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Abstract: Nowadays society is more and more dependent on critical infrastructures. Critical network infrastructures 
(CNI) are communication networks whose disruption can create a severe impact on other systems including 
critical infrastructures. In this work, we propose TOWER, a framework for the provision of adequate 
strategies to optimize service provision and system resilience in CNIs. The goal of TOWER is being able to 
compute new network topologies for CNIs under the event of malicious attacks. For doing this, TOWER 
takes into account a risk analysis of the CNI, the results from a cyber-physical IDS and a multilayer model 
of the network, for taking into account all the existing dependences. TOWER analyses the network structure 
in order to determine the best strategy for obtaining a network topology, taking into account the existing 
dependences and the potential conflicting interests when not all requirements can be met. Finally, we 
present some lines for further development of TOWER. 

1 INTRODUCTION 

Since mid-90s, multiple events caused by natural 
disasters or by humans have brought to the fore the 
high level of dependency that our society has on 
what are known as critical infrastructures. If one of 
these infrastructures is compromised, it will have a 
serious impact in our life and disrupt the normal 
society order as a whole. Therefore, the protection of 
critical infrastructures is a top priority in the agendas 
of our governments and critical service operators.  
Critical infrastructures are characterized by a high 
level of interconnection. Many physical, logical or 
virtual dependencies are not revealed until a crisis 
arises. This high level of interdependencies may lead 
to cascading failures. At the same time, small 
disruptions can be enough to unleash dramatic 
consequences in high complexity systems. 
Critical network infrastructures (CNI) are one subset 
of this kind of systems. By CNI, we mean those 
communication network infrastructures whose 
disruption, intentional or accidental, has a high 
impact because of either its massive, even global, 
deployment (e.g., Internet, cell provider networks) 
or its supporting role for other critical infrastructures 
(e.g., the network for the internal communications of 

a control system in a nuclear facility, or the 
communication network for the electrical grid). 
When addressing the challenge of offering 
robustness to CNI, the concept of network resilience 
emerges. We can define network resilience (Smith, 
2011) as the ability of a network to defend itself and 
keep an acceptable service level in the presence of 
challenges such as malicious attacks, hardware 
failures, human mistakes (hardware or software 
misconfigurations) and large-scale natural disasters 
that may threat its normal operation. 
In this work, we propose TOWER, a framework for 
the provision of adequate strategies to optimize 
service provision and system resilience in CNIs. For 
achieving this goal, TOWER will use as inputs a risk 
analysis and alert reports coming from different 
sources and will produce a proposal of a new 
network topology. This network topology should be 
able to tackle the malicious attack by isolating it and 
minimizing its impact in the whole network as the 
consequence of the potential cascading failure 
induced as a result of the attack. The new topology 
will be oriented to offer a robust answer to the 
threats that may impact the services at CNI or the 
network itself. Therefore, it has to take into account 
multiple and heterogeneous input data. We have 



 

identified three main sources: threat analysis, a 
multi-layer model of the network and the results 
from a cyber-physical intrusion detection system. It 
is important to note that, although malicious attacks 
are not the only challenge to cope with in CNIs, this 
type of attacks use to be the most harmful ones as 
they are focused on the blockage of the network-
provided network services. In fact, there are studies 
(Albert, 2000) that claim that network resilience 
obeys to different structural network properties in 
case of malicious attacks, human errors or natural 
disasters, due to the fact that these two last ones 
have a more random and distributed nature, while 
the first ones (malicious attacks) are usually focused 
on specific nodes that play an essential role in the 
network. 
The rest of the paper is organized as follows. Section 
2 presents a review of the state of the art. Section 3 
introduces multilayer networks. In Section 4, the 
main components and challenges of TOWER are 
described. Section 5 discusses network resilience for 
CNI. Section 6 presents the main concepts on 
network topology adaptation that area applied in 
TOWER. Finally, some conclusions and future work 
are presented. 
 
2 RELATED WORK 

In the last decade, there has been a growing interest 
on maximizing the resilience of CNIs. Regarding the 
Internet, its vulnerability has been widely 
acknowledged (DHS, 2009) (Goodman, 2007), and 
it has been shown in different global scale incidents, 
both accidental (Zmijewski, 2009) and as a result of 
malicious activities (Goldberg, 2014). Also, the role 
of communication networks in critical 
infrastructures has been studied, as there are 
interdependences between both (Rinaldi, 2001) 
(DHS, 2009). Electrical grids are one of the clearest 
examples of this. On the one hand, the 
communication networks rely on the power provided 
by the electrical grid to work. On the other hand, and 
increasingly, the electrical grid relies on the 
communication networks for its proper performance, 
as it is based on SCADA systems for its 
management. 
There are some works in different areas that can be 
related to the study of resilience in complex 
networks. First, mobile ad-hoc networks and 
vehicular ad-hoc networks (MANET and VANET). 
In these networks, nodes are constantly moving, and, 
accordingly, the connectivity must evolve to deal 
with this. For these scenarios, it is critical to 
guarantee service continuity under this dynamicity 
(Landmark, 2015) (Su, 2015) (Dietzel, 2016). 

Second, delay tolerant networks (Fan, 2015), where 
service interruption after power failures, attacks or 
node dispersion are taken into account, has attracted 
much interest and its study has been promoted by 
DARPA. And last, wireless sensor networks, where 
it is necessary to create resilient network topologies 
able to provide connectivity even after some sensors 
stop contributing as a result of a battery outage 
(Younis, 2014) (Yao, 2015). 
With this background, there are some works that 
face resilience in critical infrastructures by 
modelling them as complex networks. The closest 
works to our proposal are (Shao, 2015) and 
(Berezin, 2015). These works study the robustness 
of complex networks under attacks targeted to the 
most sensitive points of the network and are more 
theoretical than the ones that we propose. While they 
deal with generic complex networks, we want to 
include more realistic network models. Also, we 
propose to use a multi-layer network model, to 
capture the features of real-world networks. Finally, 
we employ optimization techniques based on 
negotiation to keep network resilience in a 
distributed and self-organized way. 
As research on complex networks has evolved, it has 
been clearer the need of going further than 
monolayer graph modelling and exploring more 
realistic and complex models. Multiplex or multi-
relational networks connect nodes using links that 
can express different kinds of relationships (Yagan, 
2012). Multilevel networks and meta-networks 
enable also hierarchical structures and node and 
links of different types (Carley, 2007). Recently, 
(Kivelä, 2014) has presented a unified modelling for 
multi-layer networks that include these concepts in a 
unified manner that takes advantage of the different 
mathematical tools available in the state of the art. 
In the last years, there have been significant 
advances on complex system optimization in 
domains that could be modelled as CNIs. 
Techniques potentially suited for these domains 
include auctions, optimization techniques, and 
negotiation protocols. Combinatorial auctions (Xia, 
2005) (Sandholm, 2015) can enable large-scale 
collective decision-making in nonlinear domains, 
but only of limited type (i.e. negotiations consisting 
solely of resource/item allocation decisions). Multi-
attribute auctions (Pham, 2015) are also aimed at a 
fundamentally limited problem –purchase 
negotiations– and require full revelation of 
preference information. Constraint-based and other 
optimization tools (Chechetka, 2006) (Davin, 2005) 
offer good solutions with interdependent issues, but 
have not been applied to contexts with self-
interested parties, thereby ignoring strategic issues 
derived from participant’s selfish behaviour. In 
particular, the vast majority of these approaches 



 

assume that agreements will be honoured (e.g. after 
an auction, the winner will pay the agreed amount to 
the auctioneer). In many CNIs domains, however, 
this “agreement honouring” assumption cannot be 
made (e.g. you can suggest network reshapes to 
different network domains, but you cannot force 
them to accept them). 
The distributed and adaptive nature of CNIs, along 
with the need to reach a consensus between 
conflictive individual goals to benefit a social goal, 
suggests the use of negotiation techniques. However, 
most negotiation research has focused on problems 
with one issue (typically price) or a few independent 
issues (Ren, 2013) and are demonstrably sub-
optimal for negotiations with multiple 
interdependent issues (Klein, 2003). A number of 
research efforts (Marsa-Maestre, 2009) (Li, 2009) 
have attempted to address this challenge, facing 
serious limitations in terms of outcome optimality, 
strategic stability and scalability. These three 
performance indicators are key enablers for the 
success of optimization systems in large real-world 
CNIs infrastructures, due to their continuous 
increase in network size, structural complexity and 
dynamicity (Strogatz, 2001). If we want to keep 
relying on these exponentially growing 
infrastructures for our development as a society, new 
distributed optimization mechanisms should be 
devised for their management. 
 
3 MULTILAYER NETWORKS  

To achieve our purpose, and in order to take 
effectively into account the underlying complexity 
of CNI, the first step consists in modeling them by 
means of multilayer graphs. Graphs have shown to 
be a useful tool to model complex systems, as vertex 
or nodes can be employed to represent the functional 
elements of the system, while edges show the 
relationships between them. However, CNIs are 
usually complex networks that include intricate 
relations between their elements, so a simple graph 
can hardly capture these relations. For that reason, 
we use multilayer graphs to account for those 

relations in a more intuitive and powerful manner. 
As described in (Boccaletti, 2006) (Kivelä, 2014), 
multilayer networks incorporate multiple levels of 
connectivity and provide a natural framework to 
describe systems connected through different types 
of connections: each channel (relationship, activity 
or category) is represented by a layer and the same 
node or entity may have different kinds of 
interactions (different set of neighbors in each 
layer).  
As shown in Fig. 1, and for example, a multilayer 
graph can be composed by different layers that 
express the physical location of the systems, the 
communication paths existing between them and 
also the functional and management dependencies. 
Apart from the more technical aspects, 
characteristics like the social or corporate 
dependencies present at any kind of critical 
infrastructure could be also easily modeled by means 
of new layers with their respective inter- and intra-
layer dependencies. 
4    TOPOLOGY OPTIMIZATION 

FOR NETWORK ENHANCED 
RESILIENCE (TOWER) 

The main objective of TOWER is to provide 
adequate strategies to optimize service provision and 
system resilience by taking as input the risk analysis 
and alert reports and proposing a new network 
topology. This topology will be oriented to offer a 
robust answer to the threats that may impact the 
services at the critical infrastructure or the network 
that supports them. Therefore, it has to take into 
account multiple and heterogeneous input data that 
can be summarized into three main blocks: 
1. Threat analysis: Before the TOWER 

module can be deployed a threat analysis 
and a contingency plan must be developed. 
These processes aim to create an initial 
status report for the system that provides 
enough information to TOWER to start 
working. This analysis must include a 
detailed analysis of the value, implicit risk 

Figure 1: Example of three-layer graph. 



 

and attack resilience of all the assets that 
must be protected.  

2. A multilayer network model: As described 
in section 3, a multilayer network model is 
needed to represent the complex system 
underlying to the CNI. This transformation 
will enable to express hidden dependencies 
between assets that would not be covered 
otherwise. At the same time, this kind of 
model provides a wider perspective over 
the consequences of an attack as it can 
show how the malicious behavior or its 
consequences would spread throughout the 
network (e.g. a cascading failure). This data 
representation could be useful for an 
intrusion prevention system to take better 
decisions about how to isolate and protect 
the CNI in the event of an attack. All this 
process will be performed offline, that is, 
before the system is fully deployed. The 
model can be updated lately if new assets 
are introduced in the network but a first 
model must be created before the online 
process begins. 

3. These alerts contain information about the 
type of attack, its location and the assets 
involved. Based on this data, TOWER will 
be able to evaluate the overall status of the 
network and respond accordingly. 
Therefore, a consistent and meaningful 
communication channel must be developed 
to link the cyber-physical IDS and the 
recovery module. 

After analyzing all this data, TOWER will compute 
a network topology intended to isolate the attack and 
minimize its impact. This topology will consider the 
required paths that must be always linked and make 
use of backup links or modified routing paths to 
create new ways to reach each point of the network. 
TOWER will offer a ranked list of different 
topologies, ordered by a score metric. This ranked 
list will provide different options for the rest of the 
recovery module. Therefore, if a particular topology 
cannot be deployed in the network, other options 
that will also reduce the impact of an attack should 
be available.  
The purpose of the topology computation engine 
inside TOWER is to prevent not only the direct 
consequences of a loss of connectivity or a system 
failure (produced by an attacker or not), but also to 
avoid the cascading effects that it may produce. 
Consequently, TOWER will analyze the 
interdependencies that may emerge from the 
network elements and the risk analysis performed 
over them. All this information has to be translated 
into graph elements and this is when multilayer 
network modelling becomes useful for modelling all 

this complexity into multiple graphs for the 
representation of the existing different kinds of 
dependencies between network nodes. This 
relationship between the multiple layers of the 
network model provides an easier way to create a 
data structure for TOWER to find hidden 
consequences that cannot be directly traced to a 
failure in a network node.  
The kind of network topology that TOWER will 
compute will be highly dependent on the type of 
attack detected. Different kinds of attacks will imply 
a particular type of topology modification, not only 
due to its location but also because of its inner 
characteristics. This implies that TOWER must take 
into account how the threat could spread through the 
network. For example, if the infrastructure is 
suffering a DDoS attack, TOWER may modify the 
network by cutting the paths under attack and 
reroute traffic through other alternative paths. On the 
other side, if a server gets compromised, TOWER 
will isolate the node and limit the communications 
made by all the computers that could have been 
reached from that server. Therefore, pivoting attacks 
that employ accessible servers to reach the internal 
network, that could not be attacked otherwise, are 
also covered by the TOWER approach.  
One of the main challenges TOWER will face is the 
situation where updating the topology will protect 
part of the network but may introduce new threats or 
attack surface. Unfortunately, this is the most 
common case as computer networks tend to be 
highly coupled with some central nodes that manage 
a large amount of traffic. The existence of these 
nodes may create central points of failure which can 
originate a cascading effect if they are compromised. 
The purpose of the initial network topology 
deployment and all modifications made to it through 
TOWER is to minimize these interdependencies and 
maintain the network in a resilient state.  
To achieve this purpose, different approaches are 
being studied, but the main efforts are focused on 
employing graph theory techniques to analyze the 
status of the network and compute how to react 
against an attack or a system malfunction. Apart 
from this data representation, the progress made in 
TOWER module is focused on finding relevant 
graph metrics that helps to characterize the network 
they model. These metrics are different than the 
characteristics modelled through the use of multiple 
layer networks. The layers are employed to show the 
dependencies present in the network at different 
levels, while these metrics describe the behavior of 
the dependencies. For example, if a layer of the 
network model is composed by the existing 
communications flows between the nodes, a metric, 
e.g. node degree, can help identifying the nodes that 
are the origin or destination of the majority of the 



 

traffic. One of the long-term purposes of our work is 
to study how the network structural properties of a 
problem influence the performance of optimization 
and the choice of the negotiation approaches best 
suited to it. To this end, we have selected a number 
of graph metrics from the literature, being the 
following: 

1. Graph order: the number of nodes in the 
graph. 

2. Graph diameter: the longest distance 
between any pair of nodes in the graph 
(Newman, 2010). 

3. Wiener index: gives a measure of graph 
complexity from the distances in the graph. 
It is computed as, 

where |N| are the number of vertices of the 
graph and d(ni, nj) is the shortest distance 
between nodes (Wiener, 1947). 

4. Graph density: the ratio between the 
number of edges in the graph and the 
maximum possible number of edges (that 
is, for a fully-connected graph). 

5. Clustering coefficient: a measure of the 
degree to which nodes in a graph tend to 
cluster together. The cluster coefficient of a 
graph is computed as the average of the 
local clustering coefficient of its nodes, 
which is the ratio between the number of 
links between a node’s neighbors and the 
maximum possible number of links 
between them (that is, if they were fully 
connected). 

Another relevant type of metric are the centrality 
metrics. These metrics allow to identify the most 
important nodes inside a network, which can be 
critical to know the most vulnerable points at each 
ground station. There are a number of centrality 
metrics in the literature, such as degree centrality 
(Freeman, 1979), hub and authority centrality 
(Chakrabarti, 1999), PageRank centrality (Brin, 
1998), Katz centrality (Katz, 1953) or betweenness 
centrality (Freeman, 1979) (Koschützki, 2005). In 
particular, betweenness centrality of a node is the 
ratio of shortest paths in the graph that traverse the 
node. 
In particular, due to the need for TOWER to respond 
in a timely fashion to incidents, we are testing 
efficient methods to approximate these metrics, such 
as the ones in (Chierichetti, 2015) (Ohara, 2014) 
(Kimura, 2016). 
We are studying the relevance of these and other 
metrics on the resilience of different kinds of 
networks, and we expect to be able to derive novel 
metrics and methods to detect the cascading effects 

of an attack and be able to react proactively to 
network intrusions. This way the system will not 
only react when an attack is made but also it will 
prevent the actual attacks strengthening the security 
measures or creating new backup paths if needed. 
Finally, another set of techniques that allow to split a 
graph into multiple pieces are being studied during 
the design of TOWER module. These techniques 
allow to distribute the computational cost of running 
complex algorithms against big scale graphs. 
Clustering algorithms may be employed to detect 
sets of vertex that are more tied and therefore, 
should not be split when dividing the network. 
Particular cautions are needed here, since this kind 
of division may hide dependencies that could be 
relevant when deciding how to protect the network. 
Consequently, distributed computation algorithms 
will be evaluated against different use cases to 
explore how they impact the computation of new 
topologies compared to centralized algorithms. 
 
5 NETWORK RESILIENCE 

One of the main objectives of TOWER is being able 
to improve network resilience for CNI. For this to 
succeed, we need a way to identify and measure 
resilience in a network. In this section we will point 
out the most important points that should be taken 
into account. 
To characterize a resilient network three levels of 
functional dependencies can be identified: 
1. System properties: these entities represent 

the functions of the system that have to be 
protected and must be working 
permanently.  

2. System attributes: they show the 
characteristics that tells us if a system 
property is robust enough to resist an 
attack. Some examples are the following: 
1. Diversity: It tells how much 

different kinds of elements are 
used in the network. The more 
diverse the system is, the more 
complex is to attack it as the 
adversary has to find 
vulnerabilities on multiple kind of 
systems. This attribute has to reach 
a point where the redundancy of 
the system is not compromised 
since redundant systems tend to be 
built using the same infrastructure 
employed for the replicated 
element. 

2. Fault tolerance: Is the system able 
to guarantee correct operation if 
the presence of a failure? This 



 

attribute is applied to distributed 
system where if a node fails, the 
remaining nodes must be able to 
continue working. 

3. Deceptiveness: It measures how 
much information can be 
manipulated about the 
infrastructure to fool the attacker. 

4. Velocity/Fluidity: this concept 
expresses the level of uncertainty 
offered to an attacker when he 
tries to attack the infrastructure. 
For example, the IP address of a 
system can change over time or 
there can be different ways to 
obtain the same information from 
different locations, making it 
harder to identify patterns or 
security measures. 

5. Self-stability: No matter how the 
system is compromised, the 
reaction performed has to lead to a 
stable state where the normal 
operation of the infrastructure is 
guaranteed. 

3. Metrics: All the attributes described above 
cannot be measured directly (i.e. it does not 
exist a fault tolerance indicator on our 
systems). Therefore, specific observations 
must be performed on the infrastructure to 
determine the level of fulfillment of all 
these attributes. For example, to measure 
the diversity of the network, we may need a 
system inventory where the number of 
different operating systems and versions are 
described. 

The metrics have to be carefully chosen as they 
generate the vision the system will have of the actual 
status of the network. They can also be modeled as 
part of the graph representation, showing the 
dependencies that exist between different attributes 
and metrics and the function they cover in the 
infrastructure. 
 
6 ADAPTATION OF NETWORK 

TOPOLOGY 

Up to this point, we have presented the main 
underlying concepts and technologies to TOWER 
for identifying and modelling the dependencies of a 
CNI. Using this information, and taking into account 
the threat model, TOWER will produce a proposal 
of new network topologies. These network 
topologies will be oriented to offer a robust answer 
to the threats that may impact the services at CNI or 
the network itself. In practice, this means that 

TOWER should be able to lead the CNI from a 
potentially harmful state, e.g. the preliminary steps 
of an attack or early signs of a system being 
compromised, to a new good state, ensuring or 
minimizing the impact for the whole network. It is 
when evaluating this impact, that the previous 
models reveal its importance: we ensure that no 
important dependence is missing. It can also be the 
case that it is not possible to ensure the safe 
operation of the whole network. For agreeing on the 
best outcomes for all the interesting parties, 
negotiation techniques, such as the one pointed out 
in section 2, can be used. 
We also need to know how to reach a specific state. 
To do so, we need to model the viable transitions 
that exist between states, describing which methods 
or procedures have to be employed to get to that 
state. These transitions can also be modeled as a 
graph where the nodes represent the states the 
system can be and the edges show how to go from 
one state to another. To decide which path to follow 
inside this transition graph a decision system has to 
be developed. This system has to come up with the 
decision of which the best way is for protecting the 
network and the actions that have to be taken to 
reach a stable state that can guarantee the normal 
operation of the system. 
To do so, first we need to perform an exhaustive 
enumeration of the states the system could be at. 
Since the computational cost of this enumeration 
process can exceed the time requirements of the 
platform, clustering techniques may be applied 
during offline pre-computation to reduce the number 
of nodes in the graph. Apart from the normal or 
working states of the system, we need also to model 
the states where the system is compromised. 
Therefore, we need to create also “bad” states that 
account for an attacker getting inside the network, 
with different degrees of success. These states must 
be based on the risk analysis used as input to the 
TOWER module. Using these compromised states, 
the system would be able to predict a malicious 
behavior based on the preliminary states that can 
lead to the actual attack. For example, typically 
reconnaissance techniques are performed before 
launching an attack, thus if a port scan alert is 
received it can be mapped to a prior-attack state that 
can trigger preemptive security measures. Moreover, 
post-attack states will be also included in the 
enumeration as they can show how an attack could 
have cascading effects on multiple elements of the 
network. This analysis will help to choose the 
appropriate reaction method and also to determine 
the coverage of the response action. 
Once these states are modeled, the next step consists 
on determining the current status of the system. In 
order to do so, a method that maps the information 



 

collected from the alerts to one of the states 
generated before has to be developed. To achieve 
this purpose, clustering techniques can also be 
employed, as they can compute the nearest or more 
similar state. 
Once we know the condition of the system, we have 
translated it to an actual state node in our graph and 
we know the transitions we can employ to travel the 
graph from that node; we are ready to continue.  
The final step is to compute the path we have to 
follow to a better state. Distributed agent-based 
decision systems are being studied to solve this 
problem. This kind of systems allow to get a 
response even in the case where a particular action 
may only benefit part of the infrastructure. This way 
the overall operation of the infrastructure is 
guaranteed even if part of it has to be partially 
harmed during the transition.  
Game theory (Myerson, 2013) techniques are also 
being applied to model the behavior of an 
adversarial attack and predict how he can breach 
into the system, taking additional security measures 
at weak points. Therefore, we can also model the 
steps an attacker can take to compromise the 
systems and identify if the infrastructure actual state 
is leading to one of them, preventing further 
consequences. These techniques help also to reduce 
the amount of information that an attacker can 
obtain from the system, as this information is the 
input for the algorithm.  

7 CONCLUSIONS 

This paper presents TOWER (Topology 
Optimization for netWork Enhanced Resilience), a 
decision support system intended to provide 
topology alternatives in Critical Network 
Infrastructures (CNI), so that the impact of an attack 
on data communication is mitigated. The system 
operates from a multilayer network model of the 
asset inventory of the CNI, which specifies the 
dependencies between nodes and the associated 
risks, and is able to react to network incidents 
(modeled as perturbations in the network) by 
providing a ranked set of alternative topologies 
maximizing network resiliency. We discuss the most 
important design principles behind TOWER and 
finally, point out some research lines and ideas that 
will guide future TOWER development. 

ACKNOWLEDGEMENTS 

This work was partially supported by SCOUT, a 
research project supported by the European 
Commission under its 7th Framework Program 
(contract-no. 607019). The views and conclusions 
contained herein are those of the authors and should 
not be interpreted as necessarily representing the 
official policies or endorsements, either expressed or 
implied, of the SCOUT project or the European 
Commission. 

REFERENCES 

Albert, R. Error and attack tolerance of complex 
networks. Nature, 406(6794), 378-382. 

Berezin, Y. “Localized attacks on spatially embedded 
networks with dependencies,” Scientific reports 5. 

Brin, S. and Page, L.: The anatomy of a large-scale 
hypertextual web search engine. Computer Networks 
and ISDN Systems 30, 107–117 (1998) 

Carley, K.M. "Toward an interoperable dynamic network 
analysis toolkit." Decis. Support Syst., 43, 1324–1347. 
(2007) 

Chakrabarti, S., Dom, B., Kumar, R., Raghavan, P., 
Rajagopalan, S., Tomkins, A., Gibson, and D., 
Kleinberg, J.: Mining the web’s link structure. IEEE 
Computer 32, 60–67 (1999) 

Chechetka, A. and K. Sycara, No-commitment branch and 
bound search for distributed constraint optimization. 
AAMAS International Conference. Hakodate, Japan. 
(2006). 

Chierichetti, F., Epasto, A., Kumar, R., Lattanzi, and S., 
Mirrokni, V.: Efficient algorithms for public-private 
social networks. In: Proceedings of the 21st 
ACMSIGKDD International Conference on 
Knowledge Discovery and Data Mining (KDD’15). 
pp. 139–148 (2015) 

Davin, J. and Modi, P.J. Impact of problem centralization 
in distributed constraint optimization algorithms. 
AAMAS International Conference. (2005) 

DHS, A Roadmap for Cybersecurity Research, Technical 
Report, Department of Homeland Security (DHS). 
(2009) 

Davin, K. Impact of problem centralization in distributed 
constraint optimization algorithms. In Proceedings of 
The 4th International Conference on Autonomous 
Agents and Multiagent Systems AAMAS. (2005) 

Dietzel, S. A resilient in-network aggregation mechanism 
for VANETs based on dissemination redundancy, Ad 
Hoc Networks 37, 101-109. (2016) 

Fan, R. RobustGeo: A Disruption-Tolerant Geo-Routing 
Protocol, 24th International Conference on Computer 
Communication and Networks (ICCCN). (2015) 

Freeman, L.: Centrality in social networks: Conceptual 
clarification. Social Networks 1, 215–239 (1979) 



 

Goldberg, S. Why is it taking so long to secure internet 
routing? Communications of the ACM, 57(10), 56-63. 
(2014) 

Katz, L. A New Status Index Derived from Sociometric 
Index. Psychometrika, 39-43. (1953). 

Kimura, M., Saito, K., Ohara, K., and  Motoda, H.: 
Speeding-up node influence computation for huge 
social networks. International Journal of Data Science 
and Analytics 1, 1–14 (2016) 

Kivelä, M. Multilayer networks, Journal of Complex 
Networks, 2(3), 203-271. (2014) 

Klein, M., P. Faratin, H. Sayama and Y. Bar-Yam. 
Negotiating Complex Contracts. Group Decision and 
Negotiation 12(2), 111 - 125. (2003) 

Koschützki, D., Lehmann, K.A, Peeters, L., Richter, S. 
Tenfelde-Podehl, D. and Zlotowski, O.. Centrality 
indices. Network analysis. Lecture Notes in Computer 
Science. 3418:16–61, (2005) 

Landmark, L. Resilient internetwork routing over 
heterogeneous mobile military networks, IEEE 
Military Communications Conference (MILCOM), 
388-394. (2015) 

Li, M., Q. B. Vo and R. Kowalczyk Searching for fair 
joint gains in agent-based negotiation. Autonomous 
Agents and Multi-agent Systems (AAMAS-09). 
(2009) 

Marsa-Maestre, I., Lopez-Carmona, M. A., Velasco, J. R., 
and de la Hoz, E. Effective bidding and deal 
identification for negotiations in highly nonlinear 
scenarios. In Proceedings of The 8th International 
Conference on Autonomous Agents and Multiagent 
Systems 2, 1057-1064. (2009) 

Myerson, Roger B. Game theory. Harvard university 
press, (2013) 

Newman, M. Networks: an introduction. Oxford 
University Press, (2010) 

Ohara, K., Saito, K., Kimura, and M., Motoda, H.: 
Resampling-based framework for estimating node 
centrality of large social network. In: Proceedings of 
the 17th International Conference on Discovery 
Science (DS’14). pp. 228–239. LNAI 8777 (2014) 

Pham, L., Teich, J., Wallenius, H., and Wallenius, J. 
Multi-attribute online reverse auctions: Recent 
research trends. European Journal of Operational 
Research, 242(1), 1-9. (2015). 

Ren, F., and Zhang, M. Bilateral single-issue negotiation 
model considering nonlinear utility and time 
constraint. Decision Support Systems. 60, 29-38. 
(2013). 

Rinaldi, S.M. Identifying, understanding and analyzing 
critical infrastructures interdependencies, IEEE 
Control Systems Magazine, 21(6), 11-25. (2001) 

Sandholm, T., and Likhodedov, A. Automated design of 
revenue-maximizing combinatorial auctions. 
Operations Research, 63(5), 1000-1025. (2015) 

Shao, S. Percolation of localized attack on complex 
networks, New Journal of Physics, 17, 023049. (2015) 

Smith, P. Network resilience: a systematic approach, IEEE 
Communications Magazine, 49(7), 88-97. (2011) 

Strogatz, S. H. Exploring complex networks. Nature, 
410(6825), 268-276. (2001). 

Su, M.Y. A resilient routing approach for Mobile Ad Hoc 
Networks, International Conference on High 
Performance Computing & Simulation (HPCS). 
(2015) 

Wiener, H. Structural determination of paraffin boiling 
points. Journal of the American Chemical Society, 
69(1):17–20, (1947) 

Xia, M., Stallaert, J. and A. B. Whinston. Solving the 
combinatorial double auction problem. European 
Journal of Operational Research 164(1), 239-251. 
(2005) 

Yao,Y. EDAL: An Energy-Efficient, Delay-Aware, and 
Lifetime-Balancing Data Collection Protocol for 
Heterogeneous Wireless Sensor Networks, in 
IEEE/ACM Transactions on Networking, 23(3), 810-
823. (2015) 

Younis, M. Topology management techniques for 
tolerating node failures in wireless sensor networks: A 
survey, Computer Networks, 58, 254-283. (2014) 

Zmijewski, Reckless Driving on the Internet, 
http://research.dyn.com/2009/02/the-flap-heard-
around-the-world/ .(2009) 

 
 
 
 
 


