On the theory of Riemann’s Integrals.
By
H. F. Baxer, Cambridge (Engl.).

On the fondamental integral functions.

The Riemann surface considered is represented by an equation
of the form
f(s,8) =" 4 s*=2(z, D)y, + "% (2, Ly, =+ + - - + (8, L, = 0,
wherein s is an integral function of z, that is, does not become in-
finite except where # is infinite. At any value of 2, # = a, I conceive

the surface as consisting of » branchings — superposed, the number
of sheets that wind at these windingpoints being respectively

w1, w1, . w1
Wy 0, e g+ 2=,

and the number of branch points thus arising is # — %, The most
ordinary case is when # = # and

so that

w1|==w2= .--=w”=0.
The ordinary ,,Verzweigungspunkt® arises when
t=n—1, w=0=w = =w;—1la=1...=q,.

The case of a ,,sich anfhebender Verzweigungspunkt®, at which two
sheets just touch (as having the same value for 2z and s) without
further connection, arises when

=10, w1=w2=-..=wn=

and is not distinguished in this description from an ordinary point.
A point on the surface which gives rise to a cusp (Riickkehrpunkt)
on the corresponding plane curve 7 (¥, #) =0, is one at which two
sheets not only wind but also touch as at a ,sich aufhebender Ver-
zweigungspunkt, This is given in the description here by
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He==n —1, w1=0==---=w,--..1.._..._—_.-w,,

and is not distinguished from an ordinary branch point.
These examples will make the description clear. I say that each
of the » windings given by

w1, w1, 0,041

constitutes a ‘place’. At these places d# is infinitesimal respectively

of the orders
Wi, Woy o oy Wy

namely, if in the neighbourhood of these places we write

1 o1 i
z—a——tw+ t:)_‘-, ...,t:"+

tyy lay « ., tx will be infinitesimal of the first order.
Similarly we describe the character of the surface at z = co by
saying that at 2 = oo we may write

— (1)

2 =1 R

]

Kronecker (Crelle 91) shews that every integral algebraic funetion
on the surface can be written in the form

(& Na, + (&, g+ -+ - =+ (8, D, Gy

s, 4
(2, %

where

;=

is an integral function.
Consider now any integral funetion g. Let its orders of infinity
in the % places at 2 = co be

Tiy Fay » v 0y Txe

Let L( ) denote the mteger actually less than the number

r_{_ ;» Whether this number be integral or not, and let L( )

+1
denote the greatest one of the integers

(w1+1) L(w:-zi—l) 2t h L(w:z—l)'

I call L( ) the rank of the integral function g.

Then we have the
Proposition. The sum of the ranks of the Kronecker functions

915 Jar ++ o» Gnmr
is in all cases p, the , Geschlecht® of the surface.
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For, consider an integral algebraic function which is to be infinite

at the x» places at z == oo respectively to orders
m(w, + 1), m(w,+ 1), ..., m(w.4 1)
or as near below these as may be possible: m being a large enough
integer to allow our regarding these
m(w; 4 1), m{w, +1), ..

places as independent.

The form of the function is necessarily

() a4+ 91(2, D+ 922, 1)y + - - -

where

g, i8 such as to be infinite at ¢ = oo respectively to orders »,, r,,..., 7y,
¢, is such as to be infinite at # = oo respectively to orders #,, £,, ..., %
and so on.

Hence considering first the place # = oo where # is infinite of
order w, -+ 1

Aw +1) Imwy +-1), w(w+ 1)+ r < m(w, + 1),
viw, 1)+ Zmw,+1),. ...

Considering next the place 2= co where 2 is infinite of order w, - 1

L+ 1) Zmw, 1), plo,+ 1) + r, Z mw, 4 1),
v(wp 1) + 1, Imw, 4+ 1), . ..
and so on: there being % such rows of conditions.

The first column of these conditions gives 4 = m, shewing that
such a function as postulated is certainly possible, The second
column gives

"

u'<”m——wi+12m——1—L(%) for i=1,23,...,n,

and gives therefore, in the sense defined above,

= m — I—L(w—_:_—l)=m — 1 — rank of funetion g,
50

v=m—1—L #):m—-l-—rank of funetion g,

Hence the number of arbitrary coefficients in our function, being

A+D+ @+ + @+ 4
r 4
But, by the Riemann-Roch-Satz, since m is suffieiently large, the

is
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number of these arbitrary coefficients should be 1 4 @ — p, where @
is the number of infinities of the funection, viz

Q4+ m@w, + 14w, 14 .2) =mn.

r 13
p=L(w+1)+L w+1)+ o
as stated. (Cf. also Abel. Oeuvres comp. 1881, p. 173. Equation 80).

Hence

Of the expression of algebraic functions which are infinite only at an
arbitrary place.

Consider the places z = a, the surface being here characterised by
w1, ., we 1.

Let ¢ be an integral function and r the least integer such that

;——’M is not infinite at 2 == co. Kor this, if the orders of infinity
of g be, in the % places # = oo, respectively

Tiy Tar oo vy ¥y

en T
r+D@ADSr, vierS g —1, vierS L w+1)

for i=1,2,...,n
Hence
r =L

b
w1}
viz == rank of function g.
If then K be an algebraic function only infinite at 2 == ¢ and
such that K (2-——a)»+* is just nof infinite at 2 = a and is therefore

an integral function, we must have
(1) K@—ayt=(¢—a, 1+ (¢—a, Dug + ¢ —a, g, +

) + (5—'(1, 1)11;_1g"—1‘
Put
9;

(2— a)z,,-{-l ?

2 — = and A=

AR

where z; is the rank of g;.
Then

@) K= (L OafrHr o (1, Dby + (L Dufrsehy -
But the equation (1) gives, since K is not infinite at 2 = oo and
contains therefore in its expression, as I assume, no terms which
become infinite at # = oo,
;’O?m_f— 1, l](wi'i‘l) -[—r;?(m-l—l) (wi+ 1);
12(’&0‘—!— 1) + t;:<: (m+ ]) (w.+ 1), .
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where #,,7,,...,7. are the orders of infinity of g, at =00, %;,..., %
are the orders of infinity of g, at z = oo ete.
Hence

r 7,

Zmt t—h, D(gh) Zm ok men— kS0

t 0\ — =
GFi<mt1—h, L(w,-+1)<’"_"2’ m—rv —1h>0

ete.

Hence we have the
Proposition. An algebraic function which is only infinite at 7—=a
can be written

K = (1, g)lla + @, g)‘“zki +(, g}ﬂzkz S R = (1; g)#n--1 ot
where p
g"“—z_l.a‘: by == iz,-+1’

(¢2—a)

and g, ..., w.—y are all >0,
It is easy to see that the ranks of A, Ay, ..., #u, counsidered
as functions of { are respectively the same as those of g,, ¢5,...,Fn—1-

Of the expression of integrals of the first, second and third kinds —
and of the form of adjoint curves in general.

We introduce in what follows certain forms*) ¢,, @, ., - Pu—i,
writing P
g _l_sz (5’1),“:+.”
D,

13

9i(sy &) =

?

where D; is an integral polynomial in s The function g; is of

the form

Pils, &) = [s°7~ - sv=2=i(g, 1)y, + - - ] Ds.
The exact expressions for g,(s, 2), 9,(s, #), ... may he defined by
the identity

(A) @o(5,2) 91 (5,291 (5,8) + 9, (5,2) 9, (8, 8) + - -+ P (8, )gn-1(5,%)
6,8 — £ 2)
s’ —s
=82 (s, )+ S P08, ) o o faa (5, 2)
=& 72 g (5,8) + 5P (8, 2) o A (S 9),
where writing
f(37 Z) ="+ Ql'sn—l + 92‘311—2 + -4 @x,
the forms g, y,. etc. are those given by
*) Cf, Dedekind & Weber. Crelle 92. (Theor. d. Algeb. Fetnen, o. Var,) where

the same forms are introduced and ealled ,die zu g complementire Bagis, Also
Hensel. Crelle 109.
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WS, =5+ Q, (s,9)=8+s¢ + @ -
Ina(s, ) == "1 - 57 2Q, - - - - o Qo
By equating the coefficients of the same powers of s on the two
sides of equation (A) we obtain the explicit forms of the functions

) ) ey Pais
For instance, it 02 P1» > Pn

Zn—i (8, 2)

9:1(5, 2) = A 5)7 9,(s,2) = xe%;z); vy Gua (S, 8) = —p T

and this is a case of common occurrence, then

@ (8, 2) = s, @, (s, 2) = D, 5" 2, .. ., Pn_1(S; &) = Dy,
while in general if the equations giving s, s% ..:, s*! in terms of
915 925 - - +» Gn—1, bE

1 =1,

§ =0+ a1 9y,

§?2 = Cll2o+ az1. 91 + ag,s. 92’

#--1

sn—-l = an—l,o + On—1, 191 + Ap1,20 + . + On—1,n—19n—1)

where
01,0, A1,1, A20, (2,1, = -

are integral polynomials in 2, then
Py =1t Gota—a 0 A @aso g4+ @aeo,

@y = Uifn—2 F *** F Cua Yy T Cneyy
Pn2= On—2,0~2%1 F On—ti,n—25
Pp_3== An—1,n—1)

namely, if we write
(11 $, 321 ey s"—l) = Q(l? Q13592 -« gﬂ—l)
where Q in a matrix whose determinant is
A1,1 A2 + « « Op—l,p—1 = Di D2 .D3 “ . Dn—l,
then _
(Poy P15+ - 3 Pr1) = Q(u—1y T2, - - s X 1),

where Q is the matrix determined from Q by changing its rows into
columns — is what we call the ‘¢ramsposed’ of Q.
If (@) denote the matrix
Cin Qn—z ---Q, 1>
@2,._ QM o100

& 1 0..
1 0 * g
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whose determinant is 4~ 1, then

(tn—ts Tos o - By D=(Q (1,8,8 ..., &)
and we may write
(B) (Por Piy o+ s Pua) = (@) 2L, 91, 921 - - -5 Gna).-
The definition (A) leads to other forms for

Doy Pir v oy Pl
in general — thus, —

Let
Siy a3 + vy Suety Sa

denote the values of s arising from f(s, 2) = 0 for any value of z,

Denote o, (si, 2), g(siy 2) by PP, g9 ete.
Then

o+ 6+ o+ o = o) = [L ]
o0 + 9000 + o0 + -+ 92,90 =0,  (i=23,...,n).
Hence if
@% +ap’+6e’+ e gl <o,
C € €y .. Cpy @

Log g% g, Fs)

e =0
1 g g g, 0
namely e e
1og? g .2, € € .- Cat |
L ogP 9;"’.- - -9},’21. L og . g

o ‘It is in this-form we shall use the functions Por Prye v vy Pumg —
limiting ourselves then in the firt instance to values of # where

) Sl, 32,-.-,871—1, Sn
are different. We remark that by multiplying both sides of equation
(C) by the determinant which occurs on the left, we obtain

Pg 0, 2

— e

MO MO A CE
expressed ag rational functions of s and #, and in a form identical with
those called by Hensel (Crelle 109) &, &, .. ., &
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Let now P:M’ be an integral of the third kind, infinite only at
two places where
g=2z, 4=2,

£y

di

. . ar . . . .
and in fact like ~» o that —=— is an algebraic function, infinite

22

. 1 . 1
like Py at the first, and like — s at the second place — in-

finite moreover at every winding-place of the surface, as for instance
where # =a, but such that (# — a) % is there zero of the first

order. Thus if
=@ —a){#—ay) ...,

be the integral polynomial in z which vanishes af all the finite branch
points of the surface, it being supposed in the first instance that
neither #; or 2, are branch points, and g be any integral algebraic
funetion, then

(ete — a6 — 303D,
—-]—-(goc(z — &)@ — a) %)2-!_ et (goz(z — )@ — 52)%; »

where the suffixes indicate the values of the function in the » sheets
of the surface for any value of 2, is a symmetrical function of these n
values, and is therefore a rational function of # alone, is moreover only
infinite for # = co, and vanishes for all values of # which make & == 0,
and is thus of the form oJ, where J is an integral polynomial in &.
Dividing then the equation by e, writing

J ___11(5—~22)"‘1z(2"31)+(5—51) (z—29) K

(z—2)(e—2) (¢—2) (z—a)

., 4, being constants and K a polynomial in 2,

*

and remembering that
ar
(g — 51) 2 =1

dz
at the infinity where 2 = #;, and
(2 — 2,) % =—1
at the other infinity, we see that
0IB), + (1), + -+ (09D), = LB — el o 1y

where (s, 2,), (5, 7,) are the two infinities of P: o
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Further if z be the rank of the integral funetion g, so that

9 is just mof infinite in any sheet at == oo, this equation gives

e
g 4P g _arp g_ar
(z"*‘l dz)1+ (zT-;-I dz) + + 27 dz)n

g(six 21) — 32 ’ zﬁ) + (Z l)u_l .
z‘t+1 (Z . 51) ’t+1 (Z —2) 'K+1

Now at a place 2 == oo where # is infinite of order w -~ 1, say
g == {—(o+V
ap_ _ " qP
az = w1 di
is zero to order w -4 2.
Henee

G+1—pg=—Dw+nSw+te,
T~ e+ 251+

= 1.
Hence g is at most equal to the rank = of the funetion g.
In particular

( )+ (Z.l:)+ + (Zf}_ z—zq - z—lzg
g(l)( ) + g ( ) Fo g(n)(‘;f 9;('5‘1—. :11) g;(? :z) +(z, 1)"1—1

) (n) 9»,-1 (81, ’51) .‘7,,_1 (321 zz) +( ])1,, 1—1

"-1 82—z,

((czlf) + g 7#—1X

where 7', 7,, ... T.—1 are respectively not greater than the ranks
Tiy Tay e+« Tao1. Solving these equations for %—1;), and then removing
2.

the suffix, we have, in accordance with the definitions (C),

" aP , . A
g5 ="0 1y—te + (&, )y~ 1g,+ - .- 4 (2, )17 g,
+ Po+ 1980 74+ 918,181 2)

2 — 2,
. Pt o10i(8e, 2 F @, 19,y (82, 22)
Z— 2,

where @; stands for @;(s, 2).
In this ‘necessary’ form of %%) there enter at the most

bt T 1
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arbitrary homogeneous coefficients: namely, in accordance with what
was proved, at most p -+ 1. But we know that the most general

form of %—EP involves such p -} 1 terms, being in fach

WS 2, (8D),

P

where v;,v,, ... are the normal integrals of the first kind and ( A

a special form of 71—5'
Hence we can infer
(1) The most general form of integral of the first kind is

f(s)[(z D" (s, &) 4 (2, )" y(s, 2)
+ (& D g (s, 2‘)]

where 7/ < 7;, and the coefficients in (z, 1)%~! are arbitrary,

(2) A special and actual form of integral of the third kind

logarithmically infinite like log ¢, —log ¢,, where at the first place
R — Zl iwrl-l
and at the second

g — g, =

2 —2

f 9(3, 2+ @i(8, DG, 8)+ 0, 1(8: 8) Gp1 (815 7)
7 (s)

(s, D F (5,098, 8)F 9,108, 9) gy _1(Sz, %) ]
2 — 2,

J ‘/ g [‘PO(Sy 2)+¢P1(8,2)91(6;§)+'"+¢n_1(8;ﬂ)9n_1(6,§):,'
@) ag g—§

We can prove in quite a similar way that one form of an integral
of the second kind which is once algebraically infinite at an ordinary

place where 2z ==¢ like 2—-31:75 is given by

780 __ zdz d[%(3,2)‘}'%(3,2)91(6:§)+"'+¢n_~1(3,z)gn._1(ﬂ,5)}
¢t —J 1y dt 2—¢ ’

and we can quite easily modify these forms to the case when § is a
branch point.
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Remarks and Examples.

A comparison of the methods and results of this note, which was
suggested to me by Hensel’s paper, Crelle 109, with his papers (Crelle
109, 111), where the integral of the third kind, though probably in
contemplation, is not mentioned, will shew to what extent I am indebted
to him. It appears to me that without an exact specification of the
forms of g,, g2, + -+ gu—1, his paper (wherein, however, the results
of Riemann’s theory are not assumed) does not prove that in

% = (s, 1)1'-1 N SR N 1)/‘”—1 =1 Pn—1

all the coefficients in (2, 1)';"1 may be taken to be arbitrary: though
it proves that this is a ‘necessary’ form of ?TZ For it is not shewn
that the equations which he obtains
Uy Gy - Uy iz -« -+ + + Uy Gin = PU;
lead necessarily to integral polynomials w,, ..., u. for every integral
form of @. The proof here given that
e+ 4= p,
an equation taken by him as definition of p, is designed to fill this
Licke, as I conceive it to be. Moreover his use of dimensions, founded
on the form of algebraic functions, is apt perhaps to lead to miscon-
ception, — In illustration of this point consider the case
f(s,2) =3+ s(2, 1), + s2(z, 1), + A2 =0
=84 ¢ + ¢ + @ =0
say. Since, by writing y — S, the equation becomes
2ty 1), 92, 1), + 4y* =0,

we see that a fundamental set of integral functions is 1, ¥, ¥v* and
for the original curve, is, therefore

z 2
' g g
where
E=MSQ+SQ1+QE____ — l’i(svz) _— MS72>
s Az Az a
say
2 22,1 » 1
g g(*A“" ~(4+0) =g, (zAz)i = %(s, 2).
Hence we may take as a fundamental set
1 g 2 2
where o B

gi:h(‘g:z)v gz=l_z<t;_’52
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and hence, from
. P+ 9N+ Pl =5 1
obtain
Q=25 QP =35, @,=2¢
Writing now in
fGs,2), s=21 z=1,
so that ‘ ¢
f(s, 2)=E"[n* + 7°(1, s + 08 (1, §), + 48] =L F(n, §)
say,
& = §_2£?? + (1) g)g],
g =5 [n* 4+ (1, &), 4 82 (1, O),]

have associated with them the indices 2 and 3 respectively, while

wo == 82 = ')22
&~ 88+ 25Q+ @ 3n +2n(1, 8 + &1, O
K s = Ui
s e S 2n(, & + &1, O
P E - &
40 @) St 2(L, 0 + &(L, By

have, in accordance with Hensel’s work, associated respectively with
them the indices
0, —2, —3,
say
Oa — Wy, T Uo
Apparently then in accordance with his work the general integral
of the first kind is
o _P1_ 1 D2
@ gt &V rg
and
p=p+p,—3+1=3
As a fact p=1: and Hensel’s results are based on the hypo-
thesis that -

o) =72 Fn,

does not vanish for ¢ — 0, as is the case in this example. — But
it is ot I think convenient to make this hypothesis — whi'ch would
exclude from the direct application of the theory that most important
case when the surface is given in Weierstrass's normal form in which
all the sheets wind at 2 — oo. In this example it is easy to prove
that f ??%s') dz is fnite at every place #==o0, but f ?% dz is
logarithmically infinite in two sheets at 2z = . And.this is inecluded
in the forms we have given: for it can be immediately shewn by

Mathematische Annalen, XLV, 9
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considering F(x, &) and F'(x) at ¢ = 0 that g, is of rank unity and

>

9, of rank zero, and the only finite integral is therefore J ffp(’s) dz.

Of course these remarks are not intended to detract from the

very great interest attaching to the results given by Hensel.
I give as a further example of the formula here obtained for the

integral of the third kind, the application to the hyperelliptic case
32 -— (z’, ])2p+2 == 0.

Here
gy =35,
po=5, @ =1,
and the integral of the third kind is therefore

2
f‘li st s+ o),
8

t—&  F—b
I proceed to verify
(1) That this form *} is obtainable when the integral of
the third kind is built after the rules given in Clebseh
and Gordan, Abel. Fetnen,, see for example. Noether,
Math. Ann. 37, 434.
(2) That for p = 2 this is equivalent to the covariant
form given by Klein (e. g. Math. Ann. 32, 352).
(1) The straight line passing through the points of discontinuity

(s,8) = (05, &), (5,2) = (02, 8)

being written in the form
8
At et O

(2, Dapye = f(£) = foe2pt? | fiatetl 4. .,
If this straight line meet the curve again in

gsy gu LR §2p+2’

where

we shall have
2

-5
128 — &)?

1
==t ¢ ) —&) - (¢ — bata)

— e+ CP

And since
8
. _ Adi— et C
is obtained from
8
Ag + ﬂl(gl—gz) + O

*) Also found in Schwarz, Formeln und Lehrstitze z, Gebr. Ellipt. Fanctionen,
pag. 88, (6).
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by changing the sign of s, it is equal to

z s 1
1
folly — &)* §1 % 1
£, —eo, 1
1 z——él S+6| _(g_g,) (z— &) S+61_s+62)_
= R— Pe—E s-a, folli —&° V=&  2—§

But since the general adjoint curve of order #» — 2 = 2p is

(2, Dep + 8(2, Lpa =0

the form of the integral of the third kind formed after Clebsch and
Gordan, must be, save for additive terms which are integrals of the

first kind,
/ &) (2 bpas) da
8 , 8
At ra—w T
8
- [Az—m—l- 0] <z_€3)'..(z—§2p+2) i.z‘
- 1 2(.z B GE—8&@E—8 - (2~ fpts) s

____j s+q,___s+og dz sz d§ s+a
- Z~§ 82— dé’ Z-;

as stated.
(2) We have N
ts dg (2= + 645
d§ LY (8 —O*
;dﬂg) =0+ os+ e
= & —¢F ]
where

6* = f(f) = (£, Dep2
Now in fact for p == 2, writing f(¢) == @b it is easy to
verify that
dal  §E—0 df e
G- o Tm T

& f _l_df

and hence obtain

& &
s-l-o' ag aag+as 1 dg[(z——i;)d’ @f
fdgdg( / R “iﬁzfa 12 az§3+é'§‘*]

:1. 1

9*
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1 fardr
120 6 df?
'i'gg 12 BF , 1 &2f
_!T(—' 0t ag ‘GJ?)=”
Jf[s+o,_s+ az]gi
g —§& 2— 51 ¢
dz dg;a a;-;—o-s zdz dz

which was desired, the form employed by Klein being
d 2 d g a a; 463 )
YA

Note. We may add in connection with (2) of page 10 that the
integral infinite of the first order at a branch place ¢ is

and hence, writing

})

the equation

dz L SRR o Y A
F s z—

where g, is the differential coefficient in regard to the infinitesimal
at ¢, ete.

January, 1894,




