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Project Specification 

In this project it should be tested to use a sensor smoothing algorithm on an FPGA to 

directly reduce the noise on raw sensor data in general. Noise is a large issue for all high 

energy physics detectors and it is quite common to use some kind of pre-processing like 

clustering to reduce the needed bandwidth and reduce the later needed processing 

complexity due to combinatorics. For sensor data from vibrations monitoring systems the 

reduction of noise is the main issue. 

 

Different smoothing algorithms will be investigated and afterwards implemented on a 

modern Cyclon V SOC FPGA. The data source will be a vibration sensor foreseen for 

monitoring the hard drives of the LHCb computing farm. 

 

To realize the system the processing of fix-point calculations in HDL will be studied and 

simulated in ModelSim. Furthermore, a test bench for the system has to be written, to test 

the different smoothing algorithms. Afterwards the performance of the designs will be 

tested with real sensor data. 



 

Abstract 

The primary output of any experiment in which significant information is to be extracted is 

information which measures the phenomenon under observation. Indistinguishable from this 

information are random errors which, regardless of their source, are usually described as noise. Of 

importance to the experimenter is the removal of as much of this noise as possible without, at the 

same time, overly degrading the underlying information. 

In this experimental work, the information from vibration sensor is obtained in the form of four-

column table of numbers. This paper is concerned with computational method for the removal of 

the random noise from such information as well as implementation of this method in HDLs 

(Hardware Description Languages) and run the algorithm on an FPGA (field programmable gate 

array). 

In this project, random noise from vibration sensor’s data is removed using the smoothing 

algorithm, which is called moving average. This algorithm is implemented inside an average block 

using VHDL and Verilog languages. The average block is using binary fixed point math library 

(fixed point addition and fixed point division) as well as Finite State Machine (FSM) and this is ran 

through the pipeline on an FPGA board. 

Finally, we show the outcome of smoothing data from the vibration sensor and what was the 

influence of the implemented smoothing method using graphs, histograms and simulation results. 

Keywords: FPGA, smoothing data, VHDL, Verilog, average block, fixed point addition, fixed 

point division, sensor data.
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1 Introduction 

The field programmable gate arrays (FPGAs) are largely used in many different areas in High 

Energy Physics (HEP) at CERN. This contribution aims at testing and reviewing the usage of 

FPGAs in smoothing vibration sensor data in order to reduce the noise from the dataset. 

Chapter 1 introduces closely the project challenge, explaining why the project was proposed and 

what the main goal is.  

Chapter 2 describes the development environment which enables any reader to use or to further 

improve the code. 

Chapter 3 tells more about the vibration sensor itself and describes the type of data that is gathered 

from the vibration sensor. 

Chapter 4 demonstrates the data smoothing algorithm used in this project – moving average 

algorithm. It also analyses some of the main concerns, fixed point division and addition, that need 

to be implemented in hardware.   

Chapter 5 presents the implementation of smoothing algorithm in HDL and describes the 

algorithms and libraries used. 

Chapter 6 evaluates the results from simulations and test benches and analyses overall performance.  

Chapter 7 shows project conclusions, project’s current status, advantages and disadvantages of 

implemented algorithm and recommendations for future work. 

1.1 Previous Projects 

FPGA’s are used in a wide field, ranging from fast proto-typing, to accelerating software. I have 

been working on at the beginning of my summer student internship on acceleration of the execution 

time of Java programs on FPGAs. Although little used in High Energy Physics analysis code, Java 

is an ubiquitous programming language, used in countless domains, including the LHC controls. 

Because Java bytecode runs on a virtual machine, attempts have been made to accelerate Java 

programs by "hardening" the virtual machine. However these have been marred somewhat by the 

lack of flexibility of ASIC solutions [1]. Intel's new Xeon/FPGA hybrid platform offers a 

completely new perspective for such attempts. The main goal was to use Java processor on an 

FPGA as Java Virtual Machine (JVM) to run Java code on an FPGA platform. 

Another attempt was to use the Aparapi API (a parallel API). Aparapi allows Java developers to 

take advantage of the compute power of GPU devices. It does this by converting Java bytecode to 

OpenCL at runtime and executing on the GPU. The main goal of the project was to get Java code 

running on an FPGA. In order to work with Aparapi API, development environment was set up 

thanks to the great documentation of aparapi-ucores1. A simple Java program for calculating 

numeric squares on a Nallatech PCIe card was implemented successfully. However, the real 

application that was expected to be tested, were not easy enough to implement in a short time.  

                                                      
1 https://gitlab.com/mora/aparapi-ucores 
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1.2 Project Challenge 

The main project is about how FPGAs can be used to smooth data that we are getting from a 

vibration sensor. The use of smoothing algorithms will be discussed as well as the algorithm 

that is used in this project. In addition, the implementation in VHDL and Verilog will also be 

explained in detail. 

The output data from the sensor are used as input data for the smoothing algorithm that is 

implemented on an FPGA board. It is expected that we get smoother data with reduced noise 

(see Figure 1). 

  

Output 
Data from 

Sensor

Smoothing 
Algorithm

on

FPGA

Smoothed
Output Data 
from Sensor

Figure 1.    Visualized project challenge 
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2 Development Environment 

The temporary development name of this project is AverageBlock and is hosted on gitlab2.  

Average block is developed on a Linux environment and it was tested on CERN CentOS 73 but 

should also run on other distributions. 

The folder structure of the projects’ root directory can be seen in Figure 2. 

 

Figure 2.    Project folder structure 

The work directory contains all the files related to the implementation of project written in VHDL 

and Verilog. Average block is used for averaging data gathered from the vibration sensor (see 5.1) 

and is implemented in the average.vhd block. The fixed point adder (see 5.2) as well as the fixed 

point divider (see 5.3) are implemented in fixed_point_adder.vhd and qdiv.v respectively.  

The testbench for verifying functionality of the block is created inside average_tb.vhd. The 

ModelSim (see 2.2) Script File average.do is used for storing waveform display settings, as well 

as for other scripting within ModelSim. 

File run.csh is used to set up the necessary environment variables. 

                                                      
2 https://gitlab.com/jelena-b94/AverageBlock 
3 https://linux.web.cern.ch/linux/centos7/ 
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2.1 Altera’s Quartus II 

Altera Quartus II4 is a design software produced by Altera. 

Quartus II enables us to compile these designs that are 

implemented in VHDL and Verilog for hardware description. 

Quartus II has incremental compilation [2] feature support. In 

order to successfully compile this project, it is required that all 

these compilation stages are compiled successfully. 

Before simulating this project design, we need to compile the 

source files and testbench. For hierarchical designs, compile the 

lower level design blocks before the higher level design blocks. 

To compile this average block project, we define parameters in 

ModelSim *.do file: 

 $ vcom work/fixed_point_adder.vhd 

 $ vlog work/qdiv.q 

 $ vcom work/average.vhd 

 $ vcom average_tb.vhd 

After successful compilation, ModelSim is used for simulation, verification and debugging this 

project. Average block files are loaded for the simulation inside the *.do file as well: 

 $ vsim -novopt average_tb 

2.2 Mentor Graphics ModelSim 

ModelSim5 provides a comprehensive multi-language HDL 

simulation and debugging environment for simulation of 

hardware description languages such as VHDL and Verilog. 

In order to open some selected windows, and follow the 

behaviour of the signals in wave window that we are interested 

in and for viewing and setting some test patterns (for example, 

duration of simulation, wave zoom, etc.) in ModelSim, we add 

additional parameters within the ModelSim do file, 

average.do: 

 $ view wave, 

$ add wave -noupdate data_valid 

$ run 1000 ns 

                                                      
4 https://www.altera.com/downloads/download-center.html 
5 https://www.altera.com/products/design-software/model---simulation/modelsim-altera-software.html 

 
Figure 3.    Altera Quartus II’s logo [3] 

Figure 4.     ModelSim’s logo [4] 
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2.3 R Studio 

RStudio6 is a free and open-source integrated development 

environment (IDE) for R, a programming language for 

statistical computing and graphics. 

In this project, RStudio is used for visualization of the 

output data from the vibration sensor as well as the data 

we get after smoothing it using the FPGA. 

Output data from the sensor is written into a simple text file, noSmooth.txt in first case (without 

smoothing block) and withSmooth.txt after smoothing the data with the average block. 

All the following visualizations of the data in this report are created using Plotly7. Plotly for R is 

an interactive, browser-based charting library built on the open source JavaScript graphing library, 

plotly.js. It works entirely locally, through the HTML widgets framework.  

                                                      
6 https://www.rstudio.com/ 
7 https://plot.ly/r/ 

Figure 5.    R Studio's logo [5] 
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3 Sensor Data 

The vibration sensor provides the data used in our tests for all 3 space 

dimensions (X, Y, Z), which are stored in 16 bit wide locations as fixed 

point numbers. 

 

The sensor type that is used in this project is ADXL345 (see Figure 6). The ADXL345 is a small, 

thin, low power, 3-axis accelerometer with high resolution (13-bit) measurement at up to ±16g. 

Digital output data is formatted as 16-bit twos complement and is accessible through either a SPI 

(3- or 4-wire) or I2C digital interface [6]. The I2C is used in this system. 

Figure 6.    ADXL345 vibration sensor [7]

We needed to implement smoothing because of the electrical noise we have inside the data set 

that comes from vibration sensor.  

Figure 7 shows the role of the vibration sensor in the system. For more details about the average 

block part see chapter 5.1. 

On ARM a Linux distribution is running which writes the data on a SD card and copy the file into 

mounted network file system.  

Figure 7.     The vibration sensor in general picture 



11 | P a g e  

 

4 Data Smoothing 

Data smoothing is the use of an algorithm to reduce noise from a data set, allowing (not always) 

important patterns to stand out. This can be done in a variety of different ways, including random, 

random walk, moving average, simple exponential, linear exponential and seasonal exponential 

smoothing. It is also very important not to overdo data smoothing, at some point it is also bad. 

In the following chapter the moving average algorithm which was implemented during this project 

will be explained. 

4.1 Moving Average 

Moving average is a calculation to analyse data points by creating series of averages of different 

subsets of the full data set.  

Given a series of numbers and a fixed subset size, the first element of the moving average is 

obtained by taking the average of the initial fixed subset of the number series. Then the subset is 

modified by "shifting forward". That is, excluding the first number of the series and including the 

next number following the original subset in the series. This creates a new subset of numbers, which 

is averaged. This process is repeated over the entire data series. The plot line connecting all the 

(fixed) averages is the moving average. 

There are several variations8 of moving average algorithm. In this project, simple form of moving 

average is implemented. Simple moving average is the unweighted mean of the previous N data. 

For better understanding, in the following examples will be explained how the moving algorithm 

works. In this examples, delays which can appear in calculating sum and quotient is not taken into 

consideration. Therefore, examples are ideal use cases. 

For example, let’s say that we have some input data values every clock cycle (see Figure 8). If we 

calculate average of the first three input data points, we get one output data point that represents 

average of those first three points (first red value on Figure 9). Afterwards, next three input data 

points give the next output data point (second red value on Figure 9). This creates a new subset of 

numbers, which is averaged. This process is repeated over the entire data series. After smoothing, 

output data can look as shown on the Figure 9.  

In addition, there is another example of using input data to calculate smoothed output data. If we 

use the same subset of input data from Figure 8, we can calculate average value in every clock 

cycle using the last three input data points (see Figure 10). 

The difference between these two examples is that the first one has a reduced bandwidth. In this 

case, we get the average result every third clock cycle, which is not the case with the second 

example. In the second example, we get output data every clock cycle. Therefore, second example 

is more optimized version of the moving average. This we can easily see on the graphs, because 

first example doesn’t have peak anymore. However, second example has peak that is smoother in 

comparison to data input’s peak. In code, the first example is implemented with Finite State 

Machine (FSM - see 5.4) and the second example is without the FSM.  

                                                      
8 Variations include: simple, and cumulative, or weighted forms. 
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Figure 8.    Input data for moving average algorithm 

 

Figure 9.    Averaging algorithm with reduced bandwidth 

 

Figure 10.    Averaging algorithm with same bandwidth 
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4.2 Fixed-Point Arithmetic 

The fixed-point number representation is a real data type9 for a number that has a fixed number of 

digits after and before the radix point10. 

Certain types of embedded systems require the handling of real numbers (or at least what appear to 

be real numbers). Real numbers can have fractional parts-in other words, something after the 

decimal point-in contrast to integers which are always whole numbers [9]. 

Binary fixed point types have a scaling factor that is a power of two (see Figure 11). Summarizing 

all the products of bit number (0 or 1) with its position weight (24, 23 …), we can get the decimal 

value of the binary number. 

 

 

 

 

 

There are various notations used to represent word length and radix point in a binary fixed point 

number. In this project, Qm.f form is used (f represents the number of fractional bits and m 

represents the number of magnitude of integer bits). Since the entire word is a 2’s complement 

integer, a sign bit is implied. For example, Q5.10 describes a number with 5 integer bits and 10 

fractional bits stored as a 16-bit 2’s complement integer (see Figure 11). 

Because fixed point operations can produce results that have more bits that the operands, there is a 

possibility for information loss. More about this problem is discussed in chapter about fixed point 

addition (see 4.3). 

4.3 Fixed-Point Addition 

Adding fixed-point binary numbers is easy. We just perform a normal add (with a caveat) as if it 

were all an integer number (see Figure 12). If one of the numbers is negative, we take the 2's 

complement (invert and add 1) to get the negative representation.  

 

 

 

 

However, we also need to pay attention to the potential information loss and overflow. For instance, 

the result of fixed point addition could potentially have more bits than the number of bits in the two 

                                                      
9 Data type used in a computer program to represent an approximation of a real number. Because the real 

numbers are not countable, computers cannot represent them exactly using a finite amount of information. 
10 Symbol used in numerical representations to separate the integer part (to the left of the radix point) of a 

number from its fractional part (to the right of the radix point) [7]. 
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Figure 11.    Example of 16-bits fixed point number 

Figure 12.    Simple example of 16-bits fixed point addition 
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operands and overflow can basically be into a sign bit. In order to keep addition precise and avoid 

potential overflow in this project, the number of bits of input data (X, Y, Z coordinates) is increased 

from 16 to 20 bits each. 

For more information on how fixed point addition is implemented in VHDL and encountered 

challenges, see chapter 5.2. 

4.4 Fixed-Point Division 

Fixed point division is much more complicated than fixed point addition. From the perspective of 

computer architecture, usually it takes a lot more clock cycles11 than performing an addition in an 

FPGA. 

Division of binary numbers is similar to the division of decimal numbers. Figure 13 shows the 

division of the two integer numbers. On the left side is an example of division of two binary 

numbers and on the right side is an example of division of decimal values of the same numbers.  

 

 

 

 

 

 

 

 

 

 

 

However, implementation of division of binary numbers in hardware is much more complex and 

algorithms used for division can vary. In this project we use division algorithm which 

implementation is well explained in a material about Fixed Point Division12. In the following text, 

implementation is explained using some of the examples from mentioned material. 

                                                      
11 The time between two adjacent pulses of the oscillator that sets the tempo of the computer processor. 
12 Binary Division – Fixed Point Division by Tom Burke: 

https://www.youtube.com/watch?v=TEnaPMYiuR8 
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Figure 13.    Simple example of division 
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0
0 

 

Figure 14.    Pseudocode for binary division 

0
0 

The shorter version of division algorithm that shows the most important steps during the process 

of division is given in the form of pseudocode on the Figure 14. Constant number N is the 

number of bits of the register and Q is the number of bits for the fractional part.  

At the beginning we first need to initialize our counter, divisor and dividend (see the initialization 

part on the Figure 14). In this algorithm we are ignoring the sign bit of the quotient (N-1 means 

that we are throwing away the sign bit) because it is the EXOR (exclusive OR operation) of the 

two sign bits of divisor and dividend. After the initialization, we are iterating through counter 

values. In one iteration we are calculating the value of the quotient (for the current iteration) and 

values of dividend and divisor (for the next iteration). This process repeats until the counter value 

gets to the zero. 

 

// Initialization:   
COUNTER = N+Q-1   
DIVISOR = Divisor without a sign bit is placed in the highest N-1 bits  

of 2*(N-1)+Q wide register   
DIVIDEND = Dividend without a sign bit is placed in the highest N-1 bits  

of N+Q-1 wide register   
QUOTIENT = Quotient has all 0s at the begining and is placed in N+Q  

wide register  

  
// I-th iteration:   
if DIVISOR_i > DIVIDEND_i then   
    QUOTIENT_i = QUOTIENT_previous           
    DIVIDEND_next = DIVIDEND_i               
else   
    QUOTIENT_i[COUNTER_i] = 1 
    DIVIDEND_next = DIVIDEND_i - DIVISOR_i   
end if   
COUNTER_next = COUNTER_i - 1     // Decrease counter 
DIVISOR_next = DIVISOR_i >> 1    // Shift divisor one bit to the right   
   

 

       

For better understanding how this algorithm works, we will implement it on the previous example 

from the Figure 13. Due to the fact that we already know the result of division, at the end we can 

compare these two results.  
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Figure 15.    Number representation of divisor and dividend 
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First, we need registers that are big as these numbers (see Figure 15). 

The counter is 6 (N+Q-1=6), the dividend is placed inside the 6-bits wide register (N+Q-1=6) and 

the divisor is placed in 12-bit wide register (2*(N-1)+Q=12). After this initialization we start to 

iterate using the binary division algorithm. The result of the iterations as well as result are shown 

in Table 1. 

COUNT DIVISOR DIVIDENT QUOTION 

6 000101000000 110110 0000000 

5 000010100000 110110 0000000 
4 000001010000 110110 0000000 
3 000000101000 110110 0001000 

2 000000010100 001110 0001000 
1 000000001010 001110 0001010 
0 000000000101 000100 0001010 

Table 1    Example of division algorithm implemented in integer binary division 

The quotient is also using the integer representation of the number. So if the result has fractional 

bits, we miss them because the quotient is truncated (the correct result is 1010.1100… and we 

got 1010). We also need to pay attention on that the quotient is never bigger than the dividend. If 

that is the case, then we have an overflow. Overflow bits of quotient are marked with yellow 

colour. If one of the yellow bits is greater than 0, then we have an overflow. 

The next example shows fixed point binary division. We will divide two fixed point numbers 

(1.00112/0.012=0100.1102). It starts the same as the integer division from previous example 

(see Figure 16).  

 

 

 

 

 

 

 

The counter is 6 (N+Q-1=11), the dividend is placed inside the 6-bits wide register (N+Q-1=11) 

and the divisor is placed in 12-bit wide register (2*(N-1)+Q=18). After this initialization we 

start to iterate using the binary division algorithm. The result of the iterations as well as result are 

shown in Table 2. 
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COUNT DIVISOR DIVIDENT QUOTION 

11 000010000000000000 00100110000 000000000000 
10 000001000000000000 00100110000 000000000000 
9 000000100000000000 00100110000 000000000000 
8 000000010000000000 00100110000 000000000000 
7 000000001000000000 00100110000 000000000000 
6 000000000100000000 00100110000 000001000000 

5 000000000010000000 00000110000 000001000000 
4 000000000001000000 00000110000 000001000000 
3 000000000000100000 00000110000 000001001000 

2 000000000000010000 00000010000 000001001100 
1 000000000000001000 00000000000 000001001100 
0 000000000000000100 00000000000 000001001100 

Table 2    Example of division algorithm implemented in fixed-point binary division (in FPGA) 

The quotient is also using the fixed point representation of the number. In this example, we don’t 

lose fractional bits. We also have yellow marked bits that provide us with overflow information. 

We can see that this algorithm for binary division is deterministic in time, which means that it 

always uses the same amount of clock cycles in hardware implementation. For this example to 

work, we need 4*N-4+3*Q bits in our registers. Because we have N+Q-1 shifts and subtracts and 

one initialization process, it will take N+Q clock cycles for this division block to finish. 

See chapter 5.3 to see a better overview of the algorithm used in this project. 
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5 Implementation 

5.1 Average Block 

The average block represents the main block of the project (see Figure 17). The smoothing 

algorithm is implemented inside this block. Input data are (X, Y, Z) fixed point numbers that are 

16 bits wide. This data is distributed inside 6 registers that are 8 bits long. Therefore, input data is 

48 bits long. Average block uses two smaller blocks, for calculating the input sum – block for fixed 

point adder and for performing division – block for fixed point divider. 

The block contains three 48 bit wide registers (R1, R2 and R3) that are used for storing input data 

of the block. The Finite State Machine (explained in 5.4) is used for controlling the flow of the 

calculations and writing/reading data. 

As a result we get an averaged value of every coordinate. Throughout the whole project, there is a 

data valid signal pipelined through the design, which is very important. First, for the Finite State 

Machine conditions for changing state, and second, for setting data output valid signal in time. 

  

Fixed 
Point 
Adder 

Fixed 
Point 

Divider 

 

FSM 

Figure 17.     General picture of the project 



19 | P a g e  

 

5.2 Fixed-Point Adder  

When adding two numbers an additional bit is required for the result. When adding more than two 

numbers all of the same word length (WL) width, the number of bits required for the result is WL 

+ log2 (N), where N is the number of elements being summed [10]. 

In this project the sum of three data input values (values from R1, R2 and R3 registers) is calculated. 

However, this fixed point adder block does not implement the calculation of the sum of all values 

in the registers. The input for the fixed point adder block has two input values (A and B) and the 

output of the algorithm is their sum (see Figure 18). How to get the sum of all this register values 

as soon as possible, is explained about in chapter 5.5 about pipelining. 

The Verilog fixed point addition module is transferred to VHDL fixed point adder block and it is 

based on a Verilog implementation of fixed point math library from OpenCores13. 

 

Figure 18.    Algorithm for fixed point addition 

                                                      
13 http://opencores.org/project,verilog_fixed_point_math_library  
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5.3 Fixed-Point Divider 

To calculate the average of input values, besides the fixed point adder block we also have to have 

a fixed point division block. In this project, the division module from OpenCores14 is used and this 

module divides two numbers using the right-shift and subtract algorithm (see Figure 19). Unlike 

the fixed point adder block, this module requires an input clock. The algorithm that is shown on 

the picture represents one clock cycle (starts every positive clock edge). 

Some changes had to be made due to rounding error in the quotient. Rounding to nearest smaller 

value is corrected and the algorithm is successfully implemented in the project. 

 

Figure 19.    Algorithm for fixed point division 

                                                      
14 http://opencores.org/project,verilog_fixed_point_math_library 
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5.4 Finite State Machine (FSM) 

Finite State Machine (FSM) is a model of computation used to design both computer programs and 

sequential logic circuits. It is conceived as an abstract machine that can be in one of a finite number 

of states. The machine is in only one state at a time and the state it is in at any given time is called 

the current state. It can change from one state to another when initiated by a triggering event or 

condition; this is called a transition. A particular FSM is defined by a list of its states, and the 

triggering condition for each transition. 

In this project, the FSM has five states. In first three transitions (see Figure 20), input data is written 

inside the R1, R2 and R3 registers. In S3 state, pipelining is started by triggering data valid signal15 

for starting the calculculation (dv1=’1’). Calculation starts with fixed point addition and 

afterwards it continues with fixed point division. In the last state, S4, we are waiting a finite number 

of clock cycles for fixed point division block to finish its calculation. After the last state, we send 

calculated value as well as data valid signal to the output and then repeating the same process again 

(starting from state S0). 

 

Figure 20.    Final state machine in Average Block 

  

                                                      
15 In order to know when our output data is valid we use data valid signal. The average block can give us the 

wrong output before the right one is out, so data valid signal is crucial to correctness of our averaged results. 
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5.5 Pipelining 

Pipeline is a set of data processing elements connected in series, where the output of one element 

is the input of the next one. The elements of a pipeline are often executed in parallel or in time-

sliced fashion. 

Pipeline in this project is implemented using several processes (see Figure 21). The first two 

processes are dealing with fixed point adder. The fixed point adder was rewrote from Verilog to 

VHDL. Fixed point addition block adds two values from registers. After the calculation, it produces 

the result of the addition. That result is now input value for fixed point adder block inside the new 

process. 

Afterwards, N number of processes are used for the latency of the fixed point division. The input 

values for the fixed point division block are the result from the fixed point adder from the last 

process and the number of values we summarized (in this case it is 3 values - 3 registers). 

The data valid signal is also very important. We propagate the value of the data valid signal (true 

or false) through whole pipeline process. Therefore, at the end we are sure that output data from 

fixed point division block is already finished. 

The division algorithm used requires several clock cycles, which is called its latency. The division 

will be finished always after the same period of time, no matter what the input numbers are. At that 

time we need to take care of data valid signal, so its value doesn’t get lost in the process. The 

solution for that is to implement shifted register of a certain size which helps to propagate and value 

of valid data throughout division process. 

Figure 21.    Pipelining implemented in Average Block 



23 | P a g e  

 

6 Results 

Before testing the functionality of the average block on the board, it is necessary to write a test 

bench and run the simulation. Afterwards, average block can be programmed on the SoCrates II16 

board with a Cyclone V SoC FPGA.

 

6.1 Test bench and Simulation 

With VHDL, it is possible to model the hardware and system design with a test bench, by 

applying stimulus to the design and to analyse the results. VHDL can be used as a stimulus 

definition language as well as a hardware description language. 

Figure 24 represents a screenshot of successful simulation. Behind this simulation is a test bench 

that simulates input data for the average block (X, Y, Z coordinates). In this test bench, input data 

X and Y are zero. However, input data Z increases by one every clock cycle. There is also a 

signal which notifies us when registers are busy/ready for new input data (available).  

                                                      
16 http://www.devboards.de/en/home/boards/product-details/article/socrates-ii/ 

Figure 22.    SoCrates II [11] Figure 23.    Cyclone V SoC FPGA [12] 
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On the other hand, in output signals we have result from fixed point adder block 

(data_out_addition) as well as its data valid signal (data_out_cnf_addition). Lastly, 

we have result from fixed point division block (data_out) and its data valid signal 

(data_out_cnf). 

For further explanation see Figure 25. For example, first three data inputs are numbers 1, 3 and 5. 

Their data valid signals are high. However, to write this data inside average block registers, busy 

signal also needs to be high. That means that the average block is not busy at the moment. First, 

average block calculates the sum of these input values in the next two clock cycles. Result is 9 

and data valid signal for adder is also high. Afterwards, division takes much more clock cycles. In 

this case it takes around 36 clock cycles. The result of division is 3 and that is the correct answer. 

Now, it is the same with other data input values. 

 

6.2 Performance Analysis 

The simulation shows the results and the performance which we expected. Afterwards the board 

was programmed and we can see whether this block works with real data input from the sensor. 

Figure 24.    ModelSim simulation of Average Block (full) 

Figure 25.    ModelSim simulation of Average Block (zoomed) 
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Real data from the sensor are written into a text file during a period of time. The text file consists 

of four columns. The first one represents time and the other three columns are the X, Y and Z 

coordinates. 

In order to improve the visibility of the result of the average block on real sensor data, data plots 

are created before and after smoothing data. 

First plot (see Figure 26) represents visualised Z data values (y axes) during the finite period of 

time (x axes). This plot presents data without implemented smoothing algorithm. 

 

The second plot (see Figure 27) also represents visualised Z data values (y axes) during the finite 

period of time (x axes). However, this plot presents data with implemented smoothing algorithm. 
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Sensor data after smoothing – Z dimension 
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Figure 26.    Z axes data from sensor that is not smoothed 

Figure 27.    Z axes data from sensor with smoothing 
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When comparing these two plots of acceleration in Z direction over time, second data plot is 

seemingly smoothed.  

Better way to see the difference between real and smoothed data from the sensor is a histogram. 

On the Figure 28 we can see what values are most common for the Z coordinate when the data 

are not smoothed.  

 

On the Figure 29 we can see what the most common values for Z coordinate are when data is 

smoothed. It is expected for both histogram shapes to have the peak on a similar place. We can 

see from the visualizations that condition is fulfilled. The small deviation is a sensor position 

effect.  

Sensor data before smoothing – Z dimension 
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Sensor data after smoothing – Z dimension 
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Figure 28.    Histogram of Z axes data from sensor that is not smoothed 

Figure 29.    Histogram of Z axes data from sensor that is smoothed 
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7 Conclusion 

The use of smoothing algorithm that is implemented and tested on the sensor data is considered 

successful. Results before and after the smoothing are compared and the differences are visible.  

To achieve the best outcome, several different approaches were made during the implementation 

on an FPGA. In the following text, these approaches are mentioned. Possible improvements can be 

done thanks to future proposals. 

7.1 Progress Overview and Project Status  

One of the first steps was to implement the block with only one 48-bit data input and two fixed 

point addition blocks. In this case 48-bit input data represented a single bus. 

Due to the fact that we don’t have all the data in the pipeline, the used FSM needed to be extended 

with RESET state. After that we were sure that only the pipeline defines our data. 

Writing test benches is not easy because we need to think about every change of the signals and to 

take every change into account. After successful simulation, the block for fixed point division is 

integrated into the system. The next task was to make three 16-bit buses (one for X, second for Y 

and third for Z coordinate values of the vibration sensor). 

After adding three 16-bit data inputs, three pipelines are added - one for X, one for Y and one for 

Z data input. Now we have three fixed point dividers (for each X, Y and Z), three first stage fixed 

point addition blocks and three second stage fixed point addition blocks. 

The shift register is added because fixed point division takes some clock cycles to complete the 

calculation. The shift register is the best solution because fixed point addition always takes the 

same amount of time to complete. Shift register is used to propagate the data valid signal through 

pipeline. 

There was a problem with averaging result. Sometimes result was decreased by one and it seemed 

like a rounding error. The problem was solved by improving the qdiv.v file from fixed point math 

library. The next problem was the size of registers where input data is placed. The size of these 

registers is increased from 16-bit to 20-bit because of the problem with overflow in fixed point 

adder and VHDL coding as well. 

In parallel, the average block without FSM was implemented in order to decrease the time of 

calculation of the average value. The average block without FSM represents a more optimized 

version of calculating the average value (see Figure 10) and is implemented inside one process. 

The goal was to implement the streaming of data where the solution is completely pipelined without 

state machine. 

The average block is successfully used for smoothing data from the vibration sensor. Project is 

done. 
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7.2 Advantages and Disadvantages 

ADVANTAGE:  

 Data smoothing makes patterns more 

visible,  

 Removes noise from a data set, 

allowing important patterns to stand 

out. 

DISADVANTAGE:  

 Data smoothing can overlook key 

information or make important facts 

less visible. 

7.3 Future Work 

Ideas for future work enables any reader to further improve the code. Some of the ideas are listed 

below: 

 Make divider generic. Make a possibility for user to choose the generic integer (fixed-

point) number. At the moment, divider is constant number. If we use generic divider, we 

can generally produce these registers, process states. However, it can get complicated. 

 Implement different smoothening algorithm. Possible smoothing algorithms to implement: 

squares, simple exponential, linear exponential and seasonal exponential smoothing 

 Additional reduction of data rate by amount of averaged points. Number of registers for 

writing input data of the block is 3. The next goal is to increase this number to 5. 
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