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On the fundamental integral functions. 

The Riemann surface considered is represented by an equation 
of the form 

f ( s ,  ~) = s '~ .-{- s~ ' - l ( z ,  1),,, + s~-'(z, 1)~, + . .  �9 -{- (z, 1)~, = 0, 

wherein s is an integral function of z~ that is~ does not become in- 
finite except where z is infinite. At any value of z, z =~ a, I conceive 
the surface as consisting of x branchings - -  superposed, the number 
of sheets that wind at these windin~o~points being respectively 

wj-{-1 ,  w 2 ~  1 , . . . , w ~ T 1  
so that 

w l +  w ~ + . . .  + w~ + ~ = ~ ,  

and the number of branch points ~us  arising is n -  ~t. The most 
ordinary case is when ~t ~ n and 

W l  = = ~ W 2  ~ . . . t = = W ~  ~ -  0 ,  

The ordinary ,,u arises when 

x ~ n ~  I ,  w l  ~ O ~ w  2 . . . . .  w ~ - -  I . . . . .  w , .  

The case of a ,,sich aufhebender Yerzweigungspunkt", a~ which two 
sheets just touch (as having the same value for z and s) without 
further connection, arises when 

and is not distinguished in this descriplion from an ordinary point. 
A point on the surface which gives rise r a cusp (Rfickkehrpunkt) 

on the corresponding plane curve f ( y ,  x ) ~  O, is one at which two 
sheets not only wind bu~ also touch as at a ,,sich aufhebender Ver- 
zweigungspunkt't This is given in the description here by 
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x ~ - n - -  1,  Wl- -~-O . . . . .  W ~ - -  1 . . . . .  W,  

and is not distinguished from an ordinary branch point. 
These examples will make the description clear. I say that each 

of the ~ windings given by 

fvj -~- 1, w 2 q-- 1, . . . ,  w~ -}- 1 

constitutes a 'p lace ' .  At these places d z  is infinitesimal respeekively 
of the orders 

namely, if in the neighbourhood of these places we wrRe 

z - -  a ~ tl  , ~s ' "'', 

t, ,  t2, . . . ,  t~ will be infinitesimal of the first order. 
Similarly we describe the character of the surface at z ~ -oo  by 

saying that at z ~ oo we may write 

~ - - - ~ -  ) - . - ~  

Kronecker (Crelle 91) shews that 'every integral algebraic function 
on the surface can be written in the form 

where 
s ~ + s ~ - I  ~z, 1), ,  + . . .  

g i  ----- 
(z, i) r 

is an integral function. 
Consider now any integral function g. Let its orders of infinity 

in the x places at z = c~ be 

Let L ~'(w-7----------------~) denote the integer ac~nally less than the number 

% + t '  whether this number ~ be integral or not, and let Z 

denote ~he greatest one of the  integers 

; "1  �9 

I call L ~ the r a n k  of ~he integral function g. 

Then we have the 
P r @ o s i t i o n .  The sum of ~he ranks of the Kronecker functions 

is in all cases p, the ,Geschlecht" of the surface. 
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For,  consider an integral algebraic function which is to be infinite 
at the ~t places a~ z ~ oo respectively to orders 

m(w I + 1), re(w2- [- 1), . . . ,  m(w,,.-[- 1) 

or as near below these as may be possible: m being a large enough 
integer to allow our regarding these 

m(w 1 nt- 1), m(w 2.~ r - 1), . . .  
places as independent, 

The form of the function is necessarily 

(z, 1)~ + g,(z, 1),, + g~(,, 1), + . . .  
where 

gl is such as to be infinite at z = oo respectively to orders r l ,  r 2 , . . . ,  rx, 

g2 is such as to be infinite at z ~ oo respectively to orders t~, t 2 , . . . ,  t~ 

and so on. 
Hence considering first the place z---~ oo where z is infinite of 

order w I -~- 1 

~l(w t -~ 1) ~ m(w, --~ 1), #(wo-{-- 1) -J~ r 1 ~ re(w, n t- 1), 
,,(w, + 1) + t~ :~ ~ ( %  + 1), . . . .  

Considering next the place z ~- oo where z is infinite of order w 2 -~- 1 

v(w~ + 1) + t~ ~ m ( ~  + 1 ) , . . .  
and so on:  there being u such rows of conditions. 

The firs~ column of these conditions gives it = m,  shewing that  
such a function as postulated is certainly possible. The second 
column gives 

i ~ < m  w ~ + , < m - - l - - L  for i =  1,2, 3 ~ . . . ,  n, 

and gives therefore, in the sense defined above, 

g gl 
s o  

& 

Hence the number of arbitrary coefficients in our function, being 

(it ~- 1) q- (g o c 1) -1- (v + 1) q - . . .  
is 

r L i a t -nm - - { L  ( ~ )  -f- ( g 4 - i )  + ' "  "}" 

But~ by the giemann-Roch.Satz, since m is suffieienfly large, the 
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number of these arbitrary coefficients should be 1 + Q -  ~o, where Q 
is the number of infinities of the function, viz 

Q + m(wt + 1 + w 2 +  1 + �9 . .) = ran. 
Hence 

~----L ~ + L  + . . .  

as stated. (Cf. also Abel. Oeuvres comp. 1881, p. 173. Equation 80). 

Of the expression of algebraic functions which are infinite only at an 
arbitrary place. 

Consider the places z ~ a, the surface being here characbrised by 

w 1 + l , . . . , w ~ + l .  

Let g be an integral function and r the least integer such that, 

g is not infinite at z ~ oo. For this, if the orders of infinity i~- uy+i 
of g be, in the x places z = c~, respectively 

( r + l ) ( w i j r l ) ~  o v i z r : ~ w . . k l  1, v i z r : ~ Z  
\ - - 1  u - /  

for i = 1 , 2 , . . . , ~ r  
Hence 

L 

viz ~---rank of function g. 
If then K be an algebraic function only infinib at z == a and 

such that K(z- -a ) '~+ 1 is just not infinite at z = a and is therefore 
an integral function, we must have 

(1) K(z - -a )~+  1 ..~ ( z - - a ,  1)~o+ ( z - - a ,  1)~,g 1 + ( z - - a ,  l)~,g 2 + . .  

. .  + ( z - -a ,  1)a~_ig,-i. 
Put 

1 g~ z ~ a = ~  and h~-~- (z-- a) ~ + i, 

where v~ is the rank of g~. 
Then 

(2) K = (1, ~)~,~l-~o + (1, ~),,~m-~,-~, hi + (1, ~)~,~-',-', h2 + . . . .  

But ~he equation (1) gives, since K is not infinite at z ~---oo and 
contains therefore in its expression, as I assume, no terms which 
become infinite at z ~ oo, 

~o ~ m + 1, ~1 (w, Jr 1) + r, ~ (m -}- 1) (w, Jr 1), 

l~(w,+ 1) + ~,~2 (m + 1) (w,+ 1 ) , . . .  
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where r~, r~ , . . . ,  r~ are the orders of infinity of g~ at z ~ ~x), t~,. . . ,  t~ 
are ~he orders of infinity of g~ at z-~- ~ etc. 

Hence 

w ~ + l ~ m + l - - ~ t , ,  L w ~  ~ m - - g ~ ,  

~, _ ( * , )  

etc. 
Hence we have the 
t)ro~osition. An algebraic function which is only infinite at z ~ a 

can be wri~en 

/i: = (1, ~)~o + (1, r + (1, ~)g,h 2 + - . .  + (1, ~)~,_~ h._z 
where 

1 g~ 
~ ~--- ~-"~"~, h~ = (z_a),~ + ~, 

and ~ 0 , . .  ", ~,-~ are all ~ 0 .  
It  is easy ~o see ~a~ ~he ranks of h~ h~, . . . ,  h~_~, considered 

as funclions of C are respectively the same as ~hose ofg~g~,...~g,-~. 

Of the expression of i~tegrals of the first, second and third k i n d s - -  
and of the fore of adjoint curves in general. 

We introduce in what follows certain forms*) ~o, ~ 1 , . , . ,  ~ - ~ ,  
writing 

g~ (s,  ~) = *~ + 8~-1 (~' 1)~,+... 

where /)~ is an integral polynomial in z. The function ~ is of 
the form 

~(s, ~) = [s"-~-' + s.-~-~(~, 1),, + .  �9 . ] /) .  
The exact expressions for ~0(s, ~), ~I (s, z), . . .  may be defined by 
~he identity 

(A) ~o (s,z) + ~ (s,z)g~ (s,~) + ~ (s,~)g~ (s, ~) + . . .  + ~,_~(s, ~)g,_~ (s, ~) 
f ( s ' ,  z )  - -  f ( s ,  z) 

8"--8 

= s'"-~+s'"-2z~(s, z) + " ~ ' ~  �9 s z~(s, ~ ) + . . .  + z . _ , ( s ,  ~) 
8' = s . -~  + s . -~  z~ (s', ~) + s . -8 z~(s', ~) + . . .  + z . - ~  ( , ~), 

where writing 

f ( s ,  z) = s ~ + QI" s~-I + Q:.s  ~-~ + ' "  ' + O, ,  
the forms Zt, Z2. etc. are Chose given by 

�9 ) Cf, Dedekind & Weber. CreUe 92. (Theor. d. Algeb. Fehaen, e. u where 
the same forms are inr and called ,,die zu g complement~re Basis". Also 
Hensel. Crelle 109. 
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z, (s, z) = s + q , ,  x~(s, ~) = s~ + s q ,  + Q .  . � 9  

x~-l(s,  z) = s~-I + s~-~O, + �9 �9 + Qn- , .  

By equating the coefficients of the same powers of s on the two 
sides of equation (A) we obtain the explici~ forms of  the functions 

9 ~ o ~ I , ' ' ' ~  ~ . - i .  
For i n s t a n c e ,  if 

g, (s, ~) ~ x, (s, z) _ x, (s, ~), . g~_l (s,  z) = ~-1  (s, z) 
/), , g2(s , '~ ) - -  ~0~ " "' / ) . - 1  ' 

and this is a case of common oceurrene% then 

~o(S, z) = s~-~, ~, (s, z) = D I s  ~-~, . . . ,  ~,,_~(s, ~) = D~_~, 
while in general if the equations giving s ,  s 2, . .  : ,  s ~ -~  in terms of 
g~, g2~ �9 �9 "~ g,- ,~ be 

1 ~ 1 ~  

S ~ ai,o "~ at,1. gl  

s 2 -~- a~,o - ~  a ~ . , . g ,  -.}- a2 ,~ .g2 ,  
�9 o �9 �9 ~ , �9 , �9 , . 

s "-1 ~ an-i,0 T a ~ - , . i g l  -}- a~ -~ .~g2  .-{- �9 �9 �9 ~ a , , - , . , - l g , ~ - l ,  

where 
al,o~ al,1, a2,o, 6~2,17 � 9  

are integral polynomials in z, then 

~Po -~- g , - x  + a l , o Z , - 2  + �9 �9 �9 -{- c~n-~.o Z l  ~ a ~ - l , o ,  

q ,  -~- a l , , Z , - ~  q -  �9 �9 �9 Jr" a n _ ~ , ,  Z,  "-~ a~,--1,~, 
�9 o �9 �9 �9 , �9 , , . �9 . �9 �9 �9 . �9 . �9 

r~n-2 ~ -  an-z, n-z)[,l ~ an--l, n-~ 

~n-- I = an--l, n--I 

namely, if we write 

( i ,  s, s~,. . . ,  s~-O = ~( i ,  ~ , ,  a~, .  � 9  a,-1) 
where Q in a matrix whose determinant is 

ai,i az,~ . . . an_~ ,~_ i  -~- D i D z  D a  . . . D n _ i ,  
~hen 

where ~ is the matrix determined from Q by changing its rows into 
columns - -  is what we call the ~ t r a n s l o o s e d '  of ~2. 

If  (Q) denote the matrix 

cq~_~ q~_~ . . .  Q, 1 9  
Q,_~ Q,_~ . . .  1 o 

q, 1 0 . . .  

1 0 . . .  
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whose debrminant is -4- 1, ~hen 
8 ~ -1 )  (z~-l, z , - ~ , . . . ,  z , ,  i)  (Q) (1, s, s ~ , . . . ,  

and we may wr ib  

(B) (qb, ~P,,..., cp,,_,) ~ ( Q ) 9 ( l , g , , g e , . . . ,  ~n-1). 

The definition (A) leads to other forms for 

in general -- thus. -- 

Let 
s~ s:~ . . .~  s=_~, sn 

denob the values of s arising from f(s, ~)=-0 for any value of z. 
Denote r z), g(so z) by ~o ,  g(~) etc. 

Then 

mom_F -(~) ~(,) _m.( , )  _(,) ~(,) [~f(~, z) 1 
~ ,  .~, + + . . .  + = f ' ( s , )  = L--b- ; - -J ,_ , , '  

~p(1) _( I )  ~(i} _(1) _(1) _(1) _(,') 
o + + + . . . +  ----o, (~----2, 3, . ) .  Wi Yl W~ Y~ ~n-i gn--i �9 �9 -~ 

Hence if 

c o e 1 c 2 . . �9 ~(t) 

�9 . .  ~ ,_ ,  f ' ( s , )  
�9 " �9 " * " " " �9 ~ O 

. (9 _(i) ~(0 1 y~ a'~ - .  ~_~  0 

�9 �9 4 * �9 . �9 �9 . 

namely 

(p(1) 1 | r ~(1) ~(1) - ~1 ~2 "" "Yn--I  C0 CI �9 - �9 C~t--1 

l n (~) ~(~) -.(~) l g~) -(~) 

(C) f .  (s,) I .~  ~ . .  �9 ~._~ = " " " Y,,-~ �9 o �9 . , * , �9 �9 �9 �9 o . �9 

L g i  g~ " ' ' g ~ - I  1 Yi " " " gn--1  

It is in this .form we shall use the functions r ~l ,  �9 �9  ~ , , - I -  
limiting ourselves then in the firt instance to values of z where 

Sl, 82, �9 �9 . ~ S n - - l ~  Sn 

are different�9 We remark that by multiplying both sides of equation 
(C) by the determinant which occurs on the left, we obtain 

f--~7' F - ~ ' "  "' t'(8), 
expressed as rational functions of s and z~ and in a form identical with 
those called by Hensel (Crelle 109) ~1, ~ . . . .  , ~ .  
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Let now :P* be an integral of the third kind, infinite only at 
two places where 

$1 

dP 
so that - ~  is an algebraic function, infinite 

like ~ _I ~, at the first, and like ~--I z2 at the second place -- in- 

finite moreover at every winding-place of the surfac% as for instance 

where e~---a, but such that ( z - - a )  gP is there zero of the first 

order. Thus if 
= =  ( z  - a , )  (~  - -  a ~ )  . . . ,  

be the integral polynomial in z which vanishes at all the finite branch 
points of the surface, it being supposed in the first instance that 
neither zl or ~ are branch points, and g be any integral algebraic 
function, then 

dP 

where the suffixes indicate the values of the function in the n sheets 
of the surface for any value of ~, is a symmetrical function of ~hese 
values, and is therefore a rational function of z alone, is moreover only 
infinite for z ~ co, and vanishes for all values of ~ which make a ~ O, 
and is thus of the form a J ,  where J is an integral polynomial in ~. 
Dividing then the equation by a, writing 

J ;t t(~-. ,~)--;~2(z--z~)-[-(z--$,)(z--~e).K 
( z  - -  ~ , )  ( z  - -  z2) (~ - -  z , )  (~  - -  z 2 )  ' 

itl, Z~ being constants and K a polynomial in ~, 

and remembering that dP 
(~ - -  ~) ~- = 1 

at the infinity where ~-~ ~I, and 

- ~ =  

at the other infinity, we see that 

where (sl, ~1), (s2~ ~)  are the two infinities of P~,, ~. 
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g 
~,'~+ 1 

Further if v be %he rank of the inbgml function g,  so tha~ 

is just not infinite in any sheet at z == ~ ,  this equation gives 

g(s~, ~,) g(s~, ~) + (~, l) '~-~ 
~-T+T+l (z -- z~) ~+l  (~ _ ~) ~+~ 

Now at a plaee ~---~ oo where z is infinite of order w + i, say 
~--- t-(~+i) 

d:P t ~+~ 8/0 
dz  w + 1 dt 

is zero to order w + 2. 
Hence 

( v + l - -  ~--  l ) ( w +  l ) % w +  2, 
1 �9 - ~ + ~ % ~ , + ~ - - ~ + ~ ,  

w + t  

Hence # is at most equal to the rank ~: of the function g. 

In p~rticular 

dP d~  , , 

, ( ~ ) ( ' ~  ~ ,~(~)(a~'~ _u .. . d~  �9 + g( ) ( _ _ ~  _ g, (s~, z~) g~(s,, ~,) 

�9 ~ �9 . , �9 �9 . ~ . ~ . �9 q , . ~ ~ �9 o Q �9 , . . . , 

,(1) (~.~'~ ...]._,(2) (~-P~ ..-L... n ~ ~  )'z'~-1-1 _[_.( )  ( '~ g, , ,_ l (s~ ,~ , )  g,,_l(s,,~,) 
~-z\d~/x-- ~n-ikdz I~ ~.-i\dZ 1~-- z-- zt z -- z e J~- (~' ] 

�9 i 

where ~t, v=, . .  ", ~.-1 are respectively not greater thun the ranks 
dP 

vl,  z2, . ' . ,  v~-l. Solving these equations for ( - ~ ) ,  and then removing 

the suffix, we have, in accordance with the definitions (C), 

f ' ( s )  ~ 2  (~, 1)r ~ 1),,._ 1 ~ -  - -  ~, + i f ,  ~2 + - ' "  + (~, 1) ~"-1-1 90~-, 

+ ~ o +  ~gt(8~, ~=) + . - .  + ~o~_~g~_~(s~, ~) 

__ ~o + ,~g~(s~, ~) + . . .  + ~,,_~g,,_~ (s~, ~=) 

where ~i stands for ~-(s, z). 
dP 

In this ~neeess~ry' form of ~ -  there enbr  at the most 
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arbitrary homogeneous coefficients: namely~ in accordance with what 
was proved, at most p "-F 1. But we know that the most general 

form of ~-~ involves such 1o -{-- 1 terms, being in fact 

dv~ gv~ dvp dP 
i~ ~ + ~ -~ + . . .  + ~, d-r + (~)o 

where vj, v.~ . . .  are the normal integrals of the first kind and ?-~ 

a special form of gP.  dz 
Hence we can infer 
(I) The mos~ general form of i~tegraI of the first kind is 

$ 

f~ [ (~ ,  1 )~ ' -~ ( s ,  ~) + (~, 1)~"-~(s ,  ~) + . . .  
-{- (~, 1)'~-i-i@.-, (S, ~)] 

t 

where v" ~ v~, and the coefficients in (~, 1) ̀ i-1 are arbitrary. 

(2) h special and actual form of integral of the third kind 
logarithmically infinite like log tl - - log  t2, where at the first place 

and at the second 

is 

gt-;~ L z -- zl 

J 
or 

We can prove in quite a similar way that one form of an integral 
of the second kind which is once ulgebraically infinite at an ordinary 

I 
place where z ~---~ like ~ is given by 

and we can quite easily modify these forms b the case when ~ is a 
brunch point. 
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Remarks and Examples. 

A comparison of the methods and results of this note, which was 
suggested to me by Hensel's paper, Crelle 109, with his papers (Crelle 
109, 111), where the integral of the third kind, though probably in 
contemplation, is not mentioned, will shew to what extent I am indebted 
to him. It  appears to me that without an exact specification of the 
forms of gl, g',, ' '  ", g~-~, his paper (wherein, however, the results 
of Riemann's theory are not assumed) does not prove that in 

dv (z, 1) ~'-1 a~ ~ ~ + " ' "  + (~' I ) ~ - ' - ~  ~'-~ 

all the coefficients in (z, 1) ~-~  may be taken to be arbitrary: though 

it proves that this is a 'necessary' form of 3-~" For it is not shewn 
thai the equations which he obtains 

lead necessarily to integral polynomials u j , . . . ,  u,, for every integral 
form of ~ .  The $roof here given that 

ah equation taken by him as definition of/o, is designed to fill this 
Lt icke ,  as I conceive it to be. Moreover his use of dimensions, founded 
on the form of algebraic functions, is apt perhaps to lead to miscon- 
ception. - -  In illustration of this point consider the case 

f(s, ~) ~ s 3 + s2(z, 1)2 + sz(z, 1)1 + A z  ~ ~ 0 

s~ + s~Qj + sQ2 + Q3 = 0  

say. Since, by writing y -  ~, the equation becomes 

+ u ( z ,  1)~ + ~ ( z ,  1), + A v~ ~- o, 
we see that a fundamental set of integral functions is 1, y, y-~ ~nd 
for the original curve, is, therefore 

1, 8 '  8 ~' 
where 

say 

where 

~ = _ g. + 8 Q, + Q~ _ z~ (s, ~) = g , (s ,  ~) 
s A z  A z  A 

(~, 1)~ Z ~ Z (Z, 1), (8 ~ Qi) ---~ 92 ~ •1 (8, Z). 

Hence we may take as a fundamental set 

1, gl, g~, 

z 
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and hence, from 
�9 t j 

r § r § ~ g~ ~ s '~ § s Z~ § ~ 
obtain 

~P0 ~ s ~ ,  ~ o ~ s ~  r  
Writing now in 

[(s, z), s ~ ~, z ~ ~, 
so that 

f(s, ~) = ~-~[~ + ~(~ ,  r § ~t~(1, ~), § ,4~,] - -  ~ - ~ ( ~ ,  ~) 

s a y  
g~ = ~ - = [ v / §  (1, f ;)~j,  

g~ = ~;-~1~ ~ + v(1, ~): + r ~;h:) 
have associated with them the indices 2 and 3 respec~ively~ while 

r S2 ~e 
f" (s) ~ ~s ~ "F ~s Q~ + Q~ ~ an ~ + 2v(~, th + t~(~, th  ' 

f ' ( s )  ---- f'(s5 ----- "~;? + ~,1(1, ~), + t'2(1, th '  
qo 2 Z ~'~ 

have, in accordance with HenseI's work, associated respectively with 
them the indices 

0 ,  - -  2 ,  - -  3 ,  
say 

O, - - ~ 1 ,  --~2" 

Apparently then in accordance with his work the general integral 
of the first kind is 

(~, 1) ~ ~, ~, t~(~ + (~, 1), ~ ; i  
and 

p ~-- ffl -]- ~2 - -  3 -[- 1 ~---- 3. 

As a fact p ~---I: and Henset's results are based on the hypo- 

thesis that 
F'(~) - -  2~ P (n ,  ~) 

does not vanish for ~ ~ 0, as is the case in this example. - -  But 
it is not I think convenient to make this hypothesis - -  which would 
exclude from the direcl application of the theory ~ a t  most important 
case when the surface is given in Weierstrass's normal form in which 
all the shee~s wind at z ~ c~. In this exampIe it is easy to prove 

that f ~' d~ is finite at every place ~ co, but f f ' ~ s ) d z  is 
Jr ' i s )  

logarithmically infinite in two sheets at z ~ c~. And this is included 
in the forms we have given: for it can be immediately shewn by 

9 
Math~mat i seho  A n n a l c n .  XZV.  



considering .F(~, ~) and 2"(~) at ~ = 0 that gt is of funk unity a n d  

g2 of rank zero, and the only finite integral is therefore F ~' dz 
d f(s) " 

Of course these remarks are not intended ~o detract from t l a e  
very great interest attaching to the results given by Hensel. 

I give as a further example of the formula here obtained for t h e  
integral of the third kind, the application to the hyperelliptic case 

s~ - -  (z, J ) ~ + ~  = O. 
Here  

gt ~ S ~  

cp0~---S, q ~ =  1, 

and the integral of the third kind is therefore 
$ 

I proceed to verify 
(1) That this form *) is obtainable when the integral o f  

~he ~hird kind is built after the rules given in C l e b s e l l  
and G o r d a n ,  Abel. Fctnen.~ see for example. : N o e t h e r ,  
Math. Ann. 37, 434. 

(2) That for p ----- 2 this is equivalent to the eovarian t; 
form given by K l e i n  (e. g. Math. Ann. 32~ 352). 

(1) The straight line passing through the points of discontinui ty 
( s ,  ~) = (~,  ~), (s, ~) = (~ ,  ~) 

being written in the form 
s 

A~ + fo (h -  ~2) + C, 
where 

(z, 1)~+~ = f ( z )  ----- f 0 z ~ +  ~ + ft z~P+~ + "  " ' .  
If this straight line meet the curve again in 

~a, ~4, �9 � 9  ~+~,  
we shall have 

s2 (Az + C) ~ 

1 

- -  t ~ ( ~ ,  - :,)~ (~ - -  ~ ' )  (z - -  ~,~) (~ - r  . � 9  ( z  - -  ~+~). 
And since 

is obtained from 
8 

*) Also found in Schwarz. Formeln uud Lehrslltze z, Gebr. Ellipk Func~ione~ 
p~g. as, (6). 
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by changing the sign of s, it is equal to 

z s 1 
1 

fO(ti - -  ~=)2 ~1 - - a t .  1 
~ - -  % 1 

z--~ t s-l-a~ [ (~-~)(z-~,)(s+~, 
- - /o(r  ~ z - - ~  s.Jna~ ~ f o ( h - h ) '  '-z--~ 

~ + . ~ .  

= i'p_+_ o, 

as stated. 

Bui since the general adjoint curve of order n -  2 ~ 2 p  is 

(z ,  1),a~, Jr- s ( z ,  1)~_l = 0 

the form of the integral of the third kind formed a f b r  C l e b s e h  and 
G o r d a n ,  must he,  save for additive terms which are integrals of the 
first kind, 

. . . . . . . . .  ~ . . . . .  7 

fo(~,- ~,1 + e] (z - ~ ) . . .  ( ~ -  ~+~.) az  

fo ( t~-  ~) ~ (z - h) 0 - ~) ( z -  ~) .. .  (z - ~+~)  u  

(2) We have 

s d~ 1 

where 
~ = f ( r  = (~, i ) ~ + ~ .  

Now in fact for ~ ~ 2 ,  writing f@) ~ a, ~, it is easy to 
verify ~ha~ 

g ,~ (~ - ~) + ~' 
1 (Z-- ~) d3fl 1 d'f 

-J- i ~  d~ s - -  io  d ~  

and hence obtain 

r r r 

9 ~ 
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and hence, writing 
r 

! l*d~daf 

r 
~ '  1 daf i d'f~ 

~he equation 
$ 

= d  T I -a (* - fl' '~ * # 7 

which was desired, the form employed by Klein  being 

Note. We may add in connection with (2) of page 10 that the 
integral infinite of the first order at a branch place ~ is 

Z t 

where &' is the differential coefficient in regard to the infinitesimal 
at ~, etc. 

January, 1894. 


