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47. In a paper which was published in the last volume of the Society's
Transactions, I discussed a method of forming functions X, Y, &c,
possessing the double property, that (1) \,XYdx = 0, and (2) that any
function could be expanded in a series of such functions. This method
was purely analytical, and depended on certain elementary properties
of quadrics. The method, in the first instance, led us to certain equa-
tions of differences, and thence, by taking the limit, to certain differential
equations. These when solved gave the functions X, Y, &c, all the
constants, except one, being determined by given conditions at the
limits. These equations might have any number of independent
variables, and were all of an even order.

48. To save reference to the former paper, we may state that, when
there is but one independent variable, the general form of the differential

. . . v d f,dX\,di I diX\ . ,9 v.
equation is aX~ ( b ^ - ) + -% [o -^ ) -&o. = PA>X,

where a, 6, c, &c, and A* are all functions of as, to be chosen at our
pleasure, but independent of p. The values of p and the constants of
integration, except one, are determined by the conditions

hdX d ( # X \ , . _
6 — [c -j-j-1 +<fec. =

ax dx \ * I
dx dx

&c. = &c. ,

which hold at one limit, say x = o, and

bdX_d/d*X\+&0=_
dx dx \ dx* I

&c. = &c. )

which hold at the other limit, say a> = /3. Here XX', &c, /i//, &c, are
constants at our disposal, but they must be independent of p. In this

way, we find X = Lty (a?, p)t

where L is an undetermined constant and p is given by an equation
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which we may write f(p) = 0.

If JJ, q be two different roots of this equation, then

J fi

49. The simplest form of the equation will be

aX—— I o — i = pA Xtax \ dx I

where we restrict ourselves to the second order. The conditions at the

rLTC
limits are 6 -i— = XX, when x = a

dx

b —— = — i d . when x =

In this form the equation represents the motion of heat in a bar. The
functions a and b depend on the coefficients of cooling and conduction
and on the area and perimeter of the section. With this interpreta-
tion, it is essential that the functions a, b, and A* should be positive
from one end of the bar to the other. The constants X and fi must
also be positive.

This simple form of the equation has been discussed by G. Sturm in
the first volume of Liouville's " Journal." I have not yet examined
the whole paper, bnt he gives a very full introduction, in which he
Bums up his more remarkable results. These are of two kinds,—first,
those which relate to the properties of the equation to find jp, and
secondly, those which relate to the properties of the function X.

(1). He remarks that Poisson has shown that the equation to findj)
has no imaginary roots. He now shows that the equation has no
negative or equal roots.

(2). None of the functions X, Y, &c, can vanish without changing
sign.

The first of these, i.e., the function which corresponds to the least
root of the equation to find p, preserves one sign from one end of the
bar to the other. The second, i.e., the function which corresponds to
the next smallest root, changes sign once at a point somewhere between
the two given extremities of the bar. The third changes sign twice,
the fourth three times, and so on.

Two functions corresponding to two consecutive roots change sign
alternatelyr one after the other, that which corresponds to the greater
vanishing first, as we proceed from end of the bar to the other.

Analogous theorems are then proved relative to the maxima and
minima values of these functions.
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I propose to show in this paper that some of these results follow at
once from elementary properties of the. qnadrics made use of in my
former paper. Many of tbe properties are true in the general case,
when we do not restrict the differential equation to be of the second
order. They are also true when the functions are given- by an equa-
tion of differences.

This, however, is not the communication alluded to in the preface
to my former paper.

50. To find the geometrical meaning of the symbol p.
Consider the two quadrics

A\X\ + A\X\+...=& (1),

(2).

We seek (as m Art. 6 of the former paper) the common conjugate
diameters of the two quadrics. Let XxXt... Xtl be the coordinates of
the extremity of one such diameter, then*

dU (3).

&C. = &G.

Let this diameter cut the first quadric in Pand the second in Q. This
is, of course, a short mode of stating that, if XXX,... Xn be obtained
from (1) and (3), then

but if X ^ j ... be obtained from (2) and (3), then

If we now multiply equations (3) by X ^ ... XIO and add the results,
\ve find, if XlXi... Xlt be the coordinates of Q,

1 =jp(A\XI +...+ A*mX$ (4).

* The property 5 J ! . \ ] ' = 0 follows at onco from those equations without
assuming the reality of the values of p, or referring to any geometrical property.
Let q be another value of p, and let 1\ Fa... be tho corresponding values of XiX^...,

then wo easily find A', - , ? - F, f ~ « (p-q) A\ X, IV

Substitute for IT and sum for all the suffixes; we have



96 Mr. E. J..Routh on [April 8,

Thifl gives at once p = i (^ (5).

If we eliminate XXX%... Xa from the equations (3), we of coarse get

the determinant l-vA\> (hi,

&c.

&c. = 0 (6),

already given in the article referred to in the former paper,

51. The values ofp given by the determinant are all real.
Three different proofs of this proposition have been given by Dr;

Salmon in his " Lessons on Higher Algebra." The proof given by
Poisson, in Art. 90 of his " Theorie de la Chalour," is applied to the •
case of a differential equation of the second order, but it may easily be
extended to the general case of a differential equation o? an equation'
of differences of any order.

If possible, let p = h+k v'—1 be an imaginary root, then, substituting;
in equations (3), we have

= &c.

But we must also have another root, viz., p = h—k\/— L Substituting,
this also in the same equations and representing the new values of
Xj Xg, &c, by Yx Ys, &c, we have

But we also have A] X, Y,+A\ Xs Y9 +. . . = 0.

This leads to A\ (L\ + if,2) + J* (*j + M*2) +... = 0,.

which is impossible if -4* A\... be all positive or all negative.

Keferring back to Art. 48 of this paper, we infer that, if A* keeps one •
sign as % varies from one limit to the other, the equation f(p) = 0 has no-
imaginary roots.

52. To determine if any of the values ofp can be negative.
Since the values of p are real, it follows from equations (3) that the

ratios of X,X,... are all real.
In the quadric (1), the coefficients A\A\ ... are all positive, so that,

if there were but three coordinates, we should call (1) an ellipsoid. It
easily follows that OP3 is positive, and therefore OP is real.

In quadric (2), the coefficients anan ... are unrestricted, and may be
either positive or negative, BO that, if there were but three coordinates,
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we should say that (2) may be either an ellipsoid or a hyperboloid.
Thus OQ3 may be either positive or negative. In the former case

. p is positive, in the latter negative.
But if we wish to arrive at the differential equation

v d / , dX\ . d% (d*X\ aaX— •— [b - T - I + J - J [-F T)-&o. =
dx \ dz I dx* \ dx% I

in its most general form, we must, as in Art. 23 of the former paper,
choose as our quadric (2)

2Z7= a1X{+fc1(Z8-Z1)8+c1(X8-2XJ+X1)8+...
+ similar terms with increased snffixes.

If now a, 6, c, as well as A%, be positive from one limiting value ofxto the
other, tften this qnadric also is of the ellipsoid class, and thus all the values
of p will be also positive.

This argument may, however, be even more generally applied. If
we take the case of two independent variables as given in Art. 38 of
the former paper, we see that the quadric 2£T= 1 is certainly of the
ellipsoidal class, if we put the e's equal to zero. So that, when the
differential equation takes the J"own

v d / , dX\ d
a X \ h )

where a, b, e, A are positive over the area of integration, then the values of
p are all positive* We may also apply the argument to the more
general case in which the differential equation is of an order higher
than the second.

53. Returning to the quadrio (2), we see that some of the values of j)
may be negative, if one of the functions b, c, &c. becomes negative be-
tween the limits of integration. We may easily understand the geo-
metrical meaning of this. If we put JIJX, = £,, AtXt = £„ &c, the
process described in Art. 50 is really that of making

l\ + Vt + . . . = max. or min.
We are therefore finding what we may call the principal diameters of
the quadric (2), when we treat £j£,... as the rnuning coordinates. By
equation (4) of Art. 50, we see that p is the reciprocal of the square of
any such semi-diameter. Thus, if p, q, r ... be the values of p given
by the equation (G), the quadrio (2) may be writ ton

Extending the phraseology of solid geometry, there will be no negative
roots, one negative root, two negative roots, &c, according as the
quadric (2) is an ellipsoid, a byporboloid of one, two, &c. shoots.

VOL. xi.—NO. 102. II
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54. We may also obtain some simple limits to the values of p. It is
clear that the greatest semi-diameter must be greater than the greatest
of the quantities found by putting all the £'s, except one, equal to zero.
Let us take for our quadrio (2), the expression

as given in Arts. 9 and 10 of the first paper. If we express the X'a
in terms of the £'s we shall see that the least value of p must be less
than the least of the quantities

A** A * ' A * ' '

where the X of Art. 10 has been written separately from the a,.
In the same way, the greatest value of p must be greater than the
greatest of these. In the limit, for a differential equation of the second

order, the least and greatest values of the function a- lie between the
least and greatest values of p.

If a + 2 6 become negative between the limits, some of the values of p
must be negative.

55. Taking the same quadric, and supposing the a's and 6'a to be
positive, we notice that, whatever the ratios of XXX%... Xn may be, the
sum of their squares will be increased if we remove the terms con-
taining b from the equation. Hence the greatest diameter of the
quadric 2 JJ = 1 is less than the greatest diameter of the quadric formed
by omitting the terms containing the fe's. Tliat is, the least value qfp

is greater than the least value of -^.*

* Dr. Salmon remarks, at the beginning of his sixth lesson on Higher Algebra,
that, if in the symmetrical determinantal equation

n— Pt «ia» &c«
«is> *«—Pt &c«
&c. &c. &c.

0,

we suppress the first row and the first column, we have a second symmetrical deter-
minantal equation which we may write A2 = 0 whose roots are all real, and separate
those of the first determinantal equation. We may extend this convenient theorem
UB follows.

If we border the original determinant with any given quantities llt ^. . . , and
thus form a third equation, viz.,

Ag = an —pt otis, • &o. l\ «=> 0,
°J8i °S2—Pt &c> h
&C. &C. &O.
I,, L, &c. 0
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56. To show that, if the functions a, 6 (and of course A*) be positive
from one limit of integration to the other, then the function X, which
corresponds to the least root of the equation to find jp, keeps one sign from
one limit to the other.

As before, let XtX%... Xn be the successive values of the function,
and let the quadric (2) be

» -f same with increased suffizeB

= 1.

Let us suppose that p has its least value, then, by equatiori (4), Art. 50,
we have to make

E8 = A\ X\ + A\ X\ +... + A\X\
as great as possible.

If possible, let any of the JTs, say XaXs..., have a different sign
from the res u. Then, by changing t te signs of these> le&ving their
numerical values unaltered, we clearly decrease the value of TJ. Since
2U is now less than unity, and X,X8... Xn all have now the same sign,
we can numerically increase all of them by the same quantity, so as to
make 2 IT equal to unity. It follows that B has been increased. Hence
B is not the greatest possible unless XlXi... Xn all have the same
sign.

57. This theorem is also true when the function X is obtained from
the differential equation of an order higher than the second. The

then the roots of this will also be all real and will separate the roots of the first
determinantal equation. If we make all the Ts zero except one, we get the pro-
position as enumerated by Dr. Salmon.

To prove this we notice that, if ana^. . . be the minors of the constituents in the
leading diagonal of At, then the third determinant (by Art. 37 of Dr. Salmon's
Algebra) may be written in the form

A, m A'8 = - {*,y/7n + k v ^ + & c . } 9

whenever p has such a value that A, «* 0. Suppose p to take in succession the
values of the roots of A| = 0, beginning %t the least. Then, at each change in the
value ofp, the minors alxa.a... will change sign, because each is of the form A2.
Hence A'3 will change sign also. Thus a root of the equation A3 <= 0 lies between
each adjacent two of the roots of A, = 0.

This proposition may be stated in geometrical language. The roots of the deter-
minantal equation A, = 0 are the squares of the reciprocals of the principal semi-
diameters of the quadric (2) in Art. 50, and what we have proved amounts to this,—
the lengths of the principal diameters of any section, say,

/,X, + f8X, + ... = 0,
separate the lengths of those of the original quadric. In this form the proposition
admits of a very easy proof by referring tho quadric to its principal axes.

In the same way, if we border the determinant A3 with a second Bet of arbitrary
quantities, with zero in the corner, we get a now determinantal equation A4 = 0
whose roots are all real, and separate those of A8 = 0.

H 2
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proof, however, is not of the same simple character as when we re-
strict the quadric to the form given in this article. I have, therefore,
not thought it advantageous to give the proof at length.

58. When the function X is given by an equation of differences or a
differential equation of the second order, the properties mentioned in
Art. 49 are simple corollaries from the following lemma.

Consider the equation of differences

rt,Xx-A (6,.,AX,.,) = pA\ Xx.

If q be another value of p, we nave

Eliminating the function ax, we find

(q-p) A\ Xx Yx = b, (Xx+1 Y.-XJTm.d-b..l (Xx

This gives .

Xm Tm + ... +A\ Xx YJ] = bx ( I I l l Y I -

The right-hand side may also be written

59. COR. 1.—Consider the full series of values XjX,... Xn arranged
in order. We shall have ranges of positive and negative values
succeeding each ot.her. Let Xro ... Xz be one of these ranges in which
all the constituents have one sign, while those on each side, viz., Xm.\
and Xx+1, have the opposite sign. We shall prove that, if q>p, there
is one change of sign at least in the corresponding range of Y's extending
from Ym.\ to Yx+1 both inclusive.

For, if possible, let all these Y's have one sign, then every one of
the four terms on the right-hand side of the equality in the lemma has
the sign opposite to that of the product XXYX. Hence the lemma
could not be true.

We have here made no assumption as to the function ax, but bx and
Al

z have been supposed to have the same sign from one limit to the
other.

•

60. COR. 2.—Consider next a double range of values, say Xj... Xm... Xx,
such that all the constituents from Xt to Xm_i have one sign, Bay,
negative, and Xm ... Xx have the other sign, while X|_! and Xx*j have
opposite signs to the adjacent constiluents in order to make the double
range complete. Then, by Cor. 1, if q>p, Ymust change sign be-
tween Y,_, and Yh and also between Y|_, to Yx+i. We shall now prove
that a single change of sign between Yj.i and Y, will not suffice for both
these requirements. .
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For, if it did, the products XtYi... XXYX would all have the same
sign. But, writing I for in in the equation of the lemma, every one of
the four terms on the right-hand side has the sign opposite to that of
the products Xx Yx, and thus again the lemma could not be true.

In the same way, if we consider a complete triple range of values,
say, Xk... Xt... Xm ... Xxi so that X changes sign twice as x varies
from one limit to the other ; then, by Cor. (1), Y must change sign be-
tween Xk.i and X|+1, Xt.x and Xtrt+I, Xm_! and XT+1. But it follows
exactly as before that two changes of sign will not suffice for all three
requirements.

61. COR. 3.—Consider the range of values Xx... Xx all of one sign,
beginning at one extremity of the full series, and such that Xxt.x has
the opposite sign. We shall prove that, if q>p, there is one change of
sign at least in the corresponding range of Y's extending from Y, to YT+i.

In this case the range begins at one extremity; we have therefore

the conditions 50 (X x -Z o ) = \XV 60 ( Y i - Yo) = A Yu

which hold at that extremity. The equality in the lemma becomes
therefore

If. then, all the y's from Yx to YXfi had the same sign, every term
on the left-hand side would have the same sign, and every term on
the right-hand side would have the opposite sign, and thus the equality
could not exist.

Similar remarks apply to a range terminating at the other extremity.

62. COR. 4.—Lastly, consider all the n series

A J A J . . . X.n,

&c,

corresponding to the n values of j?, arranged in order of magnitude, be-
ginning at the least.

By the preceding corollaries, each of these series must have at least
one more change of sign than any series above it. As there are but n
terms in each series, the lowest, or nth, can have only n—1 changes
of sign.

Hence the first series has no change of sign, the second has only one
change, the third has only two, and so on. Also, the changes of sign in each
series alternate, in the manner already explained, with the changes of sign
in any series above it.

63. I t should be noticed that, in Cor. 1 and 2, no use has been made
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of the conditions at the limits. In these propositions, therefore, p and
q are any arbitrary quantities, except that q mast be greater than p.

In Cor. 3, the conditions at one limit are introduced, so that the
XTresults of these three corollaries are true, if only —* = —* at one limit.

Finally, in Cor. 4, the conditions at both limits are assumed to be
satisfied, and therefore p and q must now be different roots of the

equation

64. If we take the second form of the lemma given in Art. 58, we
may prove that similar theorems hold regarding the successive maxima
and minima of the functions X and Y. But the mode of proof is very
similar to that just used. There does not appear to be sufficient novelty
to render it necessary to lengthen this paper by repeating the argu-
ments with the necessary variations.'

A Form of the Equations determining the Foci and Directrices of
a Conic whose Equation in Cartesian Coordinates is given. By
Prof. WOLSTENHOLME.

[Read April ith, 1880.]

If the rational equation of a conic referred to coordinate axes inclined
at an angle w, be u = 0, let (a, y) be the coordinates of a focus, and
(X, Y) current coordinates. Then, if we move the origin to the focus,
the equation will become

=o.dx ay \ aar ay1 dx dy

But, the origin being a focus, the equation must be of the form

Hence * £ 1 = ^ = £ = *£•= % =Je2^cosoj ( _ x )
dru dru 2w du du drv,
dx* dy1 dy dx dxdy

We can deduce the equations

—»(£)• (*&»)—»©'•
(\ *̂w i \ n > du du

\ -j—=- +COS to 1 2tt = X — — ;
dx dy I dxdy


