the synaptic strengths is weaker than in
the original model.

We could not obtain the desired network regime with the synaptic weights reported
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in the original work after calibration to account for the change in the synaptic model.
We suggest the synaptic dynamics to be the source of discrepancy, as suggested by
the inconsistency between our synapse implementation and the results shown in the
original Figure 5C.

Apart from these differences in synaptic dynamics, we confirm the correctness of
the original implementation of the model.
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