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1. The object of this note is to determine the explicit form of all
ra-ary linear homogeneous substitutions T with coefficients in the
OF\_pn'] which are commutative with a particular one S. For the
case n = 1, the number of such substitutions T has been determined
by M. Jordan,* whose method of proof was, however, limited to the
consideration of a particular example. By the use of convenient
notations, we may treat the general case with equal ease and, more-
over, avoid the separation of the proof into two successive stages.
Following M. Jordan, I first give to S its canonical formf £,..

2. Let the characteristic determinant of $ be

where Fk(K), Ft(K), ... are distinct polynomials belonging to, and
irreducible* in, the OF [p"]. We may exhibit the roots of Fk(E) = 0
and of Ft (L) = 0 in the following notation:—

To simplify the formulas, we suppose that Fk and Ft are the only
irreducible factors of A (K). The method is, however, seen to be
general.

Corresponding to each partition of a and (3 into positive integers,

* Traitd des Substitutions, pp. 128-136.
t " Canonical Form of a Linear Homogeneous Substitution in a Galois Field,"

American Journal of Mathematics, Vol. XXII., No. 2, April, 1900. The proof of the
generalization of Jordan's theorem is there made by induction.
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we obtain a canonical form of an ra-ary substitution in the OF[pn'].
Let

a

It will be convenient to let e denote any one of the integers

(e) 1, a, + l, «j + a3 + l, ..., ^ + 0% + ...-fa,.+ l ;

and E any one of the remaining integers < a. Let & denote any one
of the integers 1, 61 + 1> ..., b1 + bi+ ... + bs + l', and B any one of the
remaining integers < /8. The general canonical form may now .be
written:

i-j == Kitiij (i = 0 , 1 , . . . , fc-1; j any e)

j-j = Kir}ij+Krtij-i (* = 0 , 1 , . . . , fc—1; j any E)

Cu = Lt({J (i. = 0 ,1 , . . . , I-1; j any 6)

j-i (* = 0,1, ..., l-l; j any B).

3. An arbitrary linear homogeneous substitution on these indices
may be exhibited as follows :

77;, = $aiiVtu + 2&Uvw (i = 0, ..., fc-1 'J = 1, ..., a)

where, as henceforth, the summation indices t, u, v, w run through
the series

t — 0, 1, ..., k—1; v = 0, 1, ..., l-l; « = 1, . . . , « ; ie = l, . . . , /3 .
We investigate the conditions under which Tj is commutative with

8V Equating the functions by which Tjfl, and Sjjf, replace ?;,•„,
we get

<, 11 f, 10 / , n t, £

r, IP r, It

This identity in the variables »y and £ requires

Kxn\'n = Z i a | : (

a) s-1 = ^ « « ( « - 1 + Kt a't's>

For < = i, the fii-st two equations give merely at'E = 0. For
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ie
f, and the first equation gives at „,_! = 0, e' being any integer > 1

of the set (e). If <?.' — 1 is an E, the second equation gives «)1»_2 = 0;
in the contrary case, e'—2 ^ E—1, and the same result follows from
the first equation. Next, according as e' — 2 is or is not an E, the
second or first equation gives uj^_3 = 0. Proceeding thus, we find that
every n*t

c
c = 0 (t zfz. i, c arbitrary).

Since If, =̂ !/„, the third and fourth equations require, for similar
reasons, that every /8'.* = 0 (c arbitrary).

It follows that T, i-eplaces riit by 2n)^,»j,v.

Denote by e, (or by el) an arbitrary e such that e, 4-1 is an E, and
by <?! any one of the remaining e's, so that e, + l is an e. Equating
the functions by which fl\81 and SjT, replace TJ,-,I+I, we get

a"1 Vic+Ki 2 ^*e';
+ C««>

C, to

t, ii I, E r, to v, B

Equating the coefficients of the £'s, we find, as above, that every
$,*'* = 0 (c arbitrary). In the second sum of the second member,
E extends over every E = ej + l and every E' not an e + L Hence

Applying the above argument, the last two equations give

Hence T, affects >/,„ and tjie^ as follows :—

/ « ««, + !

Denote by e8 (or by e^) an arbitrary e, such that e3 + 2 is an JE7, and
by e2 any one of the remaining e/s so that every et + 2 is an e.
Equating the functions by which T^Sx and 8^ replace ijie,+2, we get
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Equating the coefficients of the £'s, we find, as above, that

Equating the coefficients of i?<(1 (t=fci), we find, as. formerly, that every

For t = i, we note that

2 itt+t -c l « j + 'i . ^; l « a + 2 _ , i> - + 2

« • £ '/iJB-l = •« «<«, + ! Viel + -*«ie'3+2'?ie',+l+-*aiJS' *?<£»-b

where 2£' runs over the series of E'a not of the forms e, + l or e + 2.
But an e,-f 2 = (e, + l )4- l is an e + 1, and an e2 + 2 is not an E.
Hence E' extends over those integers < «« which are of none of the
forms e, e, + 1, et + 2, all three of which are distinct. Hence every

«<<•, = «le,.li «,e, = 0, a,;' = 0,

Hence T, affects the indices »/,•„ i/,.,+1, f/l(,+2 as follows:—

'' **

, x ie.j + 1 , ^ *<a

t * + 2 îî *l îc

* e «, «'o

Proceeding as before, we separate the e2 into the categories" e8 and
e8, such that every e8 4- 3 is an E and every ea + 3 is an e. We find
that no simplification takes place in TJ,'̂ , IJ,'^, «7,\+I, nor in j/J,a, fy',,+1,
Vi'«,+2> when e8 is an ev Simplifications arise when es is an e8, viz.:

•'»
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The law of the formation of the i\{i is now evident, and may be
verified by simple induction. In particular, 2\ replaces each TĴ  by
a function of the »jJtl alone. Similarly, T, replaces each £ti by a.
function of the £,• ,„ only.

4. Consider, as an example, a substitution St which involveR only
the indices r}ij} and for which ax = 3, o2

 = 3, a3 = 2. Then

e - 1, 4, 7 ; E = 2, 3, 5, 6, 8 ;

ex — 1, 4, 7 ; no ex; e2 = 1, 4 ; et = 7 ; no e8.

The most general substitution T, commutative with 8r has the form

v'n —

Va —
1 _ _

t

Wit =

, ; . =

Tin

• 7

on
iS

il

• 2

<3

• 4

an
t S

B
_

Vii

il
O,4

• 8
a* 4

n
a, 4

i 2
Cl( 4

i3
a, 4

i4
a, 4

iS
Ci4

• 18
a, 4

T»7

i7
a, 7

<8

t'2

a.-7
i3

Oil

ib
Oil

t 6

<7

an

n
«n

• 2

«n

P
..

if,

on

Vit

«7
a<4

n
a, 4

a)*

•'4
" < 4

<s
a, 4

<7
a,-7

i-l

<6

11 3 Vt 6

n n
a,- ] Oj 4

• 4 <4
a,-1 Qj 4

holding for i — 0, 1, ..., k—1. By inspection, its determinant equals

<4 «4

n a, 4

5. The indices r/n, ..., »;,-„ are linear functions of the initial indices
£u..., £„„ having as coefficients polynomials in Kt. Likewise, Cm • • • > C/9
are linear functions of £l5 ..., £,,, involving 2y{. Let us return from
the indices r/tJ, (u to the initial indices £,-. By hypothesis, S, becomes
S, a substitution having its coefficients in the GF[pn']. Let 2\
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become T. Under what conditions will T have its coefficients in the
same field ? Remembering that Tx replaces »jo, £{J by functions of
the respective forms

it is evidently necessary and sufficient that u)i be the same function
of Ki for i = l , ..., k— 1 that a^ is of Ko, and that $£ be the same
function of L{ for i = 1, ..., Z—1 that §°0

J
i0 is of Z/o. Expressed other-

wise, these conditions are

Hence Tt is completely determined from the functions by which it
replaces T;OJ- (; = 1, ..., a) and $0J (j = 1, ..., /3). The final theorem
is as follows:—

To determine the most general m~ary linear homogeneous substitution
T with coefficients in the GF[p"~\ which is commutative with a particular
one $, toe give to 8 its canonical form $,, which may be expressed as a
product,

y,-, z( denoting the respective substitutions—

y{: t]i« = K{ Vie, 1, j? = Ki (m s+'/. s- I ),

Zi: £ib = L{ & b, d „ = Lt (£• h + (t s.,).

Then must Tx (T written in the indices r)iji ^v' be expressible as a product

T, = YoY^... 3a..i Z^ZX... Z,.i...,

where Yo affects only the indices r)Q „, the coefficients being given by the
law explained at the end of § 3, and where Yt is obtained from Yo by
raising its coefficients to the power pni; with similar remarks for the
substitutions Zt.




