EXAMPLE

16. A DESIGN SOLUTION TO DARLINGTON FOLLOWER INSTABILITY

Example 3: Darlington Emitter/Source Follower

The Darlington Follower is known to be unstable for certain values of load capacitance.

The Design Problem is to select a damping resistance so that the Follower is not only stable, but has a maximum peaking, regardless of the load capacitance.

$$Z_{o} = \frac{R_{s} + \frac{1}{sC_{1}r_{1}}}{1 + \frac{1}{sC_{1}r_{1}}} \underbrace{\frac{1}{sC_{1}r_{1}} \frac{1}{sC_{1}r_{1}}}_{i_{s}} \underbrace{\frac{1}{sC_{1}r_{1}} \frac{1}{sC_{1}r_{1}}}_{i_{s}} \underbrace{\frac{1}{sC_{1}r_{1}} \frac{1}{sC_{1}r_{1}}}_{i_{s}} \underbrace{\frac{1}{sC_{1}r_{1}} \frac{1}{sC_{1}}}_{i_{s}} \underbrace{\frac{1}{sC_{1}r_{1}}}_{i_{s}} \underbrace{\frac{1}{sC_{1}r_{1}}}_{$$

where
$$L \equiv C_1 R_s r_1$$
. If $R_s >> r_1$, $Z_0 \approx R_s \| (r_1 + sL)_6$
16. Darlington Follower Instability

The "reflection" process works
$$i$$
 $r_2 \ge i_2$ with effective $\beta_2 = \frac{1}{sC_2r_2}$: C_2 $(1+\frac{1}{sC_2r_2})^i$

$$Z_i = \frac{1}{sC_2} + \frac{1 + \beta_2}{sC_I} \longrightarrow$$

$$Z_i = \frac{1}{sC_2} + \frac{1}{sC_L} \left(1 + \frac{1}{sC_2r_2} \right) = \frac{1}{sC} - R_{neg}$$

where
$$\frac{1}{C} = \frac{1}{C_2} + \frac{1}{\frac{1}{16. \text{ Parlington Follower Instability}}} = \frac{1}{\omega^2 C_2 r_2 C_L}$$

A detailed analysis can be done with the DT/CT

The gain $A_{v12} \equiv \frac{v_o}{e_i}$ is given by the DT: $A_{v12} = A_{v12}^{i_y} = \frac{1 + \frac{1}{T_{ni}}}{1 + \frac{1}{T_{ni}}}$

$$A_{v12} = A_{v12}^{i_y} \frac{1 + \frac{1}{T_{ni}}}{1 + \frac{1}{T_i}}$$

The null return ratio $T_{ni} \equiv i_y/i_x \big|_{v_0=0}$ is an ndi calculation with the output v_o nulled. If v_o is nulled, so is i_x , so $T_{ni} = \infty$.

This implies that T_{ni} is infinite unless the signal can bypass

the 11349 ection point.

http://www.RDMiddlebrook.com 16. Darlington Follower Instability

Nulled i_y means that the A_{v1} box is unloaded, so the input voltage to the

 A_{v2} box is the open-circuit (oc) output voltage of the A_{v1} box. Thus

$$A_{v12}^{i_y} = A_{v1}^{oc} A_{v2}$$
 Also, $T_i = Z_{i2} / Z_{o1}$,

v.0.1 3/07 so the DT becomes://www.pp.Micdiellettrock2com
$$Z_{o1}$$
 16. Darlington Follower Instability Z_{i2}

$$A_{v1}^{oc} = 1$$
, $A_{v2} = 1$, so

$$H = A_{v12} = \frac{1}{1 + \frac{1}{T_{\text{old}}}} = D$$
 where $T = T_i = \frac{Z_{i2}}{Z_{o1}}$

16. Darlington Follower Instability

v.0.1 3/07

We can figure out a lot about T before doing a simulation.

 Z_{o1} has two poles, because it has two capacitances.

By "mental frequency sweep,"

$$Z_{o1}(0) = r_2, Z_{o1}(\infty) = R_s$$

Since Z_{01} is flat at zero and infinite frequency, Z_{01} must have two zeros as well as two poles.

Also,
$$Z_{i2} = \frac{1}{sC_L}$$

Therefore,
$$T = \frac{Z_{i2}}{Z_{olettp://www.RDMiddlebrook.com}}$$
 has three poles and two zeros.

16. Darlington Follower Instability

16. Darlington Follower Instability

The phase margin ϕ_M is positive, so the Follower is stable. However, ϕ_M is small, so H has a large peak.

16. Darlington Follower Instability

For design, C_L is to be considered a variable.

Examine the effect of C_L upon $T = 1/sC_LZ_{o1}$.

Since C_L is not inside Z_{o1} , increasing C_L does not change the shape of either |T| or \sqrt{T} ; |T| decreases in inverse proportion to C_L , but \sqrt{T} does not change at all.

The decrease of |T| results in lowered loop gain crossover frequency:

There is a range of C_L for which the phase margin ϕ_M is negative, and the Follower is unstable.

A design strategy is to add sufficient damping resistance R_d to Z_{o1} so that the maximum phase lag is less than 180° by some desired phase margin.

Damping resistance R_d added

The phase margin ϕ_M is positive, so the Follower is stable. However, ϕ_M is small, so H has a large peak.

16. Darlington Follower Instability

v.0.1 3/07

The worst-case phase margin thus occurs when C_L is such that the |T| crossover frequency f_c is at the

frequency where T_{16} is a maximum stability

Worst-case $\phi_{\mathbf{M}} = 47^{\circ}$, and consequent greatest peaking in $H_{v.0.13/07}$ occurs for $C_L = 0.78$ p. http://www.RDMiddlebrook.com

16. Darlington Follower Instability

Expanded scale:

