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1. The object of this note is to determine the explicit form of all
m-ary linear homogeneous substitutions T' with coefficients in the
GF[p"] which are commutative with a particular one 8. For the
case » = 1, the number of such substitutions T' has been determined
by M. Jordan,* whose method of proof was, however, limited to the
consideration of a particular example. By the use of convenient
notations, we may treat the general case with equal ease and, more-
over, avoid the separation of the proof into two successive stages.
Following M. Jordan, I first give to S its canonical form+t 8§,

2. Let the characteristic determinant of S be
A(K)=[F(K)*[F(I)P... (m=ka+iB+..),
where F,(K), F,(X), ... are distinct polynomials belonging to, and
irreduciblé in, the GF [p"]. We may exhibit the roots of F,(K)=0
and of Fi(L) =0 in the following notation :—

n(k=-1)

K, K,=K¥, .., K.,.=K""",
n n(l-1)
L,, =L, .., L.,=L
To simplify the formule, we suppose that F, and F, are the only
irreducible factors of A (X). The method is, however, seen to be
general.
Corresponding to each partition of a and 8 into positive integers,

* Traité des Substitutions, pp. 128-136.

1 ¢¢Canonical Form of a Linear Homogeneons Substitution in a Galois Field,”
American Jowrnal of Mathematics, Vol. xxir., No. 2, April, 1900. The proof of the
generalization of Jordan's theorem is there made by induction.
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we obtain a canonical form of an m-ary substitution in the GF[p"].
Let
a=a,+a+...+a,.,, B=b+b+..+0,..

It will be convenient to let e denote any one of the integers

(e) 1, a,+1,} nta+l, .., ateg+...+a+1;
and E any one of the remaining integers < a. Let b denote any one
of the integers 1, b, +1, ..., b;+b,+... + b,+1; and B any one of the

remaining integers < B. The general canonical form may now be
written :

nr{j=1zi’1ij (i=0,1,~--»k‘1;j“ny e)
. 17:) = I(:'"ij'l"I{inij-l (2‘ = 0, 1, asey ’6—'1 ;j a.ny E)
Y = ey (i=0,1,...,1~1; j any b)

¢y = Lily+ L., (¢=0,1,..,1-1; jany B).

3. An arbitrary linear homogeneous substitution on these indices
may be exhibited as follows:

) {’7-{,‘ = 2“3’7:,;"'23:{0{“0 (=0, ~-"k—1;j =1,..,4)
(7 8= Sy +380L., G=0,..,0-1;j=1,..,8),

where, as henceforth, the summation indices ¢, u, v, w run through
the series

t=0,1,..,k-1; v=0,1,...,1-1; w=1,..,a; w=1,..8.
We investigate the conditions under which T is commutative with

S,. Equating the functions by which 1|8, and S,T, replace n;,
we get i

K; ‘2 “:: N+ K, 32 ﬁli bew = '2 «f.f Km0 +‘EE“:;‘]L N B

y 0

+ 2 ’3::0 L(' (ma + Eﬂﬁ:; LD[I?B~]'

LT

This identity in the variables » and { requires

Ky = Ka. (v # E-1),
Ifia:;‘-l =Kta:;-l+Ktu:;‘9
KB =Lfow (w # B-1),

K; ﬁ:;-l = Luﬁi 3-1+L.,Bi§,-

For t =1, the first two equations give merely aiz=0. For t¢,
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K. # K., and the first equation gives a;o_, =0, ¢’ being any integer > 1
of the set (¢). If ¢'—1 is an E, the second equation gives aio_q=0;
in the contrary case, ¢ —2 % E—1, and the same result follows from
the first equation. Next, according as ¢'—2 is or is not an E, the
second or first equation gives ujs_;=0. Proceeding thus, we find that
every =0 (31, ¢ arbitrary).

Since K;# L,, the third and fourth equations require, for similar
reasons, that every B2 =0 (c arbitrary).

1t follows that T, replaces n; by §a:1:, Nie-

Denote by e, (or by e;) an arbitrary e such that e,+1 is an E, and
by é, any one of the remaining e's, so that ¢,+1 is an e. Equating
the functions by which 1' S, and S, T, replace »;,,.1, We get

I{i2 a:fzﬂl 71m+1(.'2 “'lil ﬂ.c+1{; 2 Bi:«:” va
=3l Kot T i Konsat 300" Ll + 35" Ll

tn

Equating the coefficients of the {’s, we find, as above, that every

et =0 (¢ arbitrary). In the second sum of the second member,
E extends over every E =e¢;+1 and every E' not an e+1. Hence
aif =0, ajo,=aig s, as =0 (F#Fe+l),
ae'=0 (t#7, uzzE-1),
K3l = Kyar 3+ Kai 3" (t 7).
Applying the above argument, the last two equations give
a2 =0 (t#7¢, ¢c=1,...,a).

Hence T, affects »;, and ,,,; as follows :—
7':'!, = ;a'i:", Niey ";5, = 2“;? Nies
. e

i+l

"u,#l - Ea ”:c+;a§:’. "ic’lél-

Denote by e, (ov by e;) an arbitrary e, such that e,+2 is an E, and
by & any one of the remaining e,’s so that every &+2 is an e.
Equating the functions by which T, S, and 8, T, replace n;.,,, we get
Ki'E a: 53*2 '71..+K.' p> B;f:” Zu..,+2 a"‘” ni.+ 2 “::’: Nieys1

X2

— zﬂ‘r,.zlg m,,+2a""'2K¢ M s l+2ﬁit,¢2L‘ (“w_i_zﬁ-eﬁﬁl-lognn_h
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Equating the coefficients of the {'s, we find, as'above, that

Br’=0 (@w=0,1,..,l-1;¢c=1,..,8).
Equating the coefficients of »n,, (¢5£1), we ﬁnd, as formerly, that every

aet=0 (t#7).

For ¢ =1+, we note that
G+l e+ {42 Q6342
EG-E Nig-1 = 2 U.,:u 'Iu,+§“:'e',n Niey41 '+'§'¢Jl:';s:'+ L9 281

where E' runs over the series of E’s not of the forms e, +1 or ¢+2.
But an §+2=(§+1)+1 is an e+1, and an 4,+2 is not an E.
Hence E' extends over those integers T « which are of none of the
forms e, e, +1, e,+2, all three of which ave distinct. Hence every

el e 42 iegel ie —
ie, = Qiely W = 0 a;:, = 0’
ieg _  ieqdl |¢,+2
Wigy, = Qg o =0.

Hence T, affects the indices n;e, #;e,1, Wi esz 88 follows :—

i = ?ﬂ::' Nies

n: = ?‘.n::fm.,

Ma = Eu"’”rl.-. +§ailfn.,,.x,
'T;e, = f“::’,ﬂw,s

Niegel = 2“:'::” ’7.':,+2 aio Mieaeny

’ .+ 2 i e,
Niege2 — Ea::‘ Nie +E"|0. nia,¢l+§a:‘e’:’7u‘,f?'
2

Proceeding as before, we separate the e, into the categories ¢, and
é, such that every e, +3 is an E and every &+3 is an e. We find
that no simplification takes place in n/z, niz, Mzen NOTIN Bl 01,
Yiesay When g; i8 an é.  Simplifications arise when ¢; is an e, viz.:

f ﬂf., =.'20:'::,7).'y;,'

ieg+l

Ve
Wieys1 = Eﬂu, ﬂie,+§ Qi o, Mi oy 41

fey+2

";l.+1=2aic, 'llu,+2a|¢, 77.'¢..|+§ﬂ::7.'1.-y,+21
e 0

ieg+l

ieg+d iey
nu,+3 - 2“ ‘ Nie "|'E nae, ﬂle,+l+§“i¢, 7lu,.a+5‘lw.'1w,n-
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The law of the formation of the »;; is now evident, and may be
verified by simple induction. In particular, T} replaces each n;; by
a function of the n,, alone. Similarly, 7' replaces each ; by a.
function of the ¢;,, only.

4. Consider, as an example, a substitution S, which involves only
the indices »n;; and for which q, =3, a,=3, a;=2. Then

e=147; E=235,6,8;
ee=147; noég; e=14; &=7; noe,.

The most general substitution T) commutative with S, has the form

Nt Ms M7 nie Ms  Mis 73 Nie
r i1 i1 i7
M7 = Qi) iy Aig
- i8 i8 i8 i7 i7 i7
Nig = @y agq Uiq aqy Qg Qg
o il il
Nir = Qi Qg
’ i2 ie i2 1 i1
Ny = QA1 Qg Qi @iy Qg
r_ i3 i3 i3 i2 2 i 1 il
N3 = a;; ;g Qg Q) Q;4 Gy @iy Q4
’ i4 i4
Ni¢g = Q) Qiy
’ i5 i5 i it i4
Nis — Uiy QRiq Qi a;; Qg
’ i6 - i6 i6 i i5 i6 it it
Nig = a;, Q;q a;y iy Ay Qg Qg

holding for ¢ =0, 1, ..., k—1. By inspection, its determinant equals

a“ a'l ]
(":;)a il i4
‘4 i4
A;y Ay

5. The indices n;y, ..., 7;. are linear functions of the initial indices
&, ..., £, having as coefficients polynomials in K;. Likewise, {;y, ..., {ip
arve linear functions of £, ..., £, involving L, Let us return from
the indices ;;, {;; to the initial indices £ By hypothesis, S, becomes
S, a substitution having its coefficients in the GF[p"]. Let T,
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become T. Under what conditions will 7' have its coefficients in the
same field? Remembering that T replaces n;j, {;; by functions of
the respective forms

a . s ..

E ":{a Ny 2 8:.:;-‘“”

tel we=l
it is evidently necessary and sufficient that «i! be the same function
of K, for i =1, ..., k—1 that ab’ is of K, and that 5! be the same
function of L; for ¢ =1, ..., I—1 that &3, is of L, Expressed other-
wise, these conditions are

afd = (agay?™, 3% = (HL)"
Hence T is completely determined from the functions by which it
replaces n,; (=1, ...,a) and &; (j=1,...,8). The final theorem
is as follows :— .
To determine the most general m-ary linear homogeneous substrtution
T with coefficients in the GF [ p"] which is commutative with a particular
one S, we give to 8 its canontcal form 8,, which may be expressed as a
product,
SIS Yol Yro1ZpZ1 e By ey
Yi z; denoting the respective substitutions—
Yi:  Mie=Kinigy mix=IK (nugptniz-),
Z;: (iv=Li&w, Gin=1L (in+ina).
Then must T, (T written in the tndices n;j, {;;) be expressible as a product
T,=Y,Y,...Ys, Z%... % ...

where Y, affects only the indices nq,, the coefficients being given by the
law explained at the end of § 3, and where Y; is obtained from ¥, by

ratsing tts coefficients to the power p"; with similar remarks for the
substitutions Z,;.





