9. THE DT AND THE CT:

The Dissection Theorem and the Chain Theorem

How to find the gain of a multistage amplifier as the product
of separately calculated low entropy factors
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Null Double Injection (ndi)

Usually, a transfer function (TF) is calculated as a response to a single

independent excitation.

However, large analysis benefits accrue when certain constraints are

imposed on several excitations present simultaneously.
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For any linear system model:

signal
output

u, = Aqu;

The input is an independent signal, the output is a proportional

dependent signal.
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Consider a second input, an injected "test signal" u,, :

Ug = Alu,- + Azuz
Uy

test signal

Since the model is linear, the output is now a linear sum of the values it

would have with each input alone.
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There are now two more dependent signals, u, and u,, where u, +u, =u, :

Ug = Alu,- + Azuz
U, =U, + uy

test signal
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There are now two more dependent signals, u, and u,, where u, +u, =u, :

Ug = Alu,- + Azuz
U, =U, + uy

test signal

The dependent signal u,, is also a linear sum of the values it

would have with each input alone.
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There are now two more dependent signals, u, and u,, where u, +u, =u, :

Uy Uy
O— O
Uy = Byuj +Bou, T uy =-Byu; + (1-By)u,

signal
output

Ug = Alu,- + Azuz
U, =U, + uy

test signal

The dependent signal u,, is also a linear sum of the values it

would have with each input alone.

By virtue of u, = uy +u,, the independent signal u, can also be expressed

in terms of By and B,.
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Several transfer functions (TFs) can be defined:

Special case 1: u, =0

Ug = Alu,- + Azuz

1
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Several transfer functions (TFs) can be defined:

Special case 2: u; =0

signal

O
Uy = —Blui + (1 —Bz )uz
u, =(1-By)u,

Uy = Byu; + Byu,

uy = BZuZ Uy = Alu,- + Azuz

u, U, = Ayu,

test signal

H="° =4
Ui u,=0
ux ui=0 1—B2

These are single injection (si) TFs
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Several transfer functions (TFs) can be defined:
Special case 3: 1, =0
The two independent signals #; and u, can be mutually adjusted to null u,

signal o signal
input y : u, =—Bqu; +(1-By)u,

Ug = Alu,- + Azuz

B,
Uz o = Aquj — Ay g U

uy T
component of u, from u; ‘

component of u, from u,
adjusted to null u,,
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Several transfer functions (TFs) can be defined:
Special case 4: 1, =0
The two independent signals u; and u, can be mutually adjusted to null u,

. O
input u, =—Byu; + (1-By)u,
0 = _Blui + (1—B2 )uZ uo = Alul + Azuz

Uu; _ 1
H”y = Uo = A1 - Ay B_l
B
g =" —A 44, 1
1 2
u; _ 1—B2
u,=0 T

component of u, from u;

component of u, from u,
adjusted to null u,
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Several transfer functions (TFs) can be defined:
Special case 5: 1, =0
The two independent signals u; and u, can be mutually adjusted to null u,

signal

O
uy =ABlui + BZuz Uy = —Blui + (1—32 )uz

A
=-Bq Ai”z"‘Bzuz Uy =By Aiuz +(@A=Boluf  u, = Aqu; + Aqu,

test signal O "z 0= Aqu; + Aqu,

HY ="  _a_a,BL

ui u :0 BZ

’ B

H' =20  —Aj+Ay—1

u; ux=0 1- B2

T, = Uy _ MBy—AyBy
Uy A1 —(A1B; - A3By)

u,=0

These are null double injection (ndi) TFs
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Assembled results, so far:

First level TF: = =Ay;  (si)

u —
Huy = u—o = Al — A2 B—l (ndi) Tn = ¥ = Ale AzBl (ndi)
Hily, o B, Uxl, —o 1 —(A1By - A2By)
u .
Hux = u—o = Al + A2 Bl (Ildl) = ¥ = Bz (Sl)
Wi ly, =0 -2 U ly,=0 1-B,

Note that A, and By occur only as a product A>B;.
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The benefit to be gained from these definitions is that there are useful

relations between these several TFs that do not involve the A's and B's.
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The benefit to be gained from these definitions is that there are useful

relations between these several TFs that do not involve the A's and B's.

The 4 second level TFs are defined in terms of the 4 original parameters
Aq1,A5,Bq,B,. Since A, and By occur only as a product A,B;, there are
actually only 3 parameters and there must be a relation between the 4

second level TFs, which is

Uu
Redundancy Relation: HY T,
H"> T
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The benefit to be gained from these definitions is that there are useful

relations between these several TFs that do not involve the A's and B's.

A consequence of the Redundancy Relation is that the first level TF H

can be expressed in terms of any three of the four second level TFs
H"Y ,H",T,,T.

Two useful versions are:

1
Y T 1
H=H"Y " H=H"Y —_+H"
1+ 1 1+T 1+T
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These two versions, and the redundancy relation, can easily be verified
by substitution of the definitions. After this, the A's and B's are no longer

required, and will not appear again.
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Dissection Theorem (DT)

first level TF

Notation:
Superscript signal is
signal being nulled

Redunudancy Relation:
HY T,

HYx T
v.0.1 3/07
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HY = Uo
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These results constitute the Dissection Theorem (DT), so named because
it shows that a first level TF can be "dissected" into three second level TFs

established in terms of an injected test signal.

The DT is completely general, and applies to any TF

of a linear system model.

For example, H could be a voltage gain, current gain, or an input or output

impedance.
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There are many reasons why the Dissection Theorem is useful.

The minimum benefit of the DT is that it embodies the
"Divide and Conquer" approach, because one complicated
calculation is replaced by three calculations, two of which
are ndi calculations and are therefore simpler and easier than

si calculations.
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There are many reasons why the Dissection Theorem is useful.

The minimum benefit of the DT is that it embodies the
"Divide and Conquer" approach, because one complicated
calculation is replaced by three calculations, two of which
are ndi calculations and are therefore simpler and easier than

si calculations.

Why are ndi calculations always simpler and easier than si calculations?
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There are many reasons why the Dissection Theorem is useful.

The minimum benefit of the DT is that it embodies the
"Divide and Conquer" approach, because one complicated
calculation is replaced by three calculations, two of which

are ndi calculations and are therefore simpler and easier than
si calculations.

Why are ndi calculations always simpler and easier than si calculations?

Because any element that supports a null signal does not contribute to
the result, and because if one signal is nulled, often other signals are

automatically nulled as well, and therefore several elements may be

absent from the result.
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The Dissection Theorem can be represented by the block diagram

oF

uo = Hui

Important: The individual blocks do not necessarily represent

identifiable parts of the actual circuit!
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Check:

T,=H"'T lu
u, = Hu; H™x
o u
+\¢ A HY _ T,
H" T
1
ty
1 u u
E=uj—— U u,=H 'Te+ H *u;
HY
uy, 1 ”
u,=H T\ u;———u, |+ H*u;
u
H Y
(1+T)u, =(HuyT+H”x)ui
H=H" 1 4m¥ 1
1+T 1+T
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So far, nothing has been said about where in the system model the

test signal is injected.

Different test signal injection points define different sets of
second level TFs. Nevertheless, when a mutually consistent set is
substituted into the DT, the same H results:

1+.1 1+ 1
H=H yl Tin _ H”yz Ty»
1+ 1+ .1
I I,
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This means that the blocks in the block diagram have different values

for different test signal injection points:

uo = Hui

Important: The individual blocks do not necessarily represent

identifiable parts of the actual circuit!
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This means that the blocks in the block diagram have different values

for different test signal injection points:

uo = Hui

Important: The individual blocks do not necessarily represent

identifiable parts of the actual circuit!
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Not only does the DT implement the Design & Conquer objective, but
the DT is itself a Low Entropy Expression, and much greater benefits

accrue if the second level TFs have useful physical interpretations.

Thus, the second level TFs themselves contain the useful design-oriented
information and you may never need to actually substitute them into the

theorem.

For example, if T,T,, >>1, H~ H "y
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How to determine the physical interpretations of the second level TFs?

What kind of signal (voltage or current) is injected, and where it is

injected, defines an "injection configuration."

Therefore, the key decision in applying the DT is choosing a test signal
injection point so that at least one of the second level TFs has the physical

interpretation you want it to have.
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Specific injection configurations for the DT lead to the:
Extra Element Theorem (EET)
Chain Theorem (CT)
General Feedback Theorem (GFT)

As usual, dual forms of the theorem emerge depending upon whether

the injected signal u, is a voltage or a current.
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The Extra Element Theorem

Inject a test voltage e, in series with an element Z such that v, appears
across Z:

signal
input

where:

o 2t r,=" Ty !
Ui vy =0 Yx u;=0 Y luy=0
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The Extra Element Theorem

To find H Y, assume that e, and u; have been mutually adjusted to null v, :

If v, = 0, there is no current through Z, and so the current

i into the test port is also zero, which is the condition that would exist
if there were no injected test signal and Z were open. Therefore,
H‘Z:OO = Hvy = u_o
Uj vy=0
where H|,__ is the first level TF H when Z =0,
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The Extra Element Theorem

Tofind T;,, setu; =0:

1 u,-=0

Since Z and Z; are in series with the same current i,

0
T,=-"Y Z
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The Extra Element Theorem

To find T,,,,, assume that e, and u; have been mutually adjusted to null u,, :

Since Z and Z,, are in series with the same current i,

Tw=2 =%
no — — 7
Ox 1, —o n
0
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With the second level TFs replaced by the new definitions, the DT morphs
into the Extra Element Theorem (EET):

Z
1+7
+ _w
Z
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Dissection Theorem (DT)

first level TF

Notation:
Superscript signal is
signal being nulled

Redunudancy Relation:
HY T,

HYx T
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There are many reasons why the Dissection Theorem is useful.

The minimum benefit of the DT is that it embodies the
"Divide and Conquer" approach, because one complicated
calculation is replaced by three calculations, two of which
are ndi calculations and are therefore simpler and easier than

si calculations.
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There are many reasons why the Dissection Theorem is useful.

The minimum benefit of the DT is that it embodies the
"Divide and Conquer" approach, because one complicated
calculation is replaced by three calculations, two of which
are ndi calculations and are therefore simpler and easier than

si calculations.

Why are ndi calculations always simpler and easier than si calculations?
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There are many reasons why the Dissection Theorem is useful.

The minimum benefit of the DT is that it embodies the
"Divide and Conquer" approach, because one complicated
calculation is replaced by three calculations, two of which

are ndi calculations and are therefore simpler and easier than
si calculations.

Why are ndi calculations always simpler and easier than si calculations?

Because any element that supports a null signal does not contribute to
the result, and because if one signal is nulled, often other signals are

automatically nulled as well, and therefore several elements may be

absent from the result.
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Not only does the DT implement the Design & Conquer objective, but
the DT is itself a Low Entropy Expression, and much greater benefits

accrue if the second level TFs have useful physical interpretations.

Thus, the second level TFs themselves contain the useful design-oriented
information and you may never need to actually substitute them into the

theorem.

For example, if T,T,, >>1, H~ H "y
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How to determine the physical interpretations of the second level TFs?

What kind of signal (voltage or current) is injected, and where it is

injected, defines an "injection configuration."

Therefore, the key decision in applying the DT is choosing a test signal
injection point so that at least one of the second level TFs has the physical

interpretation you want it to have.
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Another special case of the DT leads to the Chain Theorem (CT).

The test signal injection configuration is such that the entire signal

from the input flows to the output (no bypass paths).
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The Chain Theorem (CT)

. 7
Ayp =AY o
v12 012 1+ %
1

The TF T); =1, /i, 0 is an ndi calculation with the output v, nulled.

If v, is nulled, so is i,,, so T,,; = oo.
This implies that T,,; is infinite unless the signal can bypass
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The Chain Theorem (CT)

Nulled 7;, means that the A;; box is unloaded, so the input voltage to the
Ay» box is the open-circuit (oc) output voltage of the A,,; box.

l L) o
Thus, A}, = Ay1 Ay is the voltage - buffered gain of the two stages.
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Also T 11 vlZy  Zi
1 = . - - J
x|, =0 v/ Z;y £;=0 Z,1
so the DT becomes
Z;»
Ap1o = ApiAyo :
¢ R Zin+ Z

This can be interpreted as
[ gain } [Voltage buffered gain} X{ voltage loading factor }

of the two stages of the two stages between the two stages
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The Chain Theorem (CT)
This is exactly the result that would be obtained directly from the model:
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The Chain Theorem (CT)
A useful application of the DT with T,; = « is to assemble the properties

of a 2-stage amplifier from the properties of each separate stage.
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The Chain Theorem (CT)

This "Divide and Conquer" approach avoids analysis of both stages

simultaneously.
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The Chain Theorem (CT)

_ Zp
Zi2 + Zol

where AJ{ A, is the "voltage buffered" gain that would occur if there were a
buffer between the two stages, and D; is a "discrepancy factor" that accounts
for the interaction between the two stages which results from the loading

of the first stage by the input of the second stage.
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The Chain Theorem (CT)

1
Ay1p = Ay Ay 1 = A1 Ay D;
1+
ty
Zol

Since all TFs will be in factored pole-zero form, the only place where
additional approximation may be needed resides inside the D;, where the

sum of two TFs is required.

"Doing the algebra on the graph" can be conducted in two ways:
1+ T; can be found as the sum of the TFs 1 and T;, dominated by the larger;

1 1 1 1 .
D; can be found from — =1+ _—= -+ — as the reciprocal sum of 1 and T},

D; T, 1 T
dominated by the smaller.
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Let each stage be the 1CE stage previously treated.

_AU%S 1-s/w 1 s/2x
A’U — A‘()m Z _ 36dB 880MHz
1+s/ 1+ S/27
10k 51kHz
<« 5 =_RB *RL__ _ 62 36dB
4 Rg+Rp Rs|Rp
Js Y Ym + 1+£
R, =1, =360 4 =mRj =620k
¢ _ 1 _ 1 _ Rg|Rp|a+ B,
z - = -
CiR, 7 CiRy Rs|Rg |y |Ry
s/2
Z:=R: 1+5CiRy; _ 824B 1+ 51k1§z 7 - 1+5C¢Ry
" 14+sCiRy; 1+ 359/k2§2 ° " 145CiRy,

Rin=Rs+Rp|1+ P, =13k = 82dBref1Q  R,,, = R; =10k = 80dB ref 1Q

Rs|Rg |1+ A1y,
R, ; =mRj = R; =620k R,, = Rg|Rp|(1 =2.2k
R Ry Ry o =RsIRalit+ A
Ry = Rg H(le+ ﬁir’" R; =820k R, = mR] = 620k
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However, to make the symbolic equations more compact, without loss of

generality, let Rg > 0 and ¢ > 1 (f > ©).

To keep R;m the same, also let Rg |(1+ B)r,,, =2.9k - Rp
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The new 1CE stage is:
s/2x

a=1 _AUUS 1 / 1
Cy ' © _ -slw, _ ~ 880MHz
sl A A= Agy ;= =49dB 5557
p E 1+s o 1+
vg 0 Ry, g 10k R 3.2MHz
v I <+ A, ="L=280=494B
=l gRB 'm Z, "m
7. 29k 36 R, = 1, = 36Q R; = Ry =10k
o L : o 1
CR, CiR,
C.R + s/2x
Z:=R; 1+sCiRe —69dB—_ 32MHz 5 _p 1 _gpp 1
L R 1+ 527 o= Nom s, Ry 14 sl2z
39kHz toL 3.2MHz

1+sCeRy Rg |1 |RL
R,,, = Ry =10k = 80dB ref. 1Q

Rim = RB =29k = 69dB ref. 1Q

Rni = mRL = 10k Rno =0

Rdi = RB H(l * ﬂ)rm RL = 820k Rdo = mRL =10k
Rp Hrm HRL .
http://www.RDMiddlebrook.com 53
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_ —A B
a=1 vy _ Ry 1-5Cyry,, 880 MHz
Ct J_ v =494B s/2rx
R 10k
vSA 0 . L 5/272'
v 1 g <= 7. R 1+sCyRy —69dBl+ 3.2MHz
r Z i~ B RB - 1 s/2rx
= §RB n 0 1+sCiRy Rg|r| Ry 39kHz
7 2.9k Y 36 Bl"m L
i
& © 1 1
o= "L R = 80dB s/2x
1+sCeRy 1+ 35MH:z

R;,, = Rg = 69dB

880MHz ~
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Cy © Cy ©
5p J: iF 5p J: iE
Ry 210k Ry 210k
vg, 0 L . 0 L
iE § i i v iE g <+
Y x
+ 3Ry o <= 7 o 3Ry o Zo
Z; |29k Z 1 Jz Z;, |29
o ¢ © —d ©
The DT gives
oc
Ap12 = Ap1Ay2D; (Tm' = o0)

The buffered gain A9{ A, is the product of the two separate gains,
where A, is already open-circuit:

1-— s/2x 2

AJ{Ayp =98dB| — SOV
1+ 35 Mz
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98dB 1- s/2x 1-— s/2x

A%sz — 98dB 880MHz 880MHz

s/2x s/2x
1+ 350mz 1t 32MH:z

3.2MHz _ 404B/ dec

880MHz
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3.2MHz

39kHz 1
EEEEEEEEEEEEEEEEE|y, ’ ~ [ ZOl:SOdBl S/Zﬂ'
e, ~ , + 3.2MHz
4 Sl2x '~.,.. ~
Zi2 — 694B 3.2;WHZ '..... ~ N
1+52” ...IIIIIIIIIIIIIIIIIIIIIIIIIII.IIIIIIIIIII
39kHz .
~
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2
s/2x
7. (1+ )
T; =22 = 1148227
ZOl 1+ S| &t
39kHz
39kHz
EEEEEEEEEEEEEEEEER|y ’ ~ ¥ ZOl:SOdB s/2x
e, ~ . 1+ 35 MHz
+ s/2x ..'... ~ .
L ]
Zi2=69dB 3.2}WHZ ..... ~ »
1+ s/2zx ....IIIIIIIIIIIIIIIIIIIIIIIIIII.IIIIIIIIIII
39kHz .
|
39kHz' Li
3.2MHz
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The discrepancy factor D; = Ll or =141 o D; =1T;
1

is dominated by the smaller:

0dB _—

—11dB |
—13dB
3.2MHz
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The discrepancy factor D; = Ll or =141 o D; =1T;
1

is dominated by the smaller:

0dB |

“134B
39kHz" 501 H,

3.2MHz
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The discrepancy factor D; = Ll or =141 o D; =1T;
1
is dominated by the smaller:
880MHz
0dB J/

-13dB
s/2x 1+ s/2x

39kHz" 501H,

D. - _134g " 32MHz 1" 32MH:z
! 14 827 1, s/2z

50kHz 880MHz

3.2MHz

All these graphical constructions can be conducted symbolically to

give the result for D; in low entropy factored pole-zero form.
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Final step: assemble A,1, as the product of the buffered gain and the

discrepancy factor:
s/2zx s/2zx
98dB A% A, = 98dB 1 - s80MHz 1~ 880MHz

s/2xw s/2xw
T+ oMz 1t 32MH:z

85dB —40dB/ dec

50kHz
1 _ s/2xw 1 _ s/2x
Ayqp = 85dB — 880MHz ~ 880MHz

s/2x s/2xw
0dB 1+ 50kz 11 ss0MHz

-13dB
s/2x 1+ s/2x

50kHz D: — —13dB 1+ 5ommz 1+ 30MmmH:
1 1+ s/2x 1+ s/2x
50kHz 880MHz

3.2MHz
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The fact that D; is less than 1 over most of the frequency range indicates

that the second stage imposes heavy loading upon the first stage:

a=1 —Ay10s a=1 Ay127s
Sp F E 1_Z'2+Z 1 5p = iE
USA 0 RL§10k 1 OA 0 RL§101<
v iE ) i i v iE <=
Yy X Z
- 3Ry o <= T > 3Ry o 0
/\Zl 2.9k | Zoll\ ]z J\ZiZ 2.9k | .
0dB |
|
_134B ‘ 880MHz
50kHz
3.2MHz
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The fact that D; is less than 1 over most of the frequency range indicates

that the second stage imposes heavy loading upon the first stage:

a=1 - Av<1>vS 7 a=1 Avl%vs
C; - _ i2 |
L R iE Di=_—"~ sl Lo
Vs 0 Ry 210k i2 7 <ol 0 Ry 210k
Y X
- 3Ry o <= T > 3Ry o Zo
- Z; 29k_ Zyy = Zp 29k_ )
0dB |
|
1348 ‘ 880MHz
50kHz
3.2MHz

This suggests that the first stage behaves more like a current source than

a voltage source, and therefore that the analysis might be better
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The Chain Theorem (CT)

The gain A, = Yo is given by the DT:
€;
v, 1+ T
0
The TF T}, = vy /v, 0 is an ndi calculation with the output v, nulled.
0=

If v, is nulled, so is v, , so T,,;, = .

This implies that T,,,, is infinite unless the signal can bypass
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The Chain Theorem (CT)

Nulled v, means that the A;; box is shorted, so the input current to the
Ao box is the short-circuit (sc) output current of the A1 box.

A .
Vi1 = Zvl Lig=ZijpAys
ol

= forward = forward

transadmittance transimpedance
gain ' gain

’v L] [
Thus, A_%, = Y1 Zy, is the current - buffered gain of the two stages.
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signal
output

vx ei=0 ile e.=0 le
so the DT becomes 7
A1 =Yi1Zyy ol
Zi2 + Zol

This can be interpreted as
[ gain } {current buffered gain} X[ current loading factor }

of the two stages of the two stages between the two stages
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The Chain Theorem (CT)
This is exactly the result that would be obtained directly from the model:

SC
Ap12 = Y1 Zyo
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The Chain Theorem (CT)
A useful application of the DT with T,,,, = « is to assemble the properties

of a 2-stage amplifier from the properties of each separate stage.
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The Chain Theorem (CT)

This "Divide and Conquer" approach avoids analysis of both stages

simultaneously.
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The Chain Theorem (CT)

where Yi{ Z;, is the "current buffered" gain that would occur if there were a
buffer between the two stages, and D,, is a "discrepancy factor" that accounts
for the interaction between the two stages which results from the loading

of the first stage by the input of the second stage.
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The Chain Theorem gCT)
Ap1r = Y51 Zy4r = Y1 Z4»D,,

1+ 11
tm U,=0
— WA
Zol
0. 2
ys¢ y4_01 —
11 €
Y1 N

Since all TFs will be in factored pole-zero form, the only place where

additional approximation may be needed resides inside the D,,, where the

sum of two TFs is required.

"Doing the algebra on the graph" can be conducted in two ways:

1+ T, can be found as the sum of the TFs 1 and T,,, dominated by the larger;
1 1 1 1

D, can be found from — =1+ _—=—-+ — as the reciprocal sum of 1 and T,
0 TU 1 T?J

d0\}‘8]1 E?H’ d by the smaller. http://www.RDMiddlebrook.com 72
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a=1 -A, v sc A 1
Ct J_ Z)GS Yt =—v=r—(1—SCt1’m)
5p o= i o 'm /
Ry 210k s/2x
s, 01 7L =-31dB (1 - —)
v () g <= 880MH=z
y4
»> 3R $'m 0
1-sC
Z; |29 36 Z,-Z,A, - eraRL (1-s thR)
¢ © m (1 +8CiRy B j
RBHrmHRL
-k ( S/Zﬂ' )
| ] [ ] [ | | | | | | . Z -_———
118dB N _1184g\  880MHz
~ ( s/2x )
'~ 1+ Kl
'~ . 39kHz
\ L}
\ N
\  J
~ . -
0dB 39kHz 880MHz
—~31dB Y5
VIOI1I3/D7IIIIIlIIlIIlIIlIIlIInﬂﬁ:rlww.meddlébrdd{cdmlII.II.II.I....T‘ 73
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Ct © v~ Ct ©
5p J: i Zip+2Zo1 5p J—. ip
vs. 0V RL§10k f\ez . 0V RL§10k
1F ) — c_'l'f+ i 1F 2‘
i S IR R ’
. Z; 2.9k | Z o1+ - . Zin |29 R
The DT gives
Ap12 = Y1 Z12 Dy (Tio =)
The current buffered gain Y7 Z;, is the product of the two
separate gains:
(1-gsr2e )2
Y Z,, = 87dB3 200 MHz
(1+ s/2x )
39kHz
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2
| | | | | || | * 1 — 5/2”
v s/2x
87dB ~. (1 + 39kHz)

_31dB Y1

.
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEER “
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39kHz
|| [ ] [ | | | | | | T [ ] [ | | | | | | || [ ] I \ ) Z()l — SOdB 1

EEEEEEEEEEEEEENENE|y S/Zﬂ'
Yre, ~ 1+
.\ s/ ....... L ~ . 3.2MHz
Z;, =69dB ——32MH:z .
1+ 5/2” ... EEEEEEEEEEEEEEEEEEEEEEEEN NN N EEEEEEEEER
39kHz [ .
3.2MHz ~
Zo1 . :
Z,1 and Z;, are the same, but note that T, = oL s the reciprocal
2
Z; !
of Ti = 12 .
Zo1
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T, = —?’1 ~11dB 33"H2 5
s/2rx
EEE b IR b IR R IR R S " S R 12 (1+32MHZ)
.I..I..I..I..I..III...
.......... -
... \ ~
....r.-..-..- A L LA RRIE RO RN ARIERIERIEN
114B - 3.2MHz '~
0
Zol . .
Z,1 and Z;, are the same, but note that T,, = —~ is the reciprocal
2
Z; !
of Ti = ~12 .
Zol
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1 1 1 1
1+Tlv D, 1 T,

The discrepancy factor D, =

is dominated by the smaller:

L u | | | ] L u | | | ] L u 1 5

Illlllllllllllllll... L J

b,
a,
.... ~y
b,y

11dB

—2dB s/2x

39kHz

s/2x s/2x
(1 + 50kHz)(1 + 880MHz)

D, =-11dB

All these graphical constructions can be conducted symbolically to

give the result for D, in low entropy factored pole-zero form.
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Final step: assemble A,1, as the product of the buffered gain and the

discrepancy factor:

87dB

85dB P

1 _ S/Zﬂ' 1 _ S/Zﬂ'
A . —85]B__ 880MHz ~— 880MHz
v12 1 + S/27Z' 1 + 5/271'

H
04dB | I50kHz 880 MHz
D |
~24B vl ’
50kHz
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Final step: assemble A,1, as the product of the buffered gain and the

discrepancy factor:

87dB

85dB P

Vi1 Zs
1 _ S/Zﬂ' 1 _ S/2ﬂ'
A1y = 85dB — 880MHz _~ 880MH>
0

s/2x s/2x
0dB 1|+ 50kHz 1T 880MHz
|

2dB o |
50kHz

The fact that D,, is close to 1 over most of the frequency range confirms
the expectation that the first stage behaves more like a current source

than a voltage source.
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Summary:

The DT allows assembly of the properties of a 2-stage amplifier from

the properties of each separate stage.

This can be done by injection of either a test current j, or a

test voltage e, at the interface:

iy vy
Av12 = AvlzDi Ale = AvlzDv
U

where A 1o = Ap1 Ay where Ay, =Yi1Zsy

is the voltage buffered gain is the current buffered gain
Z; Z
and D; = 12 and D, = 0l
Zi» +Zo1 Ziz +Zo1

are the discrepancy factors representing the interface loading.
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In principle, this procedure can be extended to the addition of extra stages:

signal
output

Ay123€;

In practice, this procedure becomes cumbersome because the discrepancy

factor for the first interface changes when a second interface is added.
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However, there is an alternative form for the gain of 2 stages that

circumvents this problem.

The DT results already obtained are:

Z: P Z 1
Ay =AY D; = AY ’ Ay =AY D, =AY 0
(4 v12 v12 ZzZ +Zol (Y v12 v12 th +Zol
Rewrite:
1 Zi2 1 1 ZOl _ 1
_ . .
Apia Zin+Zy1 Av » Av12 Zin *+ Zo1 Ayta
Add the two:
1 1
A Yy
012 Avlz
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1 1 1
= +
Oy
Ale Avlz

Ale

This simple and elegant result says that the interface discrepancy factors
D; and D, are not needed, and the overall gain is a "parallel combination"
of the two buffered gains:

1y Oy
Ay12 = Avlz Avlz

where A 1> = Api1Ay,» = voltage buffered gain of the 2 stages

and Ale =Y7{Z;» = current buffered gain of the 2 stages

This result is actually the Chain Theorem (CT), and A, A,o, Y51, Z¢o
are the (reciprocals of the) chain parameters (c parameters).
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Rework the previous example:
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Rework the previous example:

a=1 Ay120s
J_ ©
L i
0 RL g 101(
ip <=
Rp Tin Z0
2.9k 36
©

1 _ S/Zﬂ' 1 _ S/Zﬂ'
oc _ 880 MHz 880MHz
Ay1 Ay = 98dB s/2x 1+ s/2x

984B _'\ / 1+ 3ommz 1+ 32MHz
~

32MHz N\
N
N
N
~ ( 880MH:

N
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Rework the previous example:

a=1 - Av(l)”S a=1 Ay127s
Ct C; '
5p J: ip —ny.\ + 0y 5p J: ()3
g, 0 Ry g 10k | —4) 0 Rp § 10k
iE i g iE <=
- SRg gm <= +> 3Rg o Zo
Z; |29 Zy1 Z, |29
g : © —& - o

1-— s/2x 1- s/2x
oc _ S8S80MHz 880MHz
Ay1Ay2 =98dB s/2x 1+ s/2x

984B 1+ 3ommz 1+ 32MH:z
E EEEEEEEEEEEEEEEETR \ s/zﬂ.

N 2
..'... 1-—
T “ao, 3.2MHz ~ Yi'gchtZ — 87dB ( 880MHZ)

"... ~ ( s/2x )
e, N 1+ 30kHz
..'... \
‘e, ~ .
..'.. 880MH:z ““
....\ “““
..hn ““
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Rework the previous example:

a=1 Avl<2>US
[ il
5p - — iE
vg 0 0 Ry g 10k
° ip .
=> Rp Rp I'm Z,
7. 29 2.9k | 36
1
o ©

S/Zﬂ' 1 _ S/Zﬂ'
~ 880 MH 880 MH
Aggsz - 98dB s/2x § 1+ s/2x -

984B 1+ 3.2MHz 3.2MHz
s/2x

2
1-—

s/2x
\ (1+39kH)
~
1—_8/2z _q_ sl2x \\ 880MHz
A — 858 880MHz ~ — 880MHz Lest®
v12 14 8/27 1, sl2x S A

50kHz 880MHz
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The CT is the key to implementation of the "Divide and Conquer"
approach to D-OA.

The procedure is:

ocC
Ay1o6€;

Find A9 and Y7 of stage 1, and Z{5 and AJ5 of stage 2.
Combine them by the CT to find AJj,, as above,
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The CT is the key to implementation of the "Divide and Conquer"
approach to D-OA.

The procedure is:

ocC
Ay1o6€;

Find A9 and Y7 of stage 1, and Z{5 and AJ5 of stage 2.

Combine them by the CT to find AJj,, as above, and hence find Y;75.
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The CT is the key to implementation of the "Divide and Conquer"
approach to D-OA.

The procedure is:

ocC
AleBi

Find A9 and Y7 of stage 1, and Z{5 and AJ5 of stage 2.
Combine them by the CT to find AJj,, as above, and hence find Y75

ocC
Ay123€;

Find Z{5 and AJ5 of stage 3.

Combine them by the CT to find AJ{>3.
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