"Memoirs and Proceedings of the Manchester Liternryand Philosophical Society," Vol. xurv., Pts. 2, 3 ; 1900.
"Proceedings of the Royal Irish Academy," Series 3, Vol. v., No. 4 ; Dublin, 1900.

Linear Substitutions Commutative with a Given Substitution. By L. E. Dickson, Ph.D. Received May 8th, 1900. Communicated May 10th, 1900.

1. The object of this note is to determine the explicit form of all m-ary linear homogeneous suhstitutions T with coefficients in the $G F\left[p^{n}\right]$ which are commutative with a particular one S. For the case $n=1$, the number of such substitutions T has been determined by M. Jordan,* whose method of proof was, however, limited to the consideration of a particular example. By the use of convenient notations, we may treat the general case with equal ease and, moreover, avoid the separation of the proof into two successive stages. Following M. Jordan, I first give to S its canonical form $\dagger S_{1}$.
2. Let the characteristic determinant of S be

$$
\Delta(K) \equiv\left[F_{k}(K)\right]^{a}\left[F_{l}(K)\right]^{\beta} \ldots \quad(m \equiv k a+l \beta+\ldots)
$$

where $F_{k}(K), F_{l}(K), \ldots$ are distinct polynomials belonging to, and irreducible in, the $G F\left[p^{\prime \prime}\right]$. We may exhibit the roots of $F_{k}(K)=0$ and of $F_{l}(L)=0$ in the following notation:-

$$
\begin{aligned}
K_{0}, & K_{1} \equiv K_{0}^{p^{n}},
\end{aligned} \quad \ldots, \quad K_{k-1} \equiv K_{0}^{p^{n(k-1)}} ; ~ ; ~ L_{1} \equiv L_{0}^{p^{n}}, \quad \ldots, \quad L_{t-1} \equiv L_{0}^{p^{n(t-1)}} .
$$

To simplify the formulæ, we suppose that F_{k} and F_{t} are the only irreducible factors of $\Delta(K)$. The method is, however, seen to be general.

Corresponding to each partition of a and β into positive integers,

[^0]we obtain a canonical form of an m-ary substitution in the $G F\left[p^{n}\right]$. Let
$$
a \equiv a_{1}+a_{2}+\ldots+a_{r+1}, \quad \beta \equiv b_{1}+b_{2}+\ldots+b_{s+1} .
$$

It will be convenient to let e denote any one of the integers
(e) $1, \quad a_{1}+1, \quad a_{1}+a_{2}+1, \quad \ldots, \quad a_{1}+a_{2}+\ldots+a_{r}+1 ;$
and E any one of the remaining integers $\overline{\overline{<}} a$. Let b denote any one of the integers $1, b_{1}+1, \ldots, b_{1}+b_{2}+\ldots+b_{1}+1$; and B any one of the remaining integers $\overline{\overline{<}} \beta$. The general canonical form may now be written :

$$
S_{1}: \begin{cases}\eta_{i j}^{\prime}=K_{i} \eta_{i j} & (i=0,1, \ldots, k-1 ; j \text { any } e) \\ \eta_{i j}^{\prime}=K_{i} \eta_{i j}+K_{i} \eta_{i j-1} & (i=0,1, \ldots, l-1 ; j \text { any } E) \\ \zeta_{i j}^{\prime}=L_{i} \zeta_{i j} & (i=0,1, \ldots, i-1 ; j \text { any } b) \\ \zeta_{i j}^{\prime}=L_{i} \zeta_{i j}+L_{i} \zeta_{i j-1} & (i=0,1, \ldots, l-1 ; j \text { any } B) .\end{cases}
$$

3. An arbitrary linear homogeneous substitution on these indices may be exhibited as follows:

$$
\left(T_{1}^{\prime}\right): \begin{cases}\eta_{i j}^{\prime}=\Sigma a_{t u}^{i j} \eta_{t u}+\Sigma \beta_{r v}^{i j} \zeta_{t o v} & (i=0, \ldots, k-1 ; j=1, \ldots, a) \\ \zeta_{i j}^{\prime}=\Sigma \gamma_{t u}^{i j} \eta_{t u}+\Sigma \Sigma \delta_{v v o}^{i j} \zeta_{v 10} & (i=0, \ldots, l-1 ; j=1, \ldots, \beta),\end{cases}
$$

where, as henceforth, the summation indices t, u, v, v run through the series
$t=0,1, \ldots, k-1 ; \quad v=0,1, \ldots, l-1 ; \quad u=1, \ldots, u ; \quad w=1, \ldots, \beta$.
We investigate the conditions under which T_{1} is commutative with S_{1}. Equating the functions by which $T_{1} S_{1}$ and $S_{1} T_{1}$ replace $\eta_{i e}$, we get

This identity in the variables η and ζ requires

$$
\begin{aligned}
& K_{t} a_{t i v}^{i e}=K_{t} a_{t u}^{i e} \quad(\imath \neq E-1), \\
& K_{i} a_{t B-1}^{i e}=K_{t} a_{t B-1}^{i e}+K_{t} a_{t B}^{i o} \\
& K_{i} \beta_{v v}^{i e}=L_{v} \beta_{v t o}^{i e} \quad(w \neq B-1), \\
& K_{i} \beta_{v B-1}^{i e}=L_{v} \beta_{r B-1}^{i e}+L_{v} \beta_{v B}^{i e}
\end{aligned}
$$

For $t=i$, the first two equations give merely $a_{i \Sigma}^{\prime \cdot}=0$. For $t \neq i$,
$K_{i} \neq K_{t}$, and the first equation gives $a_{i e-1}^{i e}=0, e^{\prime}$ being any integer >1 of the set (e). If $e^{\prime}-1$ is an E, the second equation gives $a_{t \rho_{-2}}^{i o}=0$; in the contrary case, $e^{\prime}-2 \neq E-1$, and the same result follows from the first equation. Next, according as $e^{\prime}-2$ is or is not an E, the second or first equation gives $a_{i \rho_{-3}}^{i{ }_{c}}=0$. Proceeding thus, we find that every $\boldsymbol{r}_{t_{c}}^{i e}=0$ ($t \neq i$, carbitrary).

Since $K_{i} \neq L_{v}$, the third and fourth equations require, for similar reasons, that every $\beta_{\mathrm{r}}^{\mathrm{c}}{ }_{c}=0$ (c arbitrary).
lt follows that T_{1} replaces $\eta_{i c}$ by $\sum_{e} a_{i i^{\prime}}^{i \eta^{\prime}} \eta_{i e^{\prime}}$.
Denote by e_{1} (or by e_{1}^{\prime}) an arbitrary e such that $e_{1}+1$ is an E, and by \bar{e}_{1} any one of the remaining e 's, so that $\dot{e}_{1}+1$ is an e. Equating the functions by which $I_{1} S_{1}$ and $S_{1} T_{1}$ replace $\eta_{i e_{1}+1}$, we get

$$
\begin{aligned}
& K_{i} \sum_{i, n} a_{i n}^{i e_{i+1}+1} \eta_{t n}+K_{i} \sum_{e} a_{i e}^{i e_{i}} \eta_{i c}+K_{i} \sum_{r, v} \beta_{v i v}^{i c_{1}+1} \zeta_{v w} \\
& \equiv \sum_{t, n} a_{t=1}^{i e_{1}+1} K_{t} \eta_{t u}+\sum_{t, E} a_{t E}^{i e_{t}+1} K_{t} \eta_{t B-1}+\sum_{v, n} \beta_{v i t}^{i e_{t}+1} L_{0} \zeta_{0, v}+\sum_{v, B} \beta_{v B}^{i t_{t}+1} L_{v} \zeta_{0 B-1} .
\end{aligned}
$$

Equating the coefficients of the ζ 's, we find, as above, that every $\beta_{v c}^{i_{c}+1}=0$ (c arbitrary). In the second sum of the second member, E extends over every $E=e_{1}^{\prime}+1$ and every $E^{\prime \prime}$ not an $e+1$. Hence

$$
\begin{aligned}
& a_{i \bar{e}_{1}}^{i e_{1}}=0, \quad a_{i e_{1}^{i}}^{i e_{1}^{\prime}}=a_{i e_{i}+1}^{i e_{i}+1}, \quad a_{i B^{\prime}}^{i e_{1}+1}=0 \quad\left(E^{\prime} \neq e+1\right), \\
& a_{t u}^{i e_{i}+1}=0 \quad(t \neq i, u \neq E-1), \\
& K_{i} a_{t E-1}^{i i_{i}+1}=K_{t} a_{t-1}^{i e_{i+1}}+K_{t} a_{t S}^{i e_{t}+1} \quad(t \neq i) .
\end{aligned}
$$

Applying the above argument, the last two equations give

$$
a_{t c}^{i c_{c}+1}=0 \quad(t \neq i, c=1, \ldots, a)
$$

Hence T_{1} affects $\eta_{i o}$ and $\eta_{i o+1}$ as follows :-

$$
\begin{aligned}
\eta_{i e_{1}}^{\prime} & =\sum_{e_{1}^{\prime}} a_{i e_{1}^{\prime},}^{i e_{1}} \eta_{i e_{1} e_{1}}, \quad \eta_{i \bar{e}_{1}}^{\prime}=\sum_{e} c_{i e}^{i \bar{e}_{e}} \eta_{i e,} \\
\eta_{i e_{1}+1}^{\prime} & =\sum_{e} a_{i e}^{i e_{i}+1} \eta_{i c}+\sum_{e_{1}^{\prime}} a_{i e_{1}}^{i e_{1}} \eta_{i e_{1}^{\prime}+1}
\end{aligned}
$$

Denote by e_{2} (or by e_{2}^{\prime}) an arbitrary e_{1} such that $e_{2}+2$ is an E, and by \bar{e}_{8} any one of the remaining e_{1} 's so that every $\bar{e}_{2}+2$ is an e. Equating the functions by which $T_{1} S_{1}$ and $S_{1} T_{1}$ replace $\eta_{i \varepsilon_{0}+2}$, we get

Equating the coefficients of the ζ 's, we find, as above, that

$$
\beta_{o c}^{i_{c}+2}=0 \quad(v=0,1, \ldots, l-1 ; c=1, \ldots, \beta) .
$$

Equating the coefficients of $\eta_{t u}(t \neq i)$, we find, as. formerly, that every

$$
a_{t u}^{t_{t}+2}=0 \quad(t \neq i) .
$$

For $t=i$, we note that

$$
\sum_{E} a_{i E}^{i \epsilon_{2}+2} \eta_{i B-1} \equiv \sum_{c_{1}}^{i} a_{i_{1}+1}^{i e_{2}+2} \eta_{i e_{1}}+\sum_{\gamma_{2}} \alpha_{i e^{\prime}+2}^{i e_{2}+2} \eta_{i e^{\prime}+1}+\sum_{E^{\prime}} a_{i B^{\prime}}^{i i_{2}+2} \eta_{i E^{\prime}-1},
$$

where E^{\prime} runs over the series of E 's not of the forms $e_{1}+1$ or $e+2$. But an $\bar{e}_{1}+2 \equiv\left(\bar{e}_{1}+1\right)+1$ is an $e+1$, and an $\bar{e}_{2}+2$ is not an E. Hence E^{\prime} extends over those integers $\overline{\overline{<}}$ " which are of none of the forms $e, e_{1}+1, e_{2}+2$, all three of which are distinct. Hence every

$$
\begin{aligned}
& u_{i e_{1}}^{i e_{2}+1}=a_{i e_{1}+1}^{i e_{2}+!}, \quad u_{i i_{1}}^{i e_{2}+1}=0, \quad a_{i i_{2}}^{i e_{2}}=0, \\
& a_{i e_{s}}^{i f_{0}}=a_{i e_{0}+2,}^{i e_{0}+2}, \quad a_{i E^{\prime}}^{i i_{a}+2}=0 .
\end{aligned}
$$

Hence T_{1} affects the indices $\eta_{i e 1} \eta_{i e+1}, \eta_{i e+2}$ as follows:-

$$
\begin{aligned}
& \eta_{i i_{i}}^{\prime}=\sum_{e} a_{i e}^{i \bar{t}_{i}} \eta_{i e}, \\
& \left\{\begin{array}{l}
\eta_{i \bar{e}_{0}}^{\prime}=\sum_{e_{1}} a_{i e_{1}}^{i \bar{e}_{2}} \eta_{i e_{1}}, \\
\eta_{i \bar{c}_{0}+1}^{\prime}=\sum_{e} a_{i e}^{i c_{e}+1} \eta_{i e}+\sum_{e_{1}} a_{i e_{1}}^{i e_{2}} \eta_{i c_{1}-1},
\end{array}\right.
\end{aligned}
$$

Proceeding as before, we separate the e_{2} into the categories e_{3} and \dot{e}_{8}, such that every $e_{3}+3$ is an E and every $\dot{e}_{3}+3$ is an e. We find that no simplification takes plnce in $\eta_{i e_{1}}^{\prime}, \eta_{i \bar{c}_{2}}^{\prime}, \eta_{i \bar{e}_{2}+1}^{\prime}$, nor in $\eta_{i e_{9}}^{\prime}, \eta_{i e_{4}+1}^{\prime}$, $\eta_{i c_{1}+2}^{\prime}$, when e_{9} is an \bar{e}_{8}. Simplifications arise when e_{9} is an e_{8}, viz. :

The law of the formation of the $\eta_{i j}^{\prime}$ is now evident, and may be verified by simple induction. In particular, T_{1} replaces each $\eta_{i j}$ by a function of the $\eta_{t u}$ alone. Similarly, T_{1} replaces each ζ_{i} by a. function of the $\zeta_{i t}$ only.
4. Consider, as an example, a substitution S_{1} which involves only the indices $\eta_{i j}$, and for which $a_{1}=3, a_{2}=3, a_{3}=2$. Then

$$
\begin{aligned}
e=1,4,7 ; & E=2,3,5,6,8 ; \\
e_{1}=1,4,7 ; & \text { no } \bar{e}_{1} ; \quad e_{2}=1,4 ; \quad \bar{e}_{8}=7 ; \text { no } e_{3} .
\end{aligned}
$$

The most general substitution T_{1} commutative with S_{1} has the form

	$\begin{array}{lll}\eta_{i 1} & \eta_{i 4} & \eta_{i 7}\end{array}$	$\begin{array}{lll}\eta_{i 2} & \eta_{i 0} & \eta_{i 8}\end{array}$	$\begin{array}{ll}7 i 3 & \eta_{i 6}\end{array}$
$\begin{aligned} & \eta_{i 7}^{\prime}= \\ & \eta_{i 8}^{\prime}= \end{aligned}$	$\begin{array}{lll} a_{i 1}^{i 7} & a_{i 1}^{i 7} & a_{i 7}^{i 7} \\ a_{i 1}^{i 8} & a_{i 4}^{i 8} & a_{i 7}^{i 8} \end{array}$	$\begin{array}{lll}a_{i 1}^{17} & a_{i 4}^{17} & a_{i 7}^{17}\end{array}$	
$\begin{aligned} & \eta_{i 1}^{\prime}= \\ & \eta_{i 2}^{\prime}= \\ & \eta_{i 3}^{\prime}= \end{aligned}$	$\begin{array}{lll} a_{i 1}^{i 1} & a_{i 4}^{i 1} & \\ a_{i 1}^{i 2} & a_{i 4}^{i 2} & a_{i 7}^{i 2} \\ a_{i 1}^{i 3} & a_{i 4}^{i 3} & a_{i 7}^{i 3} \end{array}$	$\begin{array}{lll} a_{i 1}^{i 1} & a_{i 4}^{i 1} \\ a_{i 1}^{i 2} & a_{i 4}^{i 2} & a_{i 7}^{i 2} \end{array}$	$a_{i 1}^{11} a_{i 4}^{i 1}$
$\begin{aligned} & \eta_{i 4}^{\prime}= \\ & \eta_{i 6}^{\prime}= \\ & \eta_{i \theta}^{\prime}= \end{aligned}$	$\begin{array}{ccc} a_{i 1}^{i 4} & a_{i 4}^{i 4} & \\ a_{i 1}^{i s} & a_{i 4}^{i 6} & a_{i 7}^{i 5} \\ a_{i 1}^{i 6} & a_{i 4}^{i 6} & a_{i 7}^{i 6} \end{array}$	$\begin{array}{lll} a_{i 1}^{i 4} & a_{i 4}^{i 4} & \\ a_{i 1}^{i s} & a_{i 4}^{i s} & a_{i 7}^{i 6} \end{array}$	$a_{i 1}^{i 4} \quad a_{i 4}^{i 4}$

holding for $i=0,1, \ldots, k-1$. By inspection, its determinant equals

$$
\left(a_{i 7}^{i 7}\right)^{2}\left|\begin{array}{cc}
a_{i 1}^{i 1} & a_{i 4}^{i 1} \\
a_{i 1}^{i 4} & a_{i 4}^{i 4}
\end{array}\right|^{8} .
$$

5. The indices $\eta_{i 1}, \ldots, \eta_{i n}$ are linear functions of the initial indices ξ_{1}, \ldots, ξ_{m}, having as coefficients polynomials in K_{i}. Likewise, $\zeta_{i 1}, \ldots, \zeta_{i \beta}$ are linear functions of ξ_{1}, \ldots, ξ_{m} involving L_{i}. Let us return from the indices $\eta_{i j}, \zeta_{i j}$ to the initial indices ξ_{i}. By hypothesis, S_{1} becomes S, a substitution having its coefficients in the $G F^{\prime}\left[p^{n}\right]$. Let T_{1}
become T. Under what conditions will T have its coefficients in the same field? Remembering that T_{1} replaces $\eta_{i j}$, $\zeta_{i j}$ by functions of the respective forms

$$
\sum_{n=1}^{a} u_{i n}^{i j} \eta_{i u}, \quad \sum_{n=1}^{A} \delta_{i n}^{i j} \zeta_{i n},
$$

it is evidently necessary and sufficient that $u_{i, 1}^{i j}$ be the same function of K_{i} for $i=1, \ldots, k-1$ that $\alpha_{0 u}^{0 j}$ is of K_{0}, and that $\delta_{i w}^{i j}$ be the same function of L_{i} for $i=1, \ldots, l-1$ that $\delta_{0,1}^{0 j}$ is of L_{0}. Expressed otherwise, these conditions are

$$
a_{i n}^{i j}=\left(a_{0 i 4}^{0 j}\right)^{p^{n i}}, \quad \delta_{i t o}^{i j}=\left(\delta_{0, t}^{n j}\right)^{p^{n i}} .
$$

Hence T_{1} is connpletely determined from the functions by which it replaces $\eta_{0 j}(j=1, \ldots, a)$ and $\zeta_{0 j}(j=1, \ldots, \beta)$. The final theorem is as follows:-

To determine the most general m-ary linear homoyeneous substitution T with coefficients in the $G F\left[p^{n}\right]$ which is commutative with a particular one S, we give to S its canonical form S_{1}, which may be expressed as a product,

$$
s_{1} \equiv y_{0} y_{1} \ldots y_{k-1} z_{0} z_{1} \ldots z_{1-1} \ldots
$$

y_{i}, z_{i} denoting the respective substitutions-

$$
\begin{array}{lll}
y_{i}: & \eta_{i e}=K_{i} \eta_{i e} & \eta_{i B}=K_{i}\left(\eta_{i E}+\eta_{i E-1}\right), \\
z_{i}: & \zeta_{i b}=L_{i} \zeta_{i b}, & \zeta_{i B}=L_{i}\left(\zeta_{i B}+\zeta_{i B-1}\right) .
\end{array}
$$

Then must T_{1} (Twritten in the indices $\eta_{i j}, \zeta_{i j}$) be expressible as a product

$$
T_{1} \equiv Y_{0} Y_{1} \ldots Y_{k-1} Z_{0} Z_{1} \ldots Z_{1-1} \ldots
$$

where Y_{0} affects only the indices η_{0}, the coefficients being given by the law explainerl at the end of § 3, and where Y_{i} is obtained from Y_{0} by raising its coefficients to the power $p^{n i}$; with similar remarks for the substitutions Z_{i}.

[^0]: * Traité des Substitutions, pp. 128-136.
 † "Canonical Form of a Linear Homogeneous Substitution in a Galois Field," American Joumal of Mathematics, Vol. xxrr., No. 2, April, 1900. The proof of the generalization of Jordan's theorem is there made by induction.

