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On Quaternion Number-Systems.
By

H. E. Hawxkes of New Haven, Conn.

Introduction.

This paper continues and concludes the solution of the general
enumeration problem of hypercomplex number-systems which are asso-
ciative and have a modulus. The enumeration of non-quaternion systems
is given in Mathematische Annalen vol. 58. The problem consists in finding
all non-equivalent, non-reciprocal, irreducible number-systems with moduli,
where the terms used are defined as follows.

Def 1. Two systems having the units

7

d ’ F 4
€15 €9y -, €, aN €1,6,' -6,

respectively are equivalent if linear relations exist of the type

ek’=2akiei (k=1,2,---,m)
i=1
where the determimant
|| 0 (kyi=1,2,.-,m).
The a’s are assumed to be ordinary complex numbers.

Def. 2. A system is reducible if its units may be divided into two
or more subsystems such that the product of two units in the same
subsystem is in that subsystem, while the product of units in different
subsystems vanishes.

Def 3. Two systems are reciprocal to each other when the multipli-
cation table of one can be obtained from that of a system which-is
equivalent to the other by an interchange of rows and columns.

Def. 4. The modulus of a system is a number g such that for an
arbitrary number z of the system,

U =28 = I.
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The division of number-systems info quaternion and non-quaternion
classes is due to Scheffers¥) who defines a quaternion system as one in
which three numbers independent of the modulus and of each other exist
which satisfy the following equations:

€6 — 66 = 2e,
(1) 6oy — €36, = 2ey,

The simplest quaternion system is Hamilton’s quaternions which is
symbolized by (H). The necessary and sufficient condition that a given
system is quaternion, is that (H) occurs in it as a subsystem, that is
that four independent numbers of the system may be so chosen that their
multiplication table is identical with that of (A). That this condition is
sufficient is evident, since the three units of (H) that are distinet from
the modulus fulfil equations (1) when the multiplication table for (H) is

taken in the form
1 2 3 4

213 |—4|—1| 2

3(—2/ 1 |—4 3

41121314

where k is written for e¢,. That this eondition is necessary was proved

by Scheffers for » < 8, and appears for general » from a memoir by
Molien.*¥)

§ 1.
Normal Forms.

In order to enumerate the various systems of distinet types it is
necessary to find a normal form into which any quaternion system may be
thrown and from an inspection of which its characteristic properties appear.
Normal forms for any system, whether quaternion or not, have been given
by Molien***) and the writer{) and will be symbolized by (M) and (P)
respectively. A normal form for the multiplication table of non-quaternion

*) Mathematische Annalen, Vol. 39.
**) Mathematische Annalen, Vol. 41.
% loc. cit.
+) Transactions of the Ameriean Mathematical Society, Vol. 3.
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systems has been given by Scheffers¥), which will be symbolized
by (S). The features of these normal forms will now be given, followed
by proofs that these three forms are compatible, that is, the multiplication
table of a given system may be thrown into all three forms simultaneously,
thus affording a form which comprises the advantages of all. This
generalized normal form is called (N).

1. Normal Form (M)
Def 5. A primitive system is one in m? units,
G1s 25" 5 bumy Ca1s Ca2y " 1 Comyt y bum

such that the units obey the multiplicative law

e =0 when k=,

€,6r=2¢; When k=1
For m = 1 we have the system

e’ =¢.

For m = 2 we have the system which is equivalent to (H),

112,090
0,012
314,00
0 O 31| 4

where
€1y == €y, €13 = €, €y = €3, €gp = €4

When m =3 we have the multiplication tables of nonians. Molien*¥)
shows that if a system S contains several primitive subsystems

P17 P27 Y Pz:
the units of S may be so chosen that all these subsystems appear in the
multiplication table, showing that the units which comprise

Pi: P27 B Pl
are independént of each other. The product of units one or more of
which is not a unit of a primitive system can confain no unit of a
primitive system.

 loe cit.
**) loc. cit.
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These theorems we may display in a table as follows.

€

(17"')")

Py

where (1,---,7) indicates a number involving the units e;,---, ¢. and all
the subsystems P,,---, P, contain a square number of units whose multipli-
cation table is given on page 439.

The order of these primitive systems along the principal diagonal
is immaterial. It is convenient to assume that the primitive systems in
one unit appear first, followed by those of higher order. When a system
is thrown in any way into normal form (M) the same set of primifive
systems appears, showing that they are an invariant of the system. We
can now see that the necessary and sufficient condition that a system is
a quaternion system is that at least one of its primitive systems is of
order > 2. The necessity of the condition follows since any four units
€329 €245 €225 €z, Of & primitive system have (H) for a multiplication table.

2. Normal form (P).

Def 6. A number o is called idempolent if o = «.

Def. 7. A number « is called nilpolent if «? = Q.

If a system contains an idempotent number, this number may be
taken as the unit ¢, and the other units of the system so chosen as to
fall into the following groups: —

Group I contains only units ¢, such that

3‘,6“ == 8nek et 6k.



On Quaternion Number-Systems. 441

Group II contains only wunits ¢, such that
ee, = 0; e,6, = ¢.
Group III contains only units ¢, such that
e, = &3 6,6, = 0.
Group IV contains only units e, such that
ee, = 6,6, = 0.%)
When the transformation bringing the system into this form has been
performed, the system is called regular with respect to ¢,. The four groups
are symbolized respectively by (dd), (dn), (nd), (nn). Evidently e, itself

is in group I. The following multiplication table shows the group to
which the non-vanishing product of units of any two groups must belong.

(dd) (dn) (nd) (mn)
@dy | @da)y|@m)! o | o

(dn)] O | O ' (dd)|(dn)
(nd)| (nd)i(wn)| O | O

!

mn)l 0 | 0 | (nd)|(nn)!

i i

If an idempotent number independent of ¢, remains in any group it may
be tdken as a unit, say e, ,, and the system made regular with respect
to it without disturbing the regularity with respect to ¢,. This process
may be continued until no two idempotent numbers occur in the same
group with respect to any unit. A system in which every umit is in one
of the four groups with respect to each and every idempotent unit is called
regular, or in normal form (P). The modulus of a system in form (P)
is the sum of its idempotent units.

Theorem 1. Normal forms (M) and (P) are compatible.

Assume that the system S is in form (M) We must show that
without destroying form (M) the system may be threwn simultaneously
into form (P). The idempotent units in the primitive systems of (M)
are all in group IV with respect to each other, and no idempotent unit
independent of these units exists else it would appear as a primitive
system of order 1. The nilpotent umits of the primitive subsystems are
already in either group II, III or IV with respect to each idempotent
unit. It only remains to regularize the umits ¢, -- -, ¢, which are not.in

*) For proofs of this and the following theorems see my-paper-in -Transactions,
loc. cit.
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any primitive subsystem. That this can be accomplished without affecting
the form (M), but by linear transformations involving only the units
€, - ¢, appears from the method of regularizing a system.¥)

3. Normal Form (8).

For a non-quaternion system which, as we have seen, is a system
containing no primitive subsystem of order greater than 1, Scheffers has
given a normal form, and the explicit enumeration of distinct systems for
n < 5 has been given by him. The enumeration of systems in one idem-
potent unit has been carried out for the general case by Starkweather. ¥)
Explicit enumeration for the case where the system contains more than one
1dempotent unit will be found for =6 in vol. 58 of these Annalen,
page 370, and for » = 7 in the American Journal of Mathematics vol. 26.

Theorem II. Normal form (M) and normal form (S) are compatible.

If in any quaternion system the nilpotent units of the primitive
sub-systems are deleted we have an associative non-quaternion system
which may by a transformation 7 which involves only the remaining
nilpotent units, be thrown into normal form (S), all the distinct types
of which for a given order are known. Since such a transformation does
not involve the idempotent units it might properly have been applied to
the undeleted system thus throwing the non primitive portion of the
system together with the corresponding idempotent umits into form (S).
Since a non quaternion system in form (S) is also in form (P) this
transformation does not affect the regularity.

We can now restate the results as follows: —

If a system is i form (M) it may be transformed so as to fall
sumultaneously in form (P). The units exclusive of the nilpotent units in the
primitive subsystems form a won-quaternion system and may be assumed
wm form (S). A system in this form is said to be in form (N)

§ 3.
Prineiples of Classification.

1. Equivalence.

Theorem HI. If two systems in form (N) have different nuwmbers
of idempotent units they are ineguivalent.

This is evident from the invariance of the primitive sub-systems.

The significance of this theorem is that when we are seeking all
types of inequivalent systems of order », we may make our enumeration

*) Transactions, loc. cit. page 314.
¥y American Journal of Mathematics, Vols. 21, 23.
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for different numbers of idempotent units separately without possibility
of repetition.

Lemma. If the systems S and S’ are in form (N) and are equivalend,
and if € is am idempotent unit in S’ then the equation of tranmsformation

(1) 4 =2”7a,.ei
i=1

reduces to
e =ce

where ¢ s an idempotent unit of S.

Symbolize by s any nilpotent units of S not contained in a primitive
sub-system, and by p nilpotent units that are contained in some primitive
sub-system. The number ¢ = s 4+ p is then not idempotent. For products
of the form s? sp, ps involve only units s by the table on page 440,
while an idempotent number of the primitive subsystems consisting of
nilpotent units does not exist. Thus the transformation equation (1)
must contain at least one 1dempotent unit of S in its right hand member.
Since the primitive sub-systems are an invariant of the system there are
the same number of idempotent units in S as in S’. If then two or more
idempotent units of S occur in the right hand member of (1), one of them
must appear in the equation of transformation of a second idempotent unit
of §', say ¢’. But sincee’2=¢, ¢"?=¢" and ¢'¢” = 0 the right hand members
of the equations in question cannot contain the same idempotent unit of S.
Thus each idempotent equation contains one and only one idempotent
unit of S. It remains to prove that (1) can contain no nilpotent wunit
in its right hand member. The equation (1) is then in form

€=s+p+te
where ¢; i1s an idempotent unit of S. Let now p;;, 9., Py, represent

those units in p which are in groups I, II and IV respectively with
respect to ¢;. Thus

€ =8+ P+ 0+ Pate (I, m, j, b=1).
Squaring we get

Dim = Dim '*j PimPii + Diuliz + DirDim + DixPji + Psilym + Diilis-
But by the table on page 441 this reduces to
Dip = Pin + PiiDss-

One observes that pf, is idempotent, which is however impossible since
it is expressed in terms of nilpotent units. Thus (1) is reduced to the form

@) € =s+p;+p:te (J, k+9)
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Let now e, be the idempotent unit of S with respect to which some units
of p,, are in group I, and let

(3) €' =5+ P+ Piw T+ & (I, m=k)

be the equation of transformation containing e¢,. Since &'¢”= 0 we have

Piilix + PixPim + 6P+ 06, =0

Since k==m, p,; 0, = 0; since j=13, p;p; =0 i e. i=1; since ¢ 1,
9, =0. Thus p, e, =0 which is contrary to the hypothesis. Conse-
quently p,, = 0. We can show similarly that p,; = 0, and our equation
(1) is reduced to the form

‘= s+ e.
Since all units s are in normal form (S), there can be no s units in
the right hand member of (1)¥), and our equation (1) is reduced to
the form )

¢ =e.

Theorem IV. If S and S’ are equivalent there is a one to one correspon-
dance between the idempotent units of the two systems such that the number of
wnits in the growps I, 11, 111, IV, with respect to corresponding units s the
same.

The preceding lemma shows the existence of the one to one corre-
spondence between the idempotent units of S and S’. That the theorem
is true so far as the units of the primitive subsystems are concerned follows
from the invariance of these subsystems in equivalent systems. The
remaining units are in normal form (S) and the complete validity of the
present theorem is established by the corresponding theorem on non-
quaternion systems.**) This theorem puts us in a position to write down
all possible combinations of groups with respect to idempotent units into
which the remaining non-idempotent units may fall, and assures us that
no two systems in different combinations can be egquivalent.

2. Reducibility.

Evidently any system all of whose units fall in primitive subsystems
is reducible. This is a special case of the theorem proved in general
in my paper in the Annalen®*¥) that the necessary and sufficient
condition that a system is reducible is that its modulus falls into parts,
each of which is the modulus of a certain subsystem. Thus if we start
with an idempotent unit and find it connected with every other idem-

*) Scheffers, loc. cit., page 329.
*# Math. Annalen, vol. 58, page 365.
##* loc. cit. page 366.
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potent unit by a chain of non-vanishing maultiplicative relations with
other units, then the whole modulus lies wholly in one subsystem and
the system is irreducible. If on the other hand not all idempotent units
are thus connected the modulus falls apart and the system is reduecible.

3. Reciprocity.

Reciprocal systems evidently have the same number of idempotent
units. Let S and S—! be systems with their umits so chosen that the
table for S passes into that of S~ by an interchange of rows and
columns. We may assume that both systems are in normal form (N).

As we pass in this way from S to S—! we note that the same units
constitute the various groups I and IV in each system. The units of II
with respect to a given unit pass into units of III with respect to the
same unit and conversely, thus leaving the primitive subsystems unchanged.
If then, from the totality of combinations of units into groups, we erase
every combination which differs from another merely by an interchange of
the number of units in the group II and III with respect to the various
idempotent units, we shall erase all combinations which lead to systems
reciprocal to those that remain, and only such.

4 Removal of Parameters.

The only parameters in normal form that remain to be removed are
those found in the products of the non idempotent units in the primitive
subsystems and those not in the subsystems. Application of the fable
on page 441 serves to remove most of them, while the remaining ones
may be fixed by direct application of the associative law or by the
principle of deletion.¥)

§ 4.

IMlustration; n —=71.

In the+following tables of combinations of units into groups the
primitive subsystem (H) contains the units ¢, ¢, ¢;, ¢ of which ¢, and
e, are idempotent, while ¢, and ¢ are in groups II and III respectively
with respect to e¢,, and in groups III and II respectively with regard
to e;,. In the following tables the indices of the idempotent units are
in the upper line of the table, while the indices of the mnen-idempotent
numbers are in the left hand column. The group of e; with respect to ¢,
is found at the intersection of the ¢ row and k* column.

¥) Math. Annalen, vol. 58, page 3671
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4 7T 4 T 4 7T 4 T 4 T 4 7
IV T IV T IV T IV (IO {10
2 LIV 1| Ivi oy o Iy i Iy ) o
3, IjIv, Il (I o or, oy o Ir |y o
4 Do oy oI |y o
SIO Iy OI I I oI o an It

It appears that none of the six distinet tables of combination given yield
agsociative systems. By the table on page 441 we see that for the first

four combinations given
<

€y = 6,656 = &
—
where the arrow indicates the order of multiplication. That is
e, =¢e65-¢ while ¢ -e¢,=e¢,.

For the last two systems
s
—p

Thus where (H) is the only primitive subsystem we get no quaternion
system for n =T.
Suppose now we have in addition to the primitive subsystem (H) a

primitive subsystem of order one; that is an idempotent unit e,. We
have then the following tables of combination.

3 4 7T 3 4 ©v 3 4 7 3 4 7 3 4 1
T IIVIIVIIVy T IVIVIIV TV T Iv o O Iv
2\ | Ooojivyo o Iv, o o v, o i v o v 11
S5{IVIIO (IO IV, IO Uy Iivy o | Irjiv| 0 |oijiv| o |11
6{IV|ID | IV o Ivim o jIv i o jiv i

3 4 7T 3 4 T 3 4 1 3 4 1
omiogryiv o joryiv o my1vio oiIv
Immio{Iviogn{Iv o(ivi{ o |y Ivi | o
Ivio\mivi o oivig o Ivi o (it
IV ID| IO IV IO |IVIIO| O {IV|II| I

Of these nine combinations the first four are seen to be non-associative
by the product ¢,e;¢;, while the last four are also non-associative by
the product ¢, ¢,¢;. The remaining combination affords the system
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1 2 3 45 6 1
1/0{0;]071,2,0,0
2(01010101011}2
3/1,2{3/0/0/0]0
4/0/0{0{4/5/00
5/0/0/0[0,0]45
6/0 006|700
770/0/0/0/0/6]|7

which is the only quaternion system in seven units, as additional idem-
potent units would yield reducible systems.

Yale University, May 21, 1904.




