
The 19th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun
Edited by G. A. Feiden

A parallel numerical algorithm to solve linear systems of equations
emerging from 3D radiative transfer

Viktoria Wichert,1 Mario Arkenberg, 1 Peter H. Hauschildt 1

1 Hamburger Sternwarte, Universität Hamburg, Hamburg, Germany

Abstract
Highly resolved state-of-the-art 3D atmosphere simulations will remain computationally extremely expensive for years to come. In
addition to the need for more computing power, rethinking coding practices is necessary. We take a dual approach by introducing
especially adapted, parallel numerical methods and correspondingly parallelizing critical code passages. In the following, we
present our respective work on PHOENIX/3D.
With new parallel numerical algorithms, there is a big opportunity for improvement when iteratively solving the system of
equations [En − Λ∗(1 − ε)] Jnew = Jfs−Λ∗(1− ε)Jold emerging from the operator splitting of the radiative transfer equation
J = ΛS. The narrow-banded approximate Λ-operator Λ∗, which is used in PHOENIX/3D, occurs in each iteration step. By
implementing a numerical algorithm which takes advantage of its characteristic traits, the parallel code’s eXciency is further
increased and a speed-up in computational time can be achieved.

1 Introduction
A vital part of computing atmosphere models, as well as

a time consuming one, is Vnding a solution to the 3D radia-
tive transfer equation numerically. To reduce the often exten-
sive computation times, a parallel version of the PHOENIX/3D
code was implemented in OpenCL and MPI (cf. Hauschildt
& Baron (2011)). Figure 1 features the computational times
needed for a 3D OpenCL radiative transfer calculation on
several diUerent devices, including a comparison between se-
rial code, parallel MPI code and parallel OpenCL code. As
can be seen from the plot, the parallel OpenCL version of
PHOENIX/3D already achieves a signiVcant speed-up of the
calculations compared to the serial version, while being able to
run on a wide range of devices, such as CPUs, GPUs andMICs.
Since results of the parallelization are overall promising, it is
reasonable to assume that further parallelizing the code will
result in even smaller wall clock times. Instead of understand-
ing parallelization as a pure programming problem, this paper
will focus on suitable parallel algorithms.

The radiative transfer code consists of a formal solution
step and an operator splitting step (see Kalkofen (1987)). The
latter is one of the more time consuming parts of the 3D
radiative transfer calculations, so any approach to further
speed-up the code should primarily be focused on it.
The operator splitting step contains an iterative scheme to Vnd
the mean intensities J via the operator splitting equations
[1− Λ∗(1− ε)] Jnew = Jfs − Λ∗(1 − ε)Jold, where Λ∗ is
the approximate Λ-operator (ALO). There are several kinds
of ALOs which all lead to a stable iterative scheme while
keeping computational eUorts small. PHOENIX/3D uses a
narrow-banded n × n approximate Λ-operator (ALO) with
a half bandwidth of k << n. Since this is an iterative
scheme, similar systems with the same ALO Λ∗ but diUerent
right-hand sides have to be solved.

45974	

17391	 19164	

7214	

3460	

5536	 5444	

2314	
2758	

1451	

584	

100	

1000	

10000	

100000	

Serial: dual E5520
@2.27GHz

 E5-1620 v2
@3.70GHz

 E5-1650 v2
@3.50GHz

MPI: dual E5520
@2.27GHz

 8 procs

 E5-1620 v2
@3.70GHz

6 procs

 E5-1650 v2
@3.50GHz

4 procs

OpenCL: dual E5520
@2.27GHz

16 units

 E5-1620 v2
@3.70GHz

12 units

 E5-1650 v2
@3.50GHz

8 units

Intel Many
Integrated

Core
Acceleration

Card
224 units

AMD Radeon
HD - FirePro

D500
Compute

Engine
24 units

lo
g1
0	
/m

e	
[s
]	

RT/3D	129^3	voxel,	64^2	solid	angles;	single	wavelength	
IEEE	64bit	precision	

Figure 1: Computational time for a 3D OpenCL RT run with a
single wavelength on a 1293 voxels, 642 solid angles grid

In the current PHOENIX/3D version, the systems of equations
are solved by a parallel sparse Jacobi solver. Replacing it
by a parallel numerical solver which is especially suited
to the features of Λ∗ will result in a further decrease of
computational time.

The following section, Methods and Implementation, will
explain the algorithm’s structure and details of how the
before-mentioned characteristics of the problem are taken into
account in the parallel solver. In Summary and Conclusion,
results will be summarized and interpreted in the context of a
successful implementation into the PHOENIX/3D code and its
applicability to the radiative transfer problem.

1

Viktoria Wichert & Mario Arkenberg & Peter H. Hauschildt

2 Methods and Implementation
In this section the algorithmwill be explained using the gen-

eral systems of equationsMxi = bi, whereM is a diagonally
dominant, narrow-banded n × n matrix and xi, bi ∈ Rn ∀i.
The number of systems of equations with the same matrixM
that have to be solved, i, is not Vxed, but the algorithm will
be the more eUective the more systems are solved. Narrow-
banded means that the half-bandwidth k fulVlls the condition
k << n. Diagonally dominant is deVned by

∑
i 6=j mij <

mii ∀i ∈ {1, . . . , n}. The latter assumption is made for the
sake of simplicity. A system with a non diagonally dominant
matrix can still be solved after minor changes to the algorithm
(see next section).
The next section will explain how the algorithm solves the
systems of equations eUectively in parallel It is followed by
remarks on the algorithm’s implementation.

2.1 The Algorithm
The basic idea of this algorithm is to adapt the concept of

the Gaussian elimination algorithm to parallel systems. The
Gaussian algorithm can be described as follows: the matrix is
factorized, which here means LU decomposed intoM = LR.
Afterwards there is a forward elimination step, which Vnds
the solution zi to the problem L Rxi︸︷︷︸

zi

= bi. Then the solution

to the original problem is computed by solving Rxi = zi in a
backwards substitution step.
The algorithm by Arbenz et al. (see Arbenz et al. (1999))
transfers this idea to solve systems of equations in parallel by
spatially decomposing the matrix M . This speciVc decom-
position only is interesting (in terms of computational eUort)
in cases where the matrix is narrow-banded. The second
prerequisite, M being diagonally dominant, originates from
the need to LU decompose parts of the original matrix. In case
of a non diagonally dominant matrix M , it will be necessary
to introduce additionally partial pivoting, since otherwise the
LU decomposition might not be stable. The decomposition
then takes the form PM = LR instead ofM = LR. Due to
the additional pivoting matrix P , the overall algorithm has to
be adapted accordingly in the non diagonally dominant case.
LU decomposing the whole matrix M , such as is done in the
classical Gaussian algorithm, would be computationally ex-
pensive for big n. Therefore this algorithm Vnds a way where
only one type of sub-matrices has to be LU decomposed. Since
the 3D radiative transfer code solves similar systems (same
matrix, diUerent right hand sides) repeatedly, computing time
can be decreased for suXciently large enough problems by
Vrst factorizing the matrix, and only then solve the systems of
equations, which is easier now with a factorized matrix.
In the Vrst step of the algorithm, the factorization of M is
done. Afterwards, the adapted RHS is computed to complete
the so-called reduced system, which is then solved by a
parallel Jacobi solver. The last step in computing the original
system’s solution is the back-substitution step. The general
system behind the algorithm is also shown in the following
Wowchart.

Factorization

Reduced system

Jacobi solver

Backsubstitution

Since the original narrow-banded matrix’s entries are
mostly zero, it is spatially decomposed into several types
of sub-matrices A,B,C and D along the non-zero areas
(see Vg. 2). Indexes U and L indicate upper resp. lower
diagonals. Each processing element then works on its part of
the original matrix independently. Unlike the original back
and forth-substitution algorithm, only sub-matrices of type A
have to be LU decomposed.
Each processing element computes its part of the reduced
system Sξi = ci, where S is a (p−1)k× (p−1)k matrix (see
Vg. 3), whose structure is shown schematically by using k× k
sub-matrices T,U and V . These new types of sub-matrices
are calculated from L,R,B,C and D. Overlapping areas
in the Vgure indicate data exchange between processing
elements. Note that this is the Vrst time since distributing
work to the processors that communication has to take
place between processing elements. The reduced matrix S
can then be used to solve all the similar systems that were
mentioned before. Only the RHS bi has to be manipulated
accordingly for every new system and is then denoted as ci.
The reduced system Sξi = ci is then solved in parallel by
an implementation of the classic Jacobi solver. Afterwards,
ξi is used to compute the original system’s solution xi via
back-substitution. Every linear system containing the same
matrix M can now be solved accordingly by computing the
reduced system’s solution and doing a back-substitution.

In relation to the linear systems emerging from the radiative
transfer equation this means that during the Vrst iteration
step, the original matrixM = En − Λ∗(1 − ε) is factorized.
During all other iteration steps, only the reduced linear
system has to be solved after adapting the current RHS.

Figure 2: Decomposition of the original n× n matrixM onto
p processing elements

2 Zenodo, 2016

The 19th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun

Figure 3: The resulting reduced system S consisting of k × k
blocks

2.2 Remarks on Implementation
There is more than one option to use PHOENIX/3D in

parallel, but there are several reasons to start implementing
a new algorithm for PHOENIX/3D in OpenCL. First of all,
OpenCL code runs on a range of devices, such as CPUs,
GPUs, MICs and combinations thereof. It is an open platform,
so the code can be used independently of the choice of a
certain manufacturer’s devices. Figure 1 also suggests that the
OpenCL radiative transfer code might have a slight advantage
in timing over the MPI version. Furthermore, there is the
option to adapt the code to run as a OpenCL/MPI hybrid later
on.
The code is started on the CPU (host) and distributes parallel
tasks to the chosen device via kernels. In this algorithm, the
parallel tasks are subdivided into four kernels (see Wowchart):
the Vrst one does the factorization of the original matrix and
only is executed once per wavelength. It includes spatially
distributing the matrix elements to the processing elements by
assigning each processing element its own id and distributing
matrix elements according to their indexes. From here, the
second kernel adapts the current RHS and therefore completes
the reduced system, which is now solved by the third kernel,
a parallel Jacobi solver. Afterwards, the back-substitution
kernel computes the original system’s solution from the
reduced system’s in the fourth kernel. The last three steps are
now repeated for every similar system of equations.
Apart from few exceptions, there is no need for interprocessor
communication. Only during the last step of the factorization
while computing the reduced matrix S, data has to be shared
between neighboring processing elements (see Vg. 3).
The parallel algorithm has a higher memory demand than the
serial one, since the diUerent sub-matrices are allocated in
addition to the original matrix. Although, after computing
them,M is not needed for the remainder of the algorithm.
In case p equals one, no reduced matrix S exists. Instead,
there is a shortcut implemented to solve the systems of
equations directly via a serial Jacobi solver.

3 Summary and Conclusions
Extensive testing of PHOENIX/3D’s parallel 3D radiative

transfer code has shown that it already achieves a considerable
speed-up compared to the serial version. To further decrease
computational eUort, a parallel algorithm has been introduced

to solve the linear systems of equations emerging from the 3D
radiative transfer algorithm.
Since the algorithm is not yet fully tested in 3DRT, there are
no test results yet. Still, there are reasons to assume that usage
of Arbenz’ algorithm together with PHOENIX/3D is worth-
while. Especially in cases where the number of iterations in
the operator splitting step is high (e.g. strong scattering), the
computational costs of factorizing the original matrix can be
compensated by saving computation time when solving the
smaller, reduced system numerous times. Nevertheless, the
overhead created by decomposing the matrix and transferring
data to the diUerent processing elements is only worth the ef-
fort if the original system is large enough, i.e. if the overhead
is covered up by saving time doing the actual solving in paral-
lel.
In cases where these preconditions are met, the algorithm will
further decrease the 3D radiative transfer code’s wall clock
time.

References
Arbenz, P., Cleary, A., & Dongarra, J. 1999, EuroPar ’99 Paral-

lel Processing.
Hauschildt, P. & Baron, E. 2011, A&A, 533.
Kalkofen, W. 1987, Numerical Radiative Transfer.

Zenodo, 2016 3

