
HCTL Open Int. J. of Technology Innovations and Research
HCTL Open IJTIR, Volume 1, January 2013
e-ISSN: 2321-1814
ISBN (Print): 978-1-62776-012-6

Implementation of
Custom Precision
Floating Point
Arithmetic on FPGAs
Raj Gaurav Mishra and Amit Kumar Shrivastava
rajgmishra@hctl.org and amitshrivastava@hctl.org

Abstract

F
loating point arithmetic is a common requirement in signal
processing, image processing and real time data acquisition &
processing algorithms. Implementation of such algorithms on

FPGA requires an efficient implementation of floating point arith-
metic core as an initial process. We have presented an empirical
result of the implementation of custom-precision floating point num-
bers on an FPGA processor using the rules of IEEE standards de-
fined for single and double precision floating point numbers. Float-
ing point operations are difficult to implement on FPGAs because
of their complexity in calculations and their hardware utilization for
such calculations. In this paper, we have described and evaluated the
performance of custom-precision, pipelined, floating point arithmetic
core for the conversion to and from signed binary numbers. Then,
we have assessed the practical implications of using these algorithms
on the Xilinx Spartan 3E FPGA boards.
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Introduction

With the advent of sensor technology, it is now possible to measure and monitor
a large number of parameters and to carefully use them in a number of fields
such as medical, defence, commercial etc. for various applications. Real-time
implementation of sensor based application requires a system which can read,
store and process the sensor data using micro-controllers or FPGAs as processors.
Figure 1 shown below, represents a real-time data acquisition system based on
a FPGA processor. Such a system comprises of a single or multiple sensors,
signal conditioning unit (filters and amplifiers) and analog to digital converters.
The output of the analog to digital converter is generally connected to the input
of the processor (FPGA device in our case) for further signal acquisition and
processing.

Figure 1: Block diagram of a FPGA processor based real-time sensor data acquisition
system.

It is important for FPGA processor to store the real time sensor values
to an external memory device for signal processing using custom algorithms.
For example, analysing sound/speech in real time requires recording of sound
signals using a microphone (sensor) using a high speed FPGA processor and
then storing the resultant sensor values into a floating point format to maintain
a specific accuracy and resolution. Floating point number system in comparison
with binary number system have a better dynamic range and are better in
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handling underflow and overflow situations during mathematical calculations
(signal processing). In this way, when a sensor value is stored in floating point
format provides a base for accurate signal processing.

In this paper, a pipelined implementation and hardware verification of custom
precision floating point arithmetic on FPGA have been reported and discussed.
Here, we assume that the reader is familiar with FPGA [1], its programming
using Verilog HDL [2]-[3] and the single precision, double precision floating
point standards [4] defined by IEEE. Comparatively, floating point number
systems have a better dynamic range than a fixed point number system; also
they are better in handling underflow and overflow situations during mathe-
matical calculations however the speed and complexity issues rises when an
implementation on FPGA processors comes into consideration. Research has
been done to experiment various optimized implementations of IEEE single
precision [7]-[10] and double precision [11]-[15] floating point arithmetic on
FPGA. Algorithms for floating point implementation are complex in nature and
with the number of bits used in single or double precision made them utilize a
large area of the FPGA chip with a considerable processing time. Need of a
custom precision floating point system arises when a real-time image or digital
signal processing applications are to be implemented on an FPGA processor,
where a requirement of high throughput in calculation and a balanced time-
area-power implementation of the algorithm becomes an important requirement.
In this way, an embedded designer can choose a suitable custom floating-point
format depending upon the available FPGA space for the required embedded
application.

Table 1 shows the basic comparison between the 17-bits custom precision,
IEEE standards of single, double and quadruple precision floating point numbers.

This paper is organized as section 2 presents the custom precision floating
point format in details. In section 3, we have described the algorithm and
flowchart for the conversion of 12 bit signed binary number to 17 bits custom
precision floating point number, the algorithm and flowchart for the conversion
of 17 bits custom precision floating point number to a 12 bit signed binary
number, along with their simulation results, synthesis summary and hardware
verifications. Section 4 concludes this paper with the scope of future work which
can be extended in various ways.
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Table 1: Different floating point formats.

Custom Preci-
sion

Single Preci-
sion

Double Preci-
sion

Quadruple Pre-
cision

Word
Length

17 bits 32 bits 64 bits 128 bits

Mantissa 10 bits 23 bits 52 bits 112 bits
Exponent 6 bits 8 bits 11 bits 15 bits
Sign 1 bit 1 bit 1 bit 1 bit
Bias 26−1-1=31 28−1-1=127 211−1-1=1023 215−1-1=16383
Range About

4.3x109=(232)
About
3.5x1038=(2128)

About
1.8x10308=(21024)

About
1.2x104932=(216384)

Custom Precision Floating Point Format

Floating-point systems were developed to provide high resolution over a large
dynamic range. Floating-point systems can often provide a solution when
fixed-point systems, with their limited dynamic range, fail. Floating-point
systems, however, bring a speed and complexity penalty. Most microprocessor
floating-point systems comply with the published single- or double-precision
IEEE floating-point standard; while in FPGA-based systems often employ
custom formats.

A standard floating-point word consists of a sign-bit S, exponent E, and an
unsigned (fractional) normalized mantissa M, arranged as shown in the figure 2.

Figure 2: 17 bits Custom Precision Floating Point format.

The minimum number custom precision floating point number (1,6,10) format
can represent is:
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(±0.0000000004656612873077392578125)10 or (±0.0000000000000000000000000000001)2.
Minimum number representation in custom precision floating point format is
(00000000000000000)1,6,10 for a positive number and (10000000000000000)1,6,10
for a negative number.

The maximum number custom precision floating point number (1,6,10) format
can represent is: (±4, 29, 49, 67, 296.00)10 or (±100000000000000000000000000000000)2.
Maximum number representation in custom precision floating point format is
(01111110000000000)1,6,10 for a positive number and (11111110000000000)1,6,10
for a negative number.

Figure 3: Method of converting a fixed point decimal number in to a custom precision
floating point number (1,6,10) format [5]-[6].
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Table 2: Some Examples values of 17-bit Custom Precision Floating-Point Format.

S.No. 17-bit custom precision
floating-point format
(1,6,10)

Equivalent decimal values

1 0 000000 0000000000 Represents a minimum number (+0)
2 1 000000 0000000000 Represents a minimum number (−0)
3 0 011111 0000000000 +1.0
4 1 011111 0000000000 −1.0
5 0 111111 0000000000 Represents a maximum number

(+∞)
6 1 111111 0000000000 Represents a maximum number

(−∞)

Floating Point Operations on FPGA

Signed Binary to Custom Precision Floating Point Conversion

Considering the system defined in the figure 1, an embedded designer can choose
8-bit, 12-bit or 16-bit analog to digital converters to adjust the required resolu-
tion of the sensor value for an application. Texas Instruments ADS7828 [16] or
any other similar 12-bit ADC is more suitable for the algorithm developed and
presented in the following section.

Algorithm 1 describes the step-wise approach of programming an FPGA for
the conversion of a 12-bit signed binary number in to a 17-bit custom-precision
floating point number.

The flow diagram of the algorithm 1 is shown in the figure 4. Table 3 shows
the synthesis summary of hardware utilization and speed for the algorithm 1
on different FPGA processors. Figure 5 shows the simulation results for the
algorithm 1 implemented using verilog HDL on Xilinx ISE Project Navigator
Ver. 13.4 and ISE Simulator [17].

Custom Precision Floating Point to Signed Binary Conversion

Algorithm 2 defines the step-wise approach of programming an FPGA for the
conversion of a 17-bit custom-precision floating point number in to a 12-bit
signed binary number. The flow diagram of the algorithm 2 is shown in the

Raj Gaurav Mishra and Amit Kumar Shrivastava
Implementation of Custom Precision Floating Point Arithmetic on FPGAs.

Page 15

http://www.hctl.org/IJTIR.html


HCTL Open Int. J. of Technology Innovations and Research
HCTL Open IJTIR, Volume 1, January 2013
e-ISSN: 2321-1814
ISBN (Print): 978-1-62776-012-6

Algorithm 1 Converting a Signed Binary number (12 bits) in to a Custom-
Precision (17 bits) Floating Point number (1,6,10) format.

Require: 12 bits signed binary number as input.
Ensure: 17 bit custom-precision floating point number (1,6,10) format as

output.
1: Store the value of input to a temporary register R1 (size 12 bits).
2: Check for the sign-bit:
3: if Sign-bit is equal to 1 (Input is a negative number): then Take 2’s

complement of the values stored in R1 register (input value) and store the
results to a temporary register R2 (size 12 bits).

4: else if Sign-bit is equal to 0 (Input is a positive number): then Store
the value of temporary register R1 to temporary register R2 without any
modifications.

5: end if
6: Scan all the bit values of register R2 starting from (MSB − 1) towards LSB

and search for first HIGH (1) bit value.
7: Count of the total bits towards right side (towards LSB) from the first

HIGH (1) bit found, and store this count to a temporary register R3 (size 4
bits).

8: Store all the bits towards right side (towards LSB) from the first HIGH (1)
bit found, to a temporary register R4 (size 10 bits).

9: Calculate the addition of the count stored in temporary register R3 with
the value of fixed bias* and store the results to a temporary register R5
(size 6 bits). This forms the exponent value. Calculation of Fixed Bias* =
2E−1 − 1 = 26−1 − 1 = 3110 or 0111112. (E is the number of bits allocated
for exponent in the floating point format).

10: Normalize the value of register R4 (bit shifting towards MSB to fit the values
completely in 10 bits format). Store the resultant value to a temporary
register R6. This forms the mantissa value.

11: Store the sign bit from the input value (as stored in register R1), value
of register R5 (exponent) and value of register R6 (mantissa) in a 17 bits
custom (1,6,10) format to a temporary register R7 (size 17 bits).

12: Connect the temporary register R7 to the output.
13: 17 Bit custom-precision floating point number (1,6,10) format.
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Table 3: Synthesis Summary for 12 bit Signed Binary Number to 17 bit Custom
Precision Floating Point Conversion.

FPGA Pro-
cessor

Speed
Grade

Number
of Slices
Used

Number
of Slice
Flip
Flops
Used

Number
of 4
input
LUTs
Used

Number
of
bonded
IOBs
Used

Maximum
Fre-
quency

Spartan 3E
XC3S500E

-5 71 out of
4656

70 out of
9312

134 out
of 9312

30 out of
232

174.304
MHz

Spartan 3E
XC3S1200E

-5 71 out of
8672

70 out of
17344

134 out
of 17344

30 out of
250

174.304
MHz

Spartan 6
XC6SLX25

-3 77 out of
30064

138 out
of 15032

162 out
of 486

30 out of
226

212.770
MHz

Virtex 4
XC4VFX100

-12 83 out of
42176

70 out of
84352

157 out
of 84352

30 out of
576

338.324
MHz

Virtex 5
XC5VFX100T

-3 70 out of
64000

94 out of
64000

113 out
of 339

30 out of
680

394.120
MHz

Virtex 6
XC6VCX130T

-2 69 out of
160000

120 out
of 80000

136 out
of 408

30 out of
240

433.529
MHz

figure 8.

Table 4 shows the synthesis summary of hardware utilization and speed for
the algorithm 2 on different FPGA processors. Figure 6 shows the simulation
results for the algorithm 2 implemented using verilog HDL on Xilinx ISE Project
Navigator Ver. 13.4 and ISE Simulator [17].

Algorithms 1 and 2 have been tested and verified on Digilent NEXYS 2 FPGA
board [18] containing Spartan 3E [19] XC3S1200E FPGA processor as shown in
figure 7. To verify the correctness of the algorithm different inputs were given
through different combinations of on-board switches and output was received
through the LEDs connected to the I/O pins of the FPGA processor.
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Algorithm 2 Converting a Custom-Precision (17 bits) Floating Point number
(1,6,10) format in to a Signed Binary number (12 bits).

Require: 17 bit custom-precision floating point number (1,6,10) format as
input.

Ensure: 12 bits signed binary number as output.
1: Store the MSB value of input to a temporary register R1 (size 1 bit). This

is for the purpose of defining sign bit.
2: Store the 10 bits from the LSB towards MSB to a temporary register R2

(size 11 bits). This is to be used as mantissa for further calculations.
3: Assign the MSB bit of temporary register R2 as HIGH (1) to incorporate

the hidden 1 bit.
4: Store the remaining 6 bits from the input to a temporary register R3 (size

6 bits). This is to be used as exponent for further calculations.
5: Calculation of exponent value (in order to normalize the mantissa): Values

stored in register R3− Bias* = Value of exponent by which mantissa is to
be normalized. Store this value to a temporary register R4 (size 8 bits).
Calculation of Fixed Bias* = 2E−1 − 1 = 26−1 − 1 = 3110 or 0111112. (E is
the number of bits allocated for exponent in the floating point format).

6: Normalization of mantissa value to fit in 11 bits:
7: if the value stored in register R3 (exponent value) is equals to 0 (zero).

then the value of mantissa will become 0 (zero).
8: end if
9: if the value stored in register R4 (exponent count) is equals to 0. then

the value of mantissa is to be bit-shifted 10 times towards left (MSB) for
normalization.

10: end if
11: if the value stored in register R4 (exponent value) is equals to 1. then

the value of mantissa is to be bit-shifted 9 times towards left (MSB) for
normalization.

12: end if
13: if the value stored in register R4 (exponent value) is equals to 2. then

the value of mantissa is to be bit-shifted 8 times towards left (MSB) for
normalization.

14: end if
15: if the value stored in register R4 (exponent count) is equals to 3. then

the value of mantissa is to be bit-shifted 7 times towards left (MSB) for
normalization.

16: end if
17: if the value stored in register R4 (exponent value) is equals to 4. then

the value of mantissa is to be bit-shifted 6 times towards left (MSB) for
normalization.

18: end if
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19: if the value stored in register R4 (exponent value) is equals to 5. then
the value of mantissa is to be bit-shifted 5 times towards left (MSB) for
normalization.

20: end if
21: if the value stored in register R4 (exponent value) is equals to 6. then

the value of mantissa is to be bit-shifted 4 times towards left (MSB) for
normalization.

22: end if
23: if the value stored in register R4 (exponent value) is equals to 7. then

the value of mantissa is to be bit-shifted 3 times towards left (MSB) for
normalization.

24: end if
25: if the value stored in register R4 (exponent value) is equals to 8. then

the value of mantissa is to be bit-shifted 2 times towards left (MSB) for
normalization.

26: end if
27: if the value stored in register R4 (exponent value) is equals to 9. then

the value of mantissa is to be bit-shifted 1 time towards left (MSB) for
normalization.

28: end if
29: Store the resultant value of mantissa after suitable bit-shifting (normaliza-

tion) to a temporary register R5 (size 11 bits).
30: Check for the sign-bit stored in the register R1:
31: if Sign-bit is equal to 1 (Input is a negative number): then Take 2’s

complement of the values stored in R5 register (normalized value of mantissa)
and store the results to a temporary register R6 (size 12 bits).

32: else if Sign-bit is equal to 0 (Input is a positive number): then Store
the value of temporary register R5 to temporary register R6 without any
modifications.

33: end if
34: Connect the temporary register R6 to the output.
35: 12 bits signed binary number.
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Table 4: Synthesis Summary for 17 bit Custom Precision Floating Point to 12 bit
Signed Binary Number Conversion.

FPGA Pro-
cessor

Speed
Grade

Number
of Slices
Used

Number
of Slice
Flip
Flops
Used

Number
of 4
input
LUTs
Used

Number
of
bonded
IOBs
Used

Maximum
Fre-
quency

Spartan 3E
XC3S500E

-5 56 out of
4656

47 out of
9312

100 out
of 9312

30 out of
232

199.222
MHz

Spartan 3E
XC3S1200E

-5 56 out of
4656

47 out of
9312

100 out
of 9312

30 out of
232

199.222
MHz

Spartan 6
XC6SLX25

-3 48 out of
30064

72 out of
15032

90 out of
486

30 out of
226

248.738
MHz

Virtex 4
XC4VFX100

-12 55 out of
42176

47 out of
84352

99 out of
84352

30 out of
576

340.833
MHz

Virtex 5
XC5VFX100T

-3 47 out of
64000

61 out of
64000

80 out of
339

30 out of
680

440.567
MHz

Virtex 6
XC6VCX130T

-2 47 out of
160000

72 out of
80000

90 out of
408

30 out of
240

461.563
MHz

Conclusion and Future work

We have successfully implemented and tested the functionality of custom preci-
sion floating point numbers on FPGAs. The main objective of this research is
to develop and implement a real-time sensor data acquisition system based on
FPGA. In order to achieve it, the following activities are planned be carried
out in future: Implementation of Multiplication, Addition/Subtraction and
Division algorithms on custom precision numbers on FPGAs, Implementation
of I2C protocol to read serial ADC data on FPGA, Implementation of SD
card and display module on FPGA to store and display real-time sensor data.
These algorithms would be helpful in handling physical connections, storage
and display of incoming sensor data and implementation of some basic digital
signal processing techniques.
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Figure 4: Flow diagram for conversion of a 12 bit Signed Binary Number in to a 17
bit Custom Precision Floating Point Number - Pipelined approach
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Figure 5: Simulation Results for 12 bit Signed Binary Number to 17 bit Custom
Precision Floating Point Conversion

Figure 6: Simulation Results for 17 bit Custom Precision Floating Point to 12 bit
Signed Binary Number Conversion

Figure 7: Digilent NEXYS 2 FPGA board hardware setup for algorithm testing and
verification
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Figure 8: Flow diagram for conversion of a 17 bit Custom Precision Floating Point
Number in to a 12 bit Signed Binary Number - Pipelined approach
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