EXAMPLE

14. A 2CE/S FEEDBACK AMPLIFIER

A 2-stage Common-Emitter/-Source Amplifier

An ideal test current injection point is at the output of the first stage:

http://www.RDMiddlebrook.com 14. 2CE/S Feedback Amp

With C_2 : "right" answer

14. 2CE/S Feedback Amp

With C_1 and C_2 : "wrong" answer

Why?

In the presence of C_2 , the selected test current injection point is no longer "ideal", and in fact there is no ideal injection point for either a test current or a test voltage

A 1975^* paper showed that *successive* injection, at a nonideal point, of current and voltage test signals to give T_i and T_v could be combined to give the correct result for T:

$$\frac{1}{1+T} = \frac{1}{1+T_i} + \frac{1}{1+T_v}$$
 or $T = \frac{T_i T_v - 1}{2+T_i + T_v}$

^{*}R.D.Middlebrook, "Measurement of loop gain in feedback systems," Int. J. Electronics, 1975, vol. 38, No. 4, pp. 485 – 512.

The same paper also showed that simultaneous injection of current and voltage test signals, adjusted to give the short-circuit current loop gain T_i^{vy} and open-circuit voltage loop gain T_v^{iy} could be combined to give the correct result

$$\frac{1}{T} = \frac{1}{T_i^{v_y}} + \frac{1}{T_v^{i_y}}$$

The advantage of this method is that the ndi calculations of $T_i^{v_y}$ and $T_v^{i_y}$ are symbolically simpler and easier than the si calculations of T_i and T_v .

Nevertheless, the conclusions of that paper were incomplete, because the nonidealities were still ignored.

The 2GFT includes the nonidealities, and gives the correct answer for *T* :

The "right" answer (*T* has two poles, a lhp and a rhp zero) is obtained by coupled voltage and current injection (GFTv Template) at a nonideal point.

But, there is another problem:

 H_{∞} is not equal to 1/K

Why?

The test signal configuration meets the first criterion, that the test signal must be inside the loop, but it does not meet the second: the test signal must be able to null the error signal.

Therefore, choose a test signal configuration that meets the second criterion as well:

 v_y must be the error voltage, and

 i_{ν} must be the error current.

Coupled injection must be used, since v_y and i_y do not null simultaneously with only single injection.

14. 2CE/S Feedback Amp

14

Check that H_{∞} is the expected 1/K = 20 dB:

T and H are still the same

The component $H_{\infty}D$ of $H=H_{\infty}D+H_{0}D_{0}$:

It may be thought that the peaking in H is due to insufficient phase margin, but in fact it comes from H_0 :

v.0.2 8/07

The component H_0D_0 of $H = H_\infty D + H_0D_0$:

Both components of $H = H_{\infty}D + H_0D_0$:

The first-level TF H can be a current gain, transadmittance, transimpedance, or a voltage gain.

As applied to an output impedance Z_o , which is a self-impedance, the GFT becomes

$$Z_{0} = Z_{\infty} \frac{T}{1+T} + Z_{00} \frac{1}{1+T}$$

The "output" is v_o as for voltage gain, but the "input" is now a current j_i driven into the output.

For voltage feedback, as in this example, $Z_{o\infty}$ is always zero, so

$$Z_{\mathbf{o}} = Z_{o0} \frac{1}{1+T}$$

which is the familiar result that the closed-loop output impedance is the open-loop value divided by the feedback factor.

The closed-loop output impedance Z_0 rises to the open-loop value Z_{o0} as loop gain crossover is approached.

v.0.2 8/07

http://www.RDMiddlebrook.com 14. 2CE/S Feedback Amp