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1. Dedekind in his Tract on Continuity and Irrational Numbers gives
a relation from which two sequences of rational numbers may be found,
one sequence consisting of numbers whose square is less than a certain
rational number D, and the other of numbers whose square is greater
than D. The first sequence has no greatest number, and the second
sequence has no least number, provided there is no rational number which
has its square equal to J).

The two sequences together, or, as will afterwards be shown, either of
them separately, define the irrational number which we call the square
root of D.

Dedekind's formula for getting one member of a sequence from the
preceding one is ^ D

y = ( L )

wh.chg.ves y-x = -s;?— and y-D =

whence it follows that, if we take a member x of the lower sequence, such
that x2 <C D, then we get another rational number y, such that y2 < D
and y > x.

Similarly, if x2 > D, it follows that y2 > D and y < x. Prof.
M. J. M. Hill has observed that Dedekind's result (I.) can be obtained by
writing out the binomial expansion for (y—x)3, namely, y3—Sy2x-\-Syx2—x3,
substituting D for y2 wherever it occurs, and equating to zero.

We then get yD — 3Dx+$yx2—x3 = 0, which is identical with (I.).
The first section of this paper deals with a set of formulae which effect

nothing more than Dedekind's formula (I.), but include it as a particular
case. They were suggested by the above mentioned remark of Prof. Hill.
The second section of the paper deals with a generalization of the formulas
when n-th. powers are considered instead of squares.
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SECTION I.

2. The results of this part of the paper were originally proved by a
rather long process, which is now replaced by short proofs kindly placed
at my disposal by Mr. A. E. Western. These proofs are given below. If
we write down the binomial expansion for (x—y)n, replace all even powers
of y {y2r) by powers of D (D*) and all odd powers of y (y'2r+l) by the product
of y and powers of D (yD1), the equation (x—y)"' = 0 then becomes a
simple equation for y, viz.,

a * - ^ * - 1 y+%C%x*

, /Di11 if n be even \ _ Q

\yD^-V if n be odd/

Putting yx = x" + ,lCix"'-2D f ...+wC2rj;*-2rDrH-...:

the equation becomes y = yjy2. Now

therefore yl — ylD = (x2-D)H

or ^ _ D = ^ Z j W . (II.).

Again, we can write

therefore 2D»(y1-yaa;) = ( D - ^

which becomes

Both the denominator and the co-factor of D—x2 in the numerator are
essentially positive.

Now, in order to get sequences of the kind required, it is necessary
that (i.), when x2 < D, y > x, and, when x2 > D, y < x. The relation
(III.) always satisfies these conditions. Also (ii.), when x2 < D, y2 < D,
and x2 > D, y2 > D. The relation (II.) satisfies both of these conditions
only if n be odd ; it satisfies the latter condition only if n be either even
or odd.

Hence the generalized form of Dedekind's expression will determine
sequences denning an irrational square root, provided n be an odd integer.
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SECTION II.

3. We will now investigate an expression for defining an irrational
vi-th root of a rational number.

The conditions to be satisfied may be put in the following form:—

xn-D = (x-y) y/,, yn-D = (x-y)</>, (IV.)

where <f> and \Jr are positive rational functions of x, D. Then we see that,
1 (i.) xn < D, then y>x, and therefore. yn < D}

(ii.) xn > D, then y < x, and therefore yn > D)

We have to make the two equations (IV.) consistent.
This will be the case if xn—yn = (x—y)(\fs—<p),

therefore <f> = \!s-(xn-1+xn-2y+...+xn-r-1if+...+yn-1)

_ , _ xn+xn-ly-{-...+xn-ryr+...+xyn-1

— r
X

Now we must make <f> positive..
Consider first the case x11 < D, y > x, yn < D ; then

xn+xn-ly+.. .+xn~ryr+... +xyn-x mf nD

Secondly, when xH > D, y < x, then

xn+xn~1y+... + 'an~ryr+ •.. +xyn~l nxn

x x
Hence in either case

• ' - L ^ - 1 v + • • • +-y"-r?/+ • • • +xyn~x xn-\-D
X X

If we put \fr = n — • — , then \js itself will be a rational positive function
JO

of x, D, and <j> will also be rational and positive.
Also the two equations (IV.) will be consistent when

, _ xn+Dn xH+ar
x

Substituting for \fr in (IV.),

xn-D = {x-y) ? t ( a ? + - D ) , (V.)
x

_ _ (xn-D)x
X y~n(xn+D)'
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_ (D-xn+nxn+nD) _ (n-l)xn+(n+l)D
y \ n(xn+D) i X nd

.^(n-l)zn+l-\-(n+l)Dx m

?i(xn+D) ' V ^

This will be the required expression.

There are two equations marked (IV.). The values selected for 0 and
yjs are such as to make these two equations the same, viz.,

It would appear at first sight, then, that this equation could be transformed
into both the forms of (IV.); but, on attempting to put it into the form
yn—D= (x—y) (positive rational function of x, D), we see that we get, on
multiplication by xn~1-\-xn~2y-\-...-\-y'l~l

)

(xn-D)(xn-1+xn-2y+...+y11-1) = (xn-yn)n{x"+D);

therefore yn-xn = ^ - ^ n

x

,, , n j , {xn—D)x (xn+D xn-{-xn-ly-\-...-\-xijn-1) m T T ,
therefore yn—D = v . „ , ' - — •—n : =^ •—*— -. (VII.)

y n(xn+D) { x x )
Call the part in { } L.

Then in the case xn < D the first equation of (IV.) shows that y > x,
and the relation (VII.) shows that yn < D, provided L be positive.

But L has been shown to be positive only if we first assume that
yn < D. Hence it requires some other method to show that yn < D
when xn < D.

If, however, xn > D, then, as before, y < x, and L is now positive
whether yn > or < D ; hence the relation (VII.) shows that yu > D.

It is not necessary, therefore, in this latter case to verify that the con-
ditions are satisfied by the relation (VI.), provided n be integral. An
independent mode of proof has been adopted.

4. Before proceeding to this we will give the verification of the result
in the cases when n = 2, 3, 4. .

(a) When n = 2.—

_xs+SDx _ _(D—x*)x
y y X~
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(£) When n = 8.—

D-x*

a r> _
27(z3+D)3

(y) When n = 4.—

__ 3a;5-f-5i)a _ _ D-xi

y y X

i_T)_ (a;4-JD)(81a;164-365a;12DH-691x8Da+655x4D3+256/)4)
V 256(D-j-^)4

In all three cases the conditions (A) are satisfied.

5. Proceeding to the proof of the general case, we have
xn-D "|

therefore if-D = xn [1 — ^
J L n(xnn(xn+D)

Now we wish to show that (i.), when x"' <D, if < D ; (ii.), when ic"1 > D,

Case (i.). When xn < D.—We must show that

L n(xn+D)J

Put _ , X.L = a, where 0 < a < 1. Then — = ——. Hence we must
D+xn xn I—a

show that MI i I
(1 + i )

n l±^<0 orn

Now we have, if a and 6 be positive and m a positive quantity > 1,

mam-1 (a-b)> am-bm > mbm~l(a—b). (VIII.)

(See Chrystal's Algebra, chapter xxiv., § 7.)

Putting a = 1-f- —, 6 = 1, ra = —, where y > z,

therefore (l+ iff" > 1 + - j , (l + —)" > (l+ -|)", where y > z.
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Hence the expression (l-\-ajn)n continually increases as we increase n.

Also L (l+
n 11

Hence, dealing only with finite values of n,

<ea

^ i i i a 2 i i «' i< l + a + - + . . .+ - + ...,

which is an absolutely convergent series < l+a+a 2 -+- . . .+a r + . - . , which

( a\n

l-\ 1 < I—a, and, since l+a> 1,

therefore (i +_£LV < l±f!
n) 1—a

Hence we have proved what was required.

Case (ii.). When xn > D.—We must show that

Putting ^ = ^ = a, so that 0 < a < 1, ^ = l ^ £ f . Now, from the
X j~ U X J.—J~Gt

formula (VIII.), putting a = 1, b = 1—a/y, m = y/z, where y > z,

z y \ y
( a \ v / z I a \ ( a \ y ( a \ z

therefore (1— — ) > (1 ), (1 — — 1 > (1 J , where y > z.

Hence the function (l—a/n)71 continually increases as we increase n.

Hence (1 — a/n)n > 1 —a, where n> 1 ;

and 1+ot > 1, therefore I—a > a ;

therefore (1 > •=—.—, (1 — —— > 0,
\ nJ 1 + a \ nl 1 + a

which is the required result.

We have, therefore, shown that, if

n(xn+D)
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then (i.), if xn<D, y>x and yn<D; (ii.), if xn > D, y<x and
yn > D. This has been proved for all cases in which n is any quantity
greater than unity.

6. A more general expression for y may be given. For, if

. _ xn+xn-ly+...+xn-ry'+...+xyn-1

x
x4-D

and <p is positive when \fr = n —^—, then clearly <p will be positive if

•^ = n—_L |-any rational positive function of x, D. Call this function

F; then yf, = n *-tH +F.

Substituting in the first equation (IV.),

••_ n - (x-v) rw(a"+I)) 4- f\ U-X -x D-{x 2/)[ +^j, y x -

It may readily be shown, by the help of the results proved, that this value
for y will satisfy the given conditions.

In the first place, if x11 < D, y > x, and, if xn > D, y < x. Again,

D-x" 1
n(xn+D)+xFJ

Case (i.) When xn < D.—We wish to show that y"1 < D. Now

n{xn+D)'

r jT) -g11 ~1" F D Xn ~\n '
therefore 1 -\ , ,. , _. ,—^ < 1H—. n . ^ .

L n{x'l+D)+xFJ L n(xn+D)JBut we have shown that

therefore x» [1 + _ D ^ _ J - D <0 ;

therefore yn—D < 0, yn<D, which we wished to prove.

Case (ii.). x11 > D.—We wish to show that yn > D.

- r, X*-D i
?y " X L n{xn+D)+xFS
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Now 1 x ~ > l x ~"^ -
n{xn+D)+xF n(xn+D)'

But we have shown that

therefore xn\l- * f _, \ -D > 0;
L n(xn+D)+xFj

therefore yn—D>0, yn > D, which we wished to prove.

7. Two sequences of rational numbers are therefore determined by
the relation. (VI.), one in ascending and the other in descending order of.
magnitude.

Let the ascending sequence be xx, x2, ..., xm, ..., such that, if
0 < x[l < D, xx < x2 < ... < x,n and re* < D; therefore (a£, a£, ...) con-
verges, and its limit ^ D. Similarly, let the descending sequence be
x[, x2, ..., x'm, ..., where (x[ , x2, ...) converges and its limit ^ D. It
will be shown that both sequences converge to the same limit.

If we start with xv we can find another number x2 of the ascending
sequence from the relation

then [,g _

n(xS+D)

_(n-l)xn
v+

l+(n+l)Dxm

~ n(xl+D)

Thus

therefore xm+i — xm = —r

Let xm+i—xm = Sm. Since xm+l = xl+S1+S2-jr...+Sm and a£ + l > D,
therefore xl-\-S1-\-S2-{-...-\-Sm-{-... ad inf. is a series which converges to
some limit E, where, at present, all we know of the limit is that En ^ D.
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Now it is a necessary condition for the convergence of the series
00

2 Sm that after a certain term Sm where in ^ /*, | Sm | < e, an arbitrarily
m=l

small positive quantity. Hence we must have, after a certain term,

therefore | D—x]l
n | < rj, where r\ is arbitrarily small. Hence, provided we

do not start with xx zero, x"n converges to the limit D as m is increased.
Therefore the ascending sequence xlf x2, ..., xm, ... converges to the limit
E, where En = D.

In the same way it may be shown that the descending sequence
x'lt x2 ..., x'm, ... converges to this same limit E. We call E the n-th root
of the rational number D. Hence the irrational number is completely
denned by either of the two sequences.

8. I am indebted to Prof. Hill for a formula not included in any
x(D—Xs)

of t h e above , for t h e case n = 8, y — x = s i r / - T h i s g ives

Jj3 n _ x * -
J (Z

which gives, if x3 < D, y > x and ys <D; but, if xs > D, y <x and
?/3 > D. And probably there are a great many other formulae of a similar
nature.


